Littérature scientifique sur le sujet « Theory and Models »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Theory and Models ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Theory and Models"

1

Bennardo, Giovanni. « Cultural Models Theory ». Anthropology News 59, no 4 (juillet 2018) : e139-e142. http://dx.doi.org/10.1111/an.919.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Lewis, Robert. « Neurobiological Theory and Models ». Clinical Journal of the International Institute for Bioenergetic Analysis 22, no 1 (mars 2012) : 109–26. http://dx.doi.org/10.30820/0743-4804-2012-22-109.

Texte intégral
Résumé :
This paper examines the clinical relevance of recent neuroscience data to the practice of bioenergetic analysis. I conclude that the nonverbal, bodily basis of our approach is affirmed by the evolving picture of a right-brain-to right-brain infant-caregiver dialogue engraving our attachment experience into the right limbic system as a model of relationships to come. But I also conclude that, for most of us, the neurobiological data does not help us in real time to be present with our patient in the clinical encounter. Two clinical vignettes illustrate both the above perspective and the continuing relevance of our basic Reichian/Lowenian model of our patient as the trillion-celled amoeba.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Forbes, T. G., J. A. Linker, J. Chen, C. Cid, J. Kóta, M. A. Lee, G. Mann et al. « CME Theory and Models ». Space Science Reviews 123, no 1-3 (13 octobre 2006) : 251–302. http://dx.doi.org/10.1007/s11214-006-9019-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

ŠINDELÁŘ, JAN. « MODELS IN GNOSTICAL THEORY ». International Journal of General Systems 21, no 4 (janvier 1993) : 365–78. http://dx.doi.org/10.1080/03081079308945087.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Erdem, Tülin, Kannan Srinivasan, Wilfred Amaldoss, Patrick Bajari, Hai Che, Teck Ho, Wes Hutchinson et al. « Theory-Driven Choice Models ». Marketing Letters 16, no 3-4 (décembre 2005) : 225–37. http://dx.doi.org/10.1007/s11002-005-5887-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Girardello, Paolo, Orietta Nicolis et Giovanni Tondini. « Comparing Conditional Variance Models : Theory and Empirical Evidence ». Multinational Finance Journal 7, no 3/4 (1 décembre 2003) : 177–206. http://dx.doi.org/10.17578/7-3/4-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

CHEN, Guanyu, et Ping CHEN. « Explanatory item response theory models : Theory and application ». Advances in Psychological Science 27, no 5 (2019) : 937. http://dx.doi.org/10.3724/sp.j.1042.2019.00937.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Brzezińska, Justyna. « Item response theory models in the measurement theory ». Communications in Statistics - Simulation and Computation 49, no 12 (26 décembre 2018) : 3299–313. http://dx.doi.org/10.1080/03610918.2018.1546399.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Babel, L. V., et D. Karssenberg. « Hydrological models are mediating models ». Hydrology and Earth System Sciences Discussions 10, no 8 (16 août 2013) : 10535–63. http://dx.doi.org/10.5194/hessd-10-10535-2013.

