Littérature scientifique sur le sujet « The trasmission gap »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « The trasmission gap ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "The trasmission gap"

1

Abdulla-Al-Galib, Mir, K. M. A. Salam, Mohammad A. Awal et Kazi Abu Sayeed. « Efficiency Improvement of Three-Junction Photovoltaic Cell Based on Gallium-Phosphide-Oxide, Indium-Gallium-Arsenide and Indium-Gallium-Antimonide ». Advanced Materials Research 463-464 (février 2012) : 850–54. http://dx.doi.org/10.4028/www.scientific.net/amr.463-464.850.

Texte intégral
Résumé :
In this research paper we present a new high efficient three-junction photovoltaic cell with anti-reflective coating. The aim of our research work is to improve the photon absorption and reduce the photon reflection as well as the trasmission. The use of anti-reflective coating (ARC), Gallium-Phosphide-Oxide on the photovoltaic cell based on InGaAs/InGaSb has increased the photon absorption significantly. In this work we have analyzed the photon absorption, photon reflection and photon transmission of existing high efficient solar cells. Real Time Photonics Simulator has been used to simulate the performance of the solar cells. The simulation results show that with the inclusion of Gallium-Phosphide-Oxide on the multi-junction photovoltaic cell the photon absorption increases significantly. Our three-junction photovoltaic cell based on GaPO/In0.53Ga0.47As/In0.5Ga0.5Sb shows dramatic improvement of photon absorption in the range of 479nm – 767nm wavelength of the solar spectrum. With the addition of GaPO in place of GaP we see a tremendous increase of photon absorption, which significantly increases the efficiency of the photovoltaic cell
Styles APA, Harvard, Vancouver, ISO, etc.
2

Fan, Rongtuan. « TEM studies of fine low dimensional modulated fringes (FLDMF) in GaAs/Ga1-xAlx As multilayer heterojunction structure grown by MBE ». Proceedings, annual meeting, Electron Microscopy Society of America 48, no 4 (août 1990) : 676–77. http://dx.doi.org/10.1017/s0424820100176514.

Texte intégral
Résumé :
The characteristics of GaAs/Ga1-x Alx As superstructure grown by MBE are always noticed. Recently, as well known, cross-sectional trasmission electron microscopy (XTEM) has been used and many workers have observed the superstructure(multilayer heterojunction structure) of GaAs/Ga1-x Alx, As hetero-multilayer. They usually observed a wide fringes with several nanometers or even more in GaAs/GaAlAs multilayer structure.In this work, we have studied a phenomenon which was named"Fine Low Dimensional Modulated Fringes" of GaAs/GaAlAs heteromutilayer structure grown by MBE, using XTEM technique. It is found that the FLDMFs are an equal width and very narrow, the order of Å’s.The GaAs/GaAls layers that are examined were grown on (001) GaAs substrate by MBE. Cross-section TEM specimens with a wafer cleaved along (110) plane were prepared, and thinned by argon ion.A typical structure is given in Fig.l, the image is of superlattice(SL) and Fine Low Dimensional Modulated Fringes area of MBE grown GaAs/GaAlAs heteromutilayer.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "The trasmission gap"

1

DE, PALO FRANCESCA. « The trasmission gap : quali influenze familiari e contestuali nel passaggio tra rappresentazioni dell'adulto e comportamenti di attaccamento del bambino ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2010. http://hdl.handle.net/10281/10288.