Texte intégral
Résumé :
Abstract. Despite the increasing role of models in hydrological research and decision-making processes, only few accounts of the nature and function of models exist in hydrology. Earlier considerations have traditionally been conducted while making a clear distinction between physically-based and conceptual models. A new philosophical account, primarily based on the fields of physics and economics, transcends classes of models and scientific disciplines by considering models as "mediators" between theory and observations. The core of this approach lies in identifying models as (1) being only partially dependent on theory and observations, (2) integrating non-deductive elements in their construction, and (3) carrying the role of instruments of scientific enquiry about both theory and the world. The applicability of this approach to hydrology is evaluated in the present article. Three widely used hydrological models, each showing a different degree of apparent physicality, are confronted to the main characteristics of the "mediating models" concept. We argue that irrespective of their kind, hydrological models depend on both theory and observations, rather than merely on one of these two domains. Their construction is additionally involving a large number of miscellaneous, external ingredients, such as past experiences, model objectives, knowledge and preferences of the modeller, as well as hardware and software resources. We show that hydrological models convey the role of instruments in scientific practice by mediating between theory and the world. It results from these considerations that the traditional distinction between physically-based and conceptual models is necessarily too simplistic and refers at best to the stage at which theory and observations are steering model construction. The large variety of ingredients involved in model construction would deserve closer attention, for being rarely explicitly presented in peer-reviewed literature. We believe that devoting more importance to identifying and communicating on the many factors involved in model development might increase transparency of model building.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Nakamori, Yoshiteru, et Shigemasa Suganuma. « Landscape Theory and Extension Models ». Journal of Japan Society for Fuzzy Theory and Intelligent Informatics 16, no 1 (2004) : 3–7. http://dx.doi.org/10.3156/jsoft.16.3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Theory and Models"

1

Calhoun, Grayson Ford. « Limit theory for overfit models ». Diss., [La Jolla] : University of California, San Diego, 2009. http://wwwlib.umi.com/cr/ucsd/fullcit?p3359804.

Texte intégral
Résumé :
Thesis (Ph. D.)--University of California, San Diego, 2009.
Title from first page of PDF file (viewed July 23, 2009). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 104-109).
Styles APA, Harvard, Vancouver, ISO, etc.
2

McCloud, Nadine. « Model misspecification theory and applications / ». Diss., Online access via UMI:, 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Elgueta, Montó Raimon. « Algebraic model theory for languages without equality ». Doctoral thesis, Universitat de Barcelona, 1994. http://hdl.handle.net/10803/21799.

Texte intégral
Résumé :
In our opinion, it is fair to distinguish two separate branches in the origins of model theory. The first one, the model theory of first-order logic, can be traced back to the pioneering work of L. Lowenheim, T. Skolem, K. Gödel, A. Tarski and A.I. MaI 'cev, published before the mid 30's. This branch was put forward during the 40s' and 50s’ by several authors, including A. Tarski, L. Henkin, A. Robinson, J. Los. Their contribution, however, was rather influenced by modern algebra, a discipline whose development was being truly fast at the time. Largely due to this influence, it was a very common usage among these authors lo the equality symbol belonging lo the language. Even when a few years later the algebraic methods started to be supplanted to a large extent by the set-theoretical technique that mark present-day theory, the consideration of the equality a constant in the language still subsisted. The second branch is the model theory of equational logic. It was born with the seminal work of G. Birkhoff which established the first basic tools and results of what later developed the part of universal algebra known as the theory of varieties and quasivarieties. The algebraic character of this other branch of model theory was clearer and stronger, for it simply emerged as the last stop in the continuous process of abstraction in algebra. Amid these two branches of model theory, which suffered a rapid growth at the time, there appeared the work done by Mal'cev in the early 1950's and the late 60's, which some influence in the future development of the discipline, in the old Soviet Union. During the period mentioned above, he developed a first-order model theory that retained much of the spirit of the period and diverged openly from the model theory developed in the West. In particular, he put forward the model theory of universal Horn logic with equality along the of Birkhoff's theory of varieties, and showed that such logic forms a right setting for a large part of universal algebra, including the theory of presentations and free structures. The most worth-mentioning peculiarities of Mal'cev's program were the following: first, he kept on dealing with first-order languages with equality; second, he adopted notions of homomorphism and congruence that had little to do with the relational part of the language. This well-roted tradition of developing model theory in the presence of an equality symbol to express the identity relation, which goes back to its very origin, finally broken when logicians from the PoIish School started program similar to that of Mal'cev for another type of UHL, viz. general sentential logic. Indeed, in spite of the fact that the algebraic character of sentential logic was evident early in its development (chiefly because classical sentential calculus could be completely reduced to the quasi-equational theory of Boolean algebras), the natural models of arbitrary sentential calculus quickly took the form of logical matrices, that is, algebras endowed with a unary relation on their universe. This matrix semantics so became the first attempt of starting a systematic development of a model theory for first-order languages without equality. Beginning with the publication of a paper by Los in 1949, matrix semantics was successfully developed over the next three decades by a number of different authors in Poland, including J. Los himself, R. Suszko, R. Wojcicki and J. Zygmunt. The present evolution of these issues points towards an effort of encompassing the theory of varieties and quasi-varieties and the model theory of sentential logic, by means of the development of a program similar to Mal’cev’s for UHL without equality. We recognize that this evolution has been fast and notorious in the last decade, thanks mainly to the work done by J. Czelakowski, W. Blok and D. Pigozzi among others. For example, the first author has been developing a model theory of sentential logic inherits a lot of the algebraic character of Mal’cev’s theory of sentential logic originated by Birkhoff. On the other hand, Blok and Pigozzi, in a paper published in 1992, have succeeded in the development of a model theory –based on the Leibniz operator introduced by them– that does comprises for the first time both equational logic and sentential logic, and so strengthens Czelakowsk’s program. What enables such a simultaneous treatment in their approach in the observation that equational logic can be viewed as an example of a 2-dimensional sentential calculus and thus admits a matrix semantics, this time a matrix being an algebra together with a congruence on the algebra. A characteristic of decisive importance in Blok and Pigozzi's approach in their apparent conviction that only reduced models really possess the algebraic character of the models of quasi-equational theories. We give up such a conviction and the restriction to particular types of languages. The main purpose of this paper is to outline some basic aspects of the model theory for first-order languages that definitively do not include the equality symbol and which account of both the full and the reduced semantics. The theory is intended to follow as much as possible of the Mal'cev's tradition by pronounced algebraic character and mainly covering topics fairly well studied in universal algebra (that is the reason for giving the term “algebraic” to our model theory). Most of the work, that extends to general languages and fairly clarifies some recent trends in algebraic logic, constitutes the foundations of a model theory of UHL without equality. An important number of the results in the paper run side by side with some well-known results of either classical model theory or universal algebra; so, we make an effort to highlight the concepts and techniques only applied in these contexts although, in some sense, they find a more general setting in ours. The outgrowth of the current interest in the model theory of UHL without equality is the emergence of several applications mainly in algebraic logic and computer science. Therefore we also discuss the way that the developed theory relates to algebraic logic. Actually, we maintain that our approach provides an appropriate context to investigate the availability of nice algebraic semantics, not only for the traditional deductive systems that arise in sentential logic, but also for some other types of deductive systems that are attracting increasing attention at the time. The reason is that all of them admit as interpretation as universal Horn theories without equality. As we said before, the absence of symbol is the language to mean the identity relation is central to this