Texte intégral
Résumé :
The transition to parenthood is a phase of the family development, in which the individual’s organization, couple’s and intergenerazitional’s relationships need to be renegotiated on representational and interactive level. On this way, it is necessary to adopt a contextual perspective to investigate the family development: partner’s satisfactions of the couple, the construction of relationship in the adult age and the acquisition of parent role. The study has two main aims: a) the degree of marital satisfaction perceived by the couple and the quality of triadic family interactions; b) the associations between triadic family interactions, the degree of marital satisfaction and the quality of attachment’s representation. Method: 49 non-referred primiparous families were recruited at child-birth courses took part to the research at 7 month of pregnancy at 4 and 9 and 12 month after child’s birth. The measures used are the Losanna Trilogue Play (Fivaz-Depeursige, Corboz-Warnery, 1999) in pre and post-natal version, Dyadic Adjustment Scale (Spanier, 1976), Attachment Style Questionnaire (Feeney, Noller, Hanrahan, 1994) and Adult Attachment Interview (George, Kaplan & Main, 1985). Results: Aim 1. The preliminary analysis from pregnancy to 9th month of infant show that: a) couples perceive themselves satisfied on the relation’s quality. During the observational phases there is an effect of time in the degree of marital satisfaction perceived by the couple (F(4.54, 3), p< .005) ; b) there is an increase of 15,5 point in each observational phases of the quality of triadic interaction from pregnancy to 9 months of the infant. Aim 2. The quality of triadic interaction, in pregnancy, are associated with high levels of marital satisfaction. Significant correlation between Coherence of mind mean scores and Cooperation score during LTP prenatal (r = .384; p = .006). Conclusions: the marital relationship perceived as satisfactory is linked with a good quality of co-parenting interactions, from pregnancy to 9 months of infant. Forthcoming analyses will provide a comprehensive model to understand the developmental trajectories of family life in the first year of the infant.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Mela, Giulio. « Assessing the Economic, Environmental and Social Sustainability of Biofuel Policies ». Doctoral thesis, Università degli studi di Padova, 2013. http://hdl.handle.net/11577/3425833.

Texte intégral
Résumé :
Biofuels started to raise interest almost 40 years ago, when the Arab oil embargo pushed oil prices up and therefore spurred the research towards new forms of energy. Nevertheless, biofuel production has not really taken off until recently, when the combination of high oil prices, concern about greenhouse gas emissions, and the progressive reduction of oil reserves induced many countries across the world to implement policies encouraging biofuels production. At the beginning of the 2000s, biofuels were seen as a panacea for energy security (domestic energy source, highly reliable), economic stability (energy price stability, rural development, employment generation, reduce supply-demand gap for agricultural commodities), and for environment protection (better waste utilization, GHG emissions reduction), especially after the drawing up of the Kyoto protocol, according to which signatory countries had to reduce their GHG emissions by about 5% from their 1990 levels, by 2012. Biofuels are currently produced from agricultural commodities, therefore their repercussions on the agricultural and food sector might be substantial. In this framework it is clear that the responsibility that big countries (those able to affect world prices) have is substantial. Countries like the US, Brazil, and the EU have been encouraging biofuel production in recent years and ended up artificially creating a new market for agricultural commodities without fully understanding, a priori, the possible negative consequences of such decision. They decided to subsidize renewables because of the increased pressure by the public opinion towards greenhouse gas emissions reduction, reduce dependency on oil imports, and the need to meet the targets set by both the Kyoto protocol. Biofuel expansion took place not only in a controversial manner, without coordination at international level, but also in a critical historical moment. The past two decades have been characterized by a strong increase in world food demand, mainly due to economic expansion in emerging economies like China, India, Brazil, and some South East Asian countries. The strong increase in demand faces an agricultural supply that in the short period is inevitably inelastic, which results in higher prices and higher volatility (due to reduced stocks). Much of the initial enthusiasm towards biofuels has been declining in the last few years. First of all, biofuel expansion has increased the demand for many agricultural commodities, which, in a framework of increasing food demand in the world, triggered a sharp increase in agricultural prices with strong negative implications for poor people especially in developing countries. Many doubts have also been raised concerning the real effectiveness of biofuels in reducing GHG emissions. Emission-computing methodologies are not always accurate and sometimes are difficult to put in practice. Agriculture intensification and land use changes, both consequences of biofuel expansion, are two of the factors more likely to have increased GHG emissions rather than reduced. Furthermore, biofuel policies have been designed and implemented by countries on an individual basis, without the coordination at international level that would have been needed to avoid the numerous side-effects that biofuels have been having on international food markets and on the environment. My doctorate research analyzes all aspects of the biofuel sector at world level with special emphasis on its sustainability under an economic, environmental, and ethical point of view. The research starts with a description of what biofuels are and in which sub-categories they can be divided. Then, it provides a review of biofuel policies around the world and data on production, prices and trade. The work also provides figures on production, prices and trade of the main agricultural commodities used for biofuel production and the evolution of cropped and forest areas worldwide in the last twenty years. Main biofuel producers are the US, Brazil and the EU. In the first two countries is ethanol the main biofuel produced (obtained from corn in the US and from sugarcane in Brazil), while in the EU the leasing biofuel is biodiesel (from vegetable oils). In 2011, 51.8% of Brazilian sugarcane production and 42.2% of US corn production were used to produce ethanol. Areas cropped with sugarcane and corn, in the two countries were 4.2 and 15.5 million hectares in 2011, which correspond to 1.5% and 16% of total agricultural area respectively. By 2021 ethanol production will absorb almost 61% of Brazilian sugarcane production and 57% of US corn production, ceteris paribus. In 2021 the amount of land needed to grow all sugarcane needed to produce ethanol in Brazil will be more than 8 million hectares, almost equal to the entire current sugarcane area in the South American country. In the US the area that will be needed to cultivate corn for ethanol production will grow to slightly less than 20 million hectares, equal to 53% of current corn area in the US and 20% of current total agricultural area. These data highlight the different impact sugarcane- and corn-based ethanol have on agricultural production. Brazilian and American ethanol production was 22.9 and 52.8 million m3 in 2011 respectively, implying an “ethanol yield” of 5.5 m3/hectare for sugarcane ethanol and of 3.4 m3/hectare for corn-ethanol. This means that producing ethanol from sugarcane is more efficient and less consuming in terms of land than corn-ethanol. Considering also biodiesel, the amount of land needed to crop biofuel feedstocks, in Brazil and the US grows to 3 and 18.4% of total agricultural land. These areas are forecasted to increase to 6.3 and 23% by 2021, implying an increasing competition for land. In 2011 the EU used 5.4 million tons of domestically produced rapeseed oil and at least 3.9 million tons of imported palm oil to make biodiesel. The amount of land needed to grow rapeseed within the Union and oil palm in third countries (mainly Indonesia and Malaysia) was 5.2 and 1.3 million hectares respectively. The area needed to crop rapeseed for biodiesel production, in the EU, was equal to 5.2% of total agriculture area. Assuming that the percentage of rapeseed oil on total vegetable oil production in the EU will remain the same of 2011 and that the share of it employed in the food sector will also remain unchanged, it is possible to forecast that, in 2021, the EU will need 6.6 million tons of rapeseed oil and at least 10 million tons of palm oil from third countries to meet its consumption targets. This means that at least 3.4 million hectares of land, in South East Asia will be needed to produce palm oil destined to the EU. The core of the thesis is the analysis of the sustainability of biofuels on one hand, and of biofuels’ implications on food production on the other. The sustainability of biofuel production is analyzed through a literature review and re-interpretation of the existing literature on the topic, encompassing effects of mass biofuel production on the environment, GHG emissions, land use changes, water availability, and implications for developing countries. One of the most important aspects of biofuel sustainability is their effects on agricultural production and agricultural prices. The empirical part of this thesis employs econometric tools to assess the degree of integration between energy and agricultural markets in the main biofuel producing countries and price transmission elasticity between international and EU agricultural markets before and after the last reform of the CAP. In the US and in Brazil energy and agricultural prices move together in the long-run and the influence of oil prices has been growing over time. This means that policy-makers, in the future, will have to pay great attention to the mutual influence energy and agricultural policies can have on each other. In Europe this close relationship between energy and agricultural prices was not detected, however European agricultural markets have been influenced by biofuel policies in the US, and to a lesser extent