work. Traditionally, the equality in classical model theory has had a representation is the moral language and has been understood in an absolute sense, i.e., for any interpretation of the language, the interest of model-theorists has been put on the relation according to which two members of the universe are the same or has no other logical relation. We break this tradition by introducing a weak form of equality predicate and not presupposing its formal representation by a symbol of the language. Then the main problem consists, broadly speaking, in the investigation of the relationship between the features of this weaker equality in a given class of structures and the fulfillment of certain properties by this class. This is not at all recent treatment of the equality; for instance, it underlies the old notion of Lindenbaum-Tarski algebra in the model theory of sentential logic, and more recently contributions to the study of algebraic for semantics logics. Our contribution amounts to no more than providing a broader framework for the investigation of this question in the domain of first-order logic, the universal Horn fragment. Several points stand out for they govern all our approach. First, the extended use we make of two unlike notions of homomorphism, whose difference relies on the importance each one attaches to relations; this is a distinction that no longer exists in universal algebra but does exist in classical model theory. Secondly, the availability of two distinct adequate semantics easily connected through an algebraic operation, which consists in factorizing the structures in such a way that the Leibniz equality and the usual identity relation coincide. We believe this double semantics is what is mainly responsible for the interest of the model theory for languages without equality as a research topic; in spite of their equivalence from a semantical point of view, they furnish several stimulating problems regarding their comparability from an algebraic perspective. Thirdly, the two extensions that the notion of congruence on an algebra admits when dealing with general structures over languages without equality, namely, as a special sort of binary relation associated to a structure, here called congruence, and as the relational part of a structure, which is embodied in the concept of filter extension. Finally, and not because of this less important, the nice algebraic description that our equality predicate has as the greatest one of the congruence on a structure. This fact allows to replace the fundamental (logical) concept of Leibniz equality by an entirely algebraic notion, and to put the main emphasis on the algebraic methods. Actually, it seems to us that other forms of equality without such a property hardly give rise to model theories that work out so beautifully. The work is organized in 10 chapters. The first three contain basic material that is essential to overcome the small inadequacies of some approaches to the topic formerly provided by other authors. Chapter 1 reviews some terminology and notation that will appear repeteadly thereafter, and presents some elementary notions and results of classical model theory that remains equal for languages without equality. Chapter 2 states and characterizes algebraically the fundamental concept of equality in the sense of Leibniz which we deal with all over the paper. Finally, in Chapter 3 we discuss the semantical consequences of factorizing a structure by a congruence and show that first-order logic without equality has two complete semantics related by a reduction operator (Theorem 3.2.1). Right here we pose out if the central problem to which most of the subsequent work is devoted, i.e., the investigation of the algebraic properties that the full reduced model classes of an elementary theory exhibit. Chapter 4 contains the first difficult results in the work. By a rather obvious generalization of proofs known from classical model theory, we obtain Birkhoff-type characterizations of full classes of axiomatized by certain sorts of first-order without equality, and apply these results to derive analogue characterizations for the corresponding reduced classes. Chapter 5 is a central one; it examines the primary consequences of dealing with the relational part of a structure as the natural extension of congruences when passing from algebraic to general fist-order languages without equality. A key observation in this case is that the sets of structures of an algebraic complete lattice. It is proved that this classes is just the quasinvarieties of structure. The Leibniz operator is defined right here as a primary criterion to distinguish properties of the Leibniz equality in a class of models. Using the operator, a fundamental hierarchy of classes. Chapter 7 examines how the characterizations of reduced quasinvarieties (relative varieties) obtained in Chapter 4 can be improved when we deal with the special types of classes introduced formerly. Chapters 6, 8 and 9 provide an explicit generalization of well-known results from universal algebra. Concretely, in Chapter 6 we present the main tools of Subdirect Representation Theory for general first-order structures without equality. Chapter 8 deals with the existence of free structures both in full and reduced classes. This Chapter also includes the investigation of a correspondence between (quasi)varieties and some lattice structures associated with the Herbrand structures, correspondence that offers the possibility of turning the logical methods used in the theory of varieties and quasivarieties into purely algebraic ones (Theorems 8.3.3 and 8.3.6). In Chapter 9 we set the problem of finding Mal'cev-type conditions for properties concerning posets of relative congruences or relative filler extensions of members of quasivarieties. Finally, Chapter 10 discusses briefly the relation between algebraic logic and the approach to model theory outlined in the previous chapters, providing that some vindication to it. Of course, we cannot say whether this work will ultimately have a bearing on the resolution of any of the problem of algebraic logic, but for us, it could at least provide fresh insights in this exciting branch of logic.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Toribio, Sherwin G. « Bayesian Model Checking Strategies for Dichotomous Item Response Theory Models ». Bowling Green State University / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1150425606.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Arnold, Wolfram Till. « Theory of electron localization in disordered systems / ». view abstract or download file of text, 2000. http://wwwlib.umi.com/cr/uoregon/fullcit?p9986736.

Texte intégral
Résumé :
Thesis (Ph. D.)--University of Oregon, 2000.
Typescript. Includes vita and abstract. Includes bibliographical references (leaves 199-204). Also available for download via the World Wide Web; free to UO users.
Styles APA, Harvard, Vancouver, ISO, etc.
6

von, Glehn Tamara. « Polynomials and models of type theory ». Thesis, University of Cambridge, 2015. https://www.repository.cam.ac.uk/handle/1810/254394.

Texte intégral
Résumé :
This thesis studies the structure of categories of polynomials, the diagrams that represent polynomial functors. Specifically, we construct new models of intensional dependent type theory based on these categories. Firstly, we formalize the conceptual viewpoint that polynomials are built out of sums and products. Polynomial functors make sense in a category when there exist pseudomonads freely adding indexed sums and products to fibrations over the category, and a category of polynomials is obtained by adding sums to the opposite of the codomain fibration. A fibration with sums and products is essentially the structure defining a categorical model of dependent type theory. For such a model the base category of the fibration should also be identified with the fibre over the terminal object. Since adding sums does not preserve this property, we are led to consider a general method for building new models of type theory from old ones, by first performing a fibrewise construction and then extending the base. Applying this method to the polynomial construction, we show that given a fibration with sufficient structure modelling type theory, there is a new model in a category of polynomials. The key result is establishing that although the base category is not locally cartesian closed, this model has dependent product types. Finally, we investigate the properties of identity types in this model, and consider the link with functional interpretations in logic.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Paraskevopoulos, Ioannis. « Econometric models applied to production theory ». Thesis, Queen Mary, University of London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.392498.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Bolton, Colin. « Models of nucleation : theory and application ». Thesis, University of Nottingham, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.403959.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Corner, Ann-Marie. « Circumplex models : theory, methodology and practice ». Thesis, University of Exeter, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356997.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Boulier, Simon Pierre. « Extending type theory with syntactic models ». Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2018. http://www.theses.fr/2018IMTA0110/document.

Texte intégral
Résumé :
Cette thèse s'intéresse à la métathéorie de la théorie des types intuitionniste. Les systèmes que nous considérons sont des variantes de la théorie des types de Martin-Löf ou du Calcul des Constructions, et nous nous intéressons à la cohérence de ces systèmes ou encore à l'indépendance d'axiomes par rapport à ces systèmes. Le fil rouge de cette thèse est la construction de modèles syntaxiques, qui sont des modèles qui réutilisent la théorie des types pour interpréter la théorie des types. Dans une première partie, nous introduisons la théorie des types à l'aide d'un système minimal et de plusieurs extensions potentielles. Dans une seconde partie, nous introduisons les modèles syntaxiques donnés par traduction de programme et donnons plusieurs exemples. Dans une troisième partie, nous présentons Template-Coq, un plugin de métaprogrammation pour Coq. Nous montrons comment l'utiliser pour implémenter directement certains modèles syntaxiques. Enfin, dans une dernière partie, nous nous intéressons aux théories des types à deux égalités : une égalité stricte et une égalité univalente. Nous proposons une relecture des travaux de Coquand et. al. et Orton et Pitts sur le modèle cubique en introduisant la notion de fibrance dégénérée
This thesis is about the metatheory of intuitionnistic type theory. The considered systems are variants of Martin-Löf type theory of Calculus of Constructions, and we are interested in the coherence of those systems and in the independence of axioms with respect to those systems. The common theme of this thesis is the construction of syntactic models, which are models reusing type theory to interpret type theory. In a first part, we introduce type theory by a minimal system and several possible extensions. In a second part, we introduce the syntactic models given by program translation and give several examples. In a third part, we present Template-Coq, a plugin for metaprogramming in Coq. We demonstrate how to use it to implement directly some syntactic models. Last, we consider type theories with two equalities: one strict and one univalent. We propose a re-reading of works of Coquand et.al. and of Orton and Pitts on the cubical model by introducing degenerate fibrancy
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Theory and Models"