Brazil, indirectly, through their effects on international commodity prices. What emerges from this work is that biofuels, in the current political, economic demographic, situation are, for many aspects, not sustainable. Side-effects of biofuel production are many and often even difficult to quantify. Solutions provided are often utopic or, even if good in theory, very difficult to implement. Biofuel production has been having negative effects on food production and prices, biodiversity and social welfare in the last decade, inside and outside the countries of production. The “original sin” was the initial lack of coordination between policies issued unilaterally by different countries, something that now seems extremely difficult to fix. Governments should, as it has been recently suggested by the United Nations, consider the option of modifying their biofuel programs because of their negative consequences on food security in many low-income countries. Also the promotion and implementation of biofuel policies in developing countries should be avoided as a measure for fostering development. It is very unlikely that rural poor will benefit from policies subsidizing the biofuel sector since most of the land in developing countries is owned by big multinational companies or by foreign states (land grabbing). The development of the biofuel sector would also increase food prices even in countries where such increase has been marginal so far because of scarce price transmission from the world market. Poor people living in urban areas would be worse off by higher food prices as well as small farmers who, in developing countries, are often net-purchasers of food. It has been suggested by many scholars and international organizations that, in order to become sustainable, biofuel production should shift from first-generation to second-generation technologies (those that allow the use of non-food crops or wastes for biofuel production). This will not be easy to achieve. Current second-generation biofuel production is still very small and will not grow substantially unless major investments are made by governments and, under the right conditions, private companies. Moreover it is not governments nor policy-makers who decides whether is profitable to put marginal land under cultivation and to crop non-food biofuel crops on it. Farmers are those making such decisions and they will not do it unless it is profitable. Current record-high agricultural commodity prices raise many doubts on the fact that farmers will shift from food to non-food crops without substantial government subsidies. An increase in subsidies to the agricultural sector, even just for energy crops, is unlikely to happen anytime soon because of the financial and economic crisis that hit many countries around the world and because of pressure by the WTO and other international organizations to reduce the degree of protection. In case it will be decided to keep subsidizing biofuels, new polices will have to be designed and implemented at world level, needing a very high degree of coordination between countries and flexibility, which is difficult to imagine can be reached in the short or even the medium term. An emblematic case, in this sense, is GHG emission accounting mechanisms that currently are based on life-cycle assessment analysis and that are often incomplete (i.e. limited to a single country or region) or unable to take all factors into account (i.e. indirect land-use changes). Research, in the next years, will have to focus on two main topics. On one hand second- and third-generation techniques for biofuel production will have to be refined and made economically (but also environmentally and socially) viable, possibly together with progressive reduction in the support in favor of first-generation biofuels. On the other hand, a better definition of the methodologies to assess the environmental, economic and social impacts of biofuel production will be crucial in order to correctly evaluate the sustainability of biofuel programs. In particular, the development of reliable methodologies to assess the environmental impact of biofuel production is very important since, in the future, subsidies could be calculated in a way to reward the production of biofuels able to provide (proved) positive externalities to the environment as well as increase social welfare.
Di biocarburanti si iniziò a parlare circa 40 anni fa, in concomitanza con la crisi petrolifera determinata dall’embargo da parte dei paesi OPEC. Il conseguente forte aumento del prezzo del petrolio stimolò infatti la ricerca nel campo delle forme di energia alternative. La produzione di biocarburanti è tuttavia decollata solo di recente, grazie all’azione combinata di molteplici fattori: elevate quotazioni del petrolio, necessità di contenere le emissioni di gas serra e la riduzione delle scorte di combustibili fossili; tutte cose che hanno indotto molti paesi a mettere a punto programmi volti allo sviluppo del settore dei biocarburanti. All’inizio degli anni 2000 i biocarburanti venivano considerati la soluzione ideale per risolvere i problemi dell’approvvigionamento energetico, della stabilità economica (stabilizzazione dei prezzi dell’energia, sviluppo rurale, creazione di posti di lavoro, aumento della domanda di materie prime agricole) e della protezione dell’ambiente (utilizzazione più efficiente dei rifiuti e riduzione delle emissioni di gas serra). Un impulso decisivo allo sviluppo delle politiche fu dato dalla stipula del Protocollo di Kyoto nel quale i paesi firmatari si impegnavano a ridurre le proprie emissioni di gas serra del 5% rispetto ai livelli del 1990 entro il 2012. Al momento attuale i biocarburanti vengono in larga parte prodotti a partire da materie prime agricole, quindi le ripercussioni della loro produzione sul settore agricolo possono essere rilevanti. In tale àmbito appare chiara la forte responsabilità, in termini di effetti sui mercati agricoli mondiali, che hanno i paesi che più di tutti hanno sovvenzionato il settore: Stati Uniti, Brasile e Unione Europea. Tali paesi, tramite le loro politiche, hanno creato un nuovo mercato di sbocco per molte materie prime agricole, senza capire a fondo, a priori, le conseguenze di tale azione. Le principali motivazioni addotte dai decisori politici per giustificare le sovvenzioni al settore dei biocarburanti furono la necessità di ottemperare ai dettami del Protocollo di Kyoto, aumentare l’indipendenza energetica, creare nuovi posti di lavoro, migliorare il reddito degli agricoltori e stabilizzare i prezzi dell’energia. L’espansione del settore dei biofuel è avvenuta non solamente in maniera quantomeno controversa, senza coordinazione a livello internazionale, ma anche in un momento storico molto delicato. Gli ultimi venti anni sono stati infatti caratterizzati da un grande aumento della domanda mondiale di cibo, soprattutto a causa della forte crescita economica dei cosiddetti paesi emergenti: Cina, India, Brasile e paesi del Sud-Est asiatico. Il forte aumento della domanda si scontra contro un’offerta di materie prime agricole giocoforza rigida nel breve termine, cosa che genera forti aumenti di prezzo e della volatilità delle quotazioni (soprattutto a causa del forte ridimensionamento delle scorte). Negli ultimi anni gran parte dell’entusiasmo iniziale nei confronti dei biocarburanti è andato scemando. Per prima cosa l’espansione del settore dei combustibili “verdi” ha aumentato la domanda per molte materie prime agricole che, in un contesto contraddistinto da un forte aumento della domanda mondiale, ha generato un sensibile aumento dei prezzi alimentari, con ripercussioni particolarmente negative per le fasce più povere della popolazione, soprattutto nei paesi meno sviluppati. Anche l’effettiva efficacia dei biocarburanti nel ridurre le emissioni di gas serra è stata fortemente messa in dubbio. Le metodologie utilizzare per il conteggio delle emissioni non sono sempre accurate o di facile attuazione. L’intensivizzazione dei processi agricoli e i cambiamenti d’uso dei suoli, entrambi conseguenza dell’aumento della produzione agricola, sono due fattori che molto probabilmente hanno causato un aumento delle emissioni di gas serra invece che una diminuzione. Inoltre, le politiche a favore del settore delle energie rinnovabili sono state progettate e messe in pratica in maniera spesso unilaterale da parte dei vari paesi, senza quella coordinazione a livello internazionale che sarebbe stata essenziale a evitare le conseguenze negative sui mercati agricoli e sull’ambiente. La mia ricerca di dottorato analizza tutti gli aspetti del settore dei biocarburanti a livello mondiale con particolare attenzione a quelli della sostenibilità: economica, ambientale e sociale. La ricerca inizia con una descrizione delle varie tipologie di biocarburanti attualmente prodotti a livello mondiale e prosegue con una rassegna delle politiche a favore dei biocarburanti nei principali paesi. In séguito vengono analizzate le produzioni, i prezzi e il commercio internazionale di biocarburanti e delle materie prime dalle quali sono ottenuti. I principali paesi produttori di biocarburanti sono gli Stati Uniti, il Brasile e l’Unione Europea. Nei primi due viene prodotto principalmente etanolo (a partire dal mais negli Stati Uniti e dalla canna da zucchero in Brasile), mentre nell’Unione Europea è il biodiesel il biocarburante di riferimento (prodotto a partire da oli vegetali). Nel 2011, il 51,8% della produzione brasiliana di canna da zucchero e il 42,2% di quella statunitense di mais sono state usate per produrre etanolo. Le superfici necessarie, nei due paesi, per la coltivazione della materia prima per la produzione del biocarburante sono state pari a 4,2 e 15,5 milioni di ettari, che rappresentano l’1,5 e il 16% della superficie agricola totale dei due paesi. Nel 2021, ceteris paribus, la produzione di etanolo assorbirà circa il 61% della produzione brasiliana di canna da zucchero e il 57% di quella statunitense di mais. Sempre nel 2021, in Brasile, le superfici necessarie per coltivare canna da zucchero destinata la settore dell’etanolo raggiungeranno gli 8 milioni di ettari, pari a tutta l’area attualmente coltivata a canna da zucchero nel paese sudamericano. Negli Stati Uniti le superfici necessarie a coltivare il granturco per la produzione di etanolo cresceranno fino a sfiorare i 20 milioni di ettari, un’estensione pari al 53% dell’area attualmente investita a mais e al 20% della superficie agricola totale del 2011. Da questi dati è possibile osservare la forte differenza, in termini di