1

Aubry, Marc. Homotopy Theory and Models. Basel : Birkhäuser Basel, 1995. http://dx.doi.org/10.1007/978-3-0348-9086-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Asset pricing theory. Princeton, N.J : Princeton University Press, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Models and games. Cambridge : Cambridge University Press, 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Richard, Selten, dir. Game equilibrium models. Berlin : Springer Verlag, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Ostini, Remo, et Michael Nering. Polytomous Item Response Theory Models. 2455 Teller Road, Thousand Oaks California 91320 United States of America : SAGE Publications, Inc., 2006. http://dx.doi.org/10.4135/9781412985413.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Statistical models : Theory and practice. Cambridge : Cambridge University Press, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Shelah, Saharon. Around Classification Theory of Models. Berlin, Heidelberg : Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/bfb0098503.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

L, Nering Michael, dir. Polytomous item response theory models. Thousand Oaks : Sage Publications, 2006.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Around classification theory of models. Berlin : Springer-Verlag, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Stochastic models in queueing theory. Boston : Academic Press, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Theory and Models"

1

Izyumov, Yuri, et Ernst Kurmaev. « Theory Models ». Dans High-Tc Superconductors Based on FeAs Compounds, 131–254. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14530-8_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Abramovich, Felix, et Ya’acov Ritov. « *Linear Models ». Dans Statistical Theory, 139–56. 2e éd. Boca Raton : Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003175407-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Terefenko, Dariusz. « Phrase Models ». Dans Jazz Theory, 259–81. Second edition. | New York ; London : Routledge, 2017. : Routledge, 2017. http://dx.doi.org/10.4324/9781315305394-21.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Schmidli, Hanspeter. « Risk Models ». Dans Risk Theory, 1–33. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-72005-0_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Turner, Raymond. « Typed Set Theory ». Dans Computable Models, 1–18. London : Springer London, 2009. http://dx.doi.org/10.1007/978-1-84882-052-4_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Sucar, Luis Enrique. « Probability Theory ». Dans Probabilistic Graphical Models, 15–26. London : Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-6699-3_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Sucar, Luis Enrique. « Graph Theory ». Dans Probabilistic Graphical Models, 27–38. London : Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-6699-3_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Filipović, Damir. « Arbitrage Theory ». Dans Term-Structure Models, 59–77. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-68015-4_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Sucar, Luis Enrique. « Probability Theory ». Dans Probabilistic Graphical Models, 15–26. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61943-5_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Sucar, Luis Enrique. « Graph Theory ». Dans Probabilistic Graphical Models, 27–39. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61943-5_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Theory and Models"