impatto sulle produzioni agricole, tra la produzione di etanolo brasiliana (imperniata sulla canna da zucchero) e quella statunitense (basata sul mais). La produzione brasiliana e statunitense di etanolo, nel 2011, è stata rispettivamente di 22,9 e 52,8 milioni di metri cubi, implicando una “resa” in etanolo di 5,5 e 3,4 metri cubi a ettaro. Ciò significa che la produzione di etanolo a partire dalla canna da zucchero è più efficiente in termini di superfici necessarie alla coltivazione della materia prima. Tenendo in considerazione anche il biodiesel, in rapida espansione in entrambi i paesi (dove viene ottenuto a partire dall’olio di soia), l’incidenza percentuale delle superfici utilizzate per coltivare la materia prima per la produzione di biocarburanti (etanolo e biodiesel) cresce fino a raggiungere il 3% del totale della superficie agricola in Brasile e il 18,4% negli Stati Uniti. Tali percentuali sono destinate a raggiungere il 6,3 e il 23% entro il 2021. Nel 2011 l’Unione Europea ha impiegato 5,4 milioni di tonnellate di olio di colza (prodotto all’interno dell’Unione) e almeno 3,9 milioni di olio di palma (importato da Indonesia e Malesia) per produrre biodiesel. Le superfice necessaria, all’interno dell’UE, per la coltivazione della colza usata nel settore dei biocarburanti è stata di 5,2 milioni di ettari nel 2011, mentre quella impiegata per la produzione di olio di palma nei paesi terzi di almeno 1,3 milioni di ettari. Sempre nel 2011, il 5,2% della superficie agricola totale dell’Unione è stato utilizzato per la coltivazione di colza da destinare alla produzione di biocarburanti. Assumendo che la percentuale di olio di colza impiegata nel settore alimentare nell’Unione Europea rimarrà la stessa anche negli anni a venire, è possibile prevedere che, nel 2021, l’UE avrà bisogno di 6,6 milioni di tonnellate di olio di colza e di almeno 10 milioni di tonnellate di olio di palma (importato da paesi terzi) per raggiungere i suoi obiettivi di consumo in materia di biodiesel. Ciò implica che almeno 3,4 milioni di ettari di terreni, presumibilmente in Indonesia e Malesia, saranno necessari per produrre tutto l’olio di palma di cui il settore del biodiesel comunitario avrà bisogno. Il fulcro di questa tesi è l’analisi della sostenibilità della produzione di biocarburanti e le sue conseguenze sulla produzione di materie prime agricole. La sostenibilità dei biocarburanti viene esaminata attraverso una revisione della letteratura esistente sull’argomento, con particolare enfasi sugli effetti della forte espansione del settore dei carburanti “verdi” sull’ambiente, sulle emissioni di gas serra, i cambiamenti d’uso del suolo, la disponibilità idrica e le implicazioni per i paesi in via di sviluppo. In termini di sostenibilità, uno degli aspetti più importanti riguarda gli effetti del forte aumento della produzione di biofuel sulla produzione e sui prezzi delle materie prime agricole. Questa tesi, nella sua parte empirica, utilizza tecniche econometriche per misurare il livello di integrazione tra i mercati energetici e quelli agricoli nei principali paesi produttori. Viene inoltre anche stimata l’elasticità di trasmissione dei prezzi tra il mercato mondiale e quello comunitario nel caso delle principali materie prime agricole, prima e dopo l’ultima riforma della Politica agricola comune (Riforma Fischler). Negli Stati Uniti e in Brasile i prezzi agricoli e quelli dell’energia (petrolio ed etanolo) condividono il medesimo trend di lungo periodo, con l’influenza del prezzo del petrolio che è andata crescendo negli ultimi anni. Ciò implica che i decisori politici dovranno, in futuro, prestare grande attenzione agli effetti che le politiche energetiche hanno sui mercati agricoli e viceversa. In Europa non è stato possibile dimostrare la presenza di una relazione diretta tra prezzi agricoli e prezzo del petrolio, tuttavia è possibile affermare che i mercati agricoli europei subiscano le conseguenze delle politiche a favore dei biocarburanti di altri paesi, in particolare degli Stati Uniti, in maniera indiretta, cioè tramite l’effetto di tali politiche sui prezzi internazionali. Ciò che merge da questo lavoro è che i biocarburanti, nella situazione economica, politica e demografica attuale, sono, per molti aspetti, non sostenibili. Gli effetti collaterali della produzione di biofuel sono numerosi e spesso difficili da quantificare. Le soluzioni proposte dalla letteratura sono spesso utopiche o, seppur corrette dal punto di vista teorico, molto difficili da applicare. L’espansione del settore dei biocarburanti sta avendo effetti negativi sulla produzione e sui prezzi delle materie prime agricole, sulla biodiversità e sul benessere sociale, sia all’interno dei principali paesi produttori che all’esterno di essi. Il “peccato originale” è stato la mancanza di coordinazione iniziale tra le varie politiche, progettate e messe in pratica in maniera unilaterale dai vari paesi; una cosa alla quale, oggi, è molto difficile porre rimedio. I governi dovrebbero, come è stato recentemente raccomandato dalle Nazioni Unite, considerare la possibilità di modificare in maniera sostanziale i propri programmi di sviluppo del settore dei biocarburanti a causa soprattutto delle pesanti conseguenze che hanno sulla sicurezza alimentare nei paesi a basso