1

Amalio, Nuno, Juan de Lara et Esther Guerra. « Fragmenta : A theory of fragmentation for MDE ». Dans 2015 ACM/IEEE 18th International Conference on Model Driven Engineering Languages and Systems (MODELS). IEEE, 2015. http://dx.doi.org/10.1109/models.2015.7338241.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Haber, Howard E., et Laurel Stephenson Haskins. « Supersymmetric Theory and Models ». Dans 2016 Theoretical Advanced Study Institute in Elementary Particle Physics. WORLD SCIENTIFIC, 2018. http://dx.doi.org/10.1142/9789813233348_0006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Taentzer, Gabriele, Rick Salay, Daniel Struber et Marsha Chechik. « Transformations of Software Product Lines : A Generalizing Framework Based on Category Theory ». Dans 2017 ACM/IEEE 20th International Conference on Model-Driven Engineering Languages and Systems (MODELS). IEEE, 2017. http://dx.doi.org/10.1109/models.2017.22.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Rosner, Robert. « Magneto-Couette Instabilities — Astrophysics, Theory and Experiments ». Dans MHD COUETTE FLOWS : Experiments and Models. AIP, 2004. http://dx.doi.org/10.1063/1.1832131.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Rüdiger, Günther. « Linear theory of MHD Taylor-Couette flow ». Dans MHD COUETTE FLOWS : Experiments and Models. AIP, 2004. http://dx.doi.org/10.1063/1.1832138.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Tjon, J. A. « Field theory based covariant models ». Dans The 14th international conference of few-body problems in physics. AIP, 1995. http://dx.doi.org/10.1063/1.48218.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Moss, Sean K., et Tamara von Glehn. « Dialectica models of type theory ». Dans LICS '18 : 33rd Annual ACM/IEEE Symposium on Logic in Computer Science. New York, NY, USA : ACM, 2018. http://dx.doi.org/10.1145/3209108.3209207.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Saraswat, Vijay A., Radha Jagadeesan, Maged Michael et Christoph von Praun. « A theory of memory models ». Dans the 12th ACM SIGPLAN symposium. New York, New York, USA : ACM Press, 2007. http://dx.doi.org/10.1145/1229428.1229469.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

LUO, Libo. « THE THEORY OF FINITE MODELS ». Dans Proceedings of the Sixth Asian Logic Conference. WORLD SCIENTIFIC / S'PORE UNIV PRESS (PTE) LTD, 1998. http://dx.doi.org/10.1142/9789812812940_0010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Moriyama, Sanefumi. « M-theory and matrix models ». Dans KMI International Symposium 2013 on “Quest for the Origin of Particles and the Universe. Trieste, Italy : Sissa Medialab, 2015. http://dx.doi.org/10.22323/1.208.0015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Theory and Models"

1

Baxter, Laurence. Stochastic Models in Reliability Theory. Fort Belvoir, VA : Defense Technical Information Center, décembre 1993. http://dx.doi.org/10.21236/ada277529.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Field, Richard V. ,. Jr. Stochastic models : theory and simulation. Office of Scientific and Technical Information (OSTI), mars 2008. http://dx.doi.org/10.2172/932886.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Coester, F., et W. N. Polyzou. Theory of hadronic nonperturbative models. Office of Scientific and Technical Information (OSTI), août 1995. http://dx.doi.org/10.2172/166452.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Nelson, Daniel, et Dean Foster. Asypmtotic Filtering Theory for Univariate Arch Models. Cambridge, MA : National Bureau of Economic Research, avril 1994. http://dx.doi.org/10.3386/t0129.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Nelson, Daniel. Asymptotic Filtering Theory for Multivariate ARCH Models. Cambridge, MA : National Bureau of Economic Research, août 1994. http://dx.doi.org/10.3386/t0162.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Tauchen, Helen, et Ann Dryden Witte. Estimating Hedonic Models : Implications of the Theory. Cambridge, MA : National Bureau of Economic Research, juillet 2001. http://dx.doi.org/10.3386/t0271.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Griffiths, Thomas L. Theory-based Bayesian Models of Inductive Inference. Fort Belvoir, VA : Defense Technical Information Center, juillet 2010. http://dx.doi.org/10.21236/ada566965.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Tenenbaum, Joshua B. Theory-Based Bayesian Models of Inductive Inference. Fort Belvoir, VA : Defense Technical Information Center, juin 2010. http://dx.doi.org/10.21236/ada567195.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Dubé, Jean-Pierre, Joonhwi Joo et Kyeongbae Kim. Discrete-Choice Models and Representative Consumer Theory. Cambridge, MA : National Bureau of Economic Research, juin 2022. http://dx.doi.org/10.3386/w30130.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Barbau, Raphael, et Conrad Bock. Verifying executability of SysML behavior models using satisfiability modulo theory solvers. Gaithersburg, MD : National Institute of Standards and Technology, juin 2020. http://dx.doi.org/10.6028/nist.ir.8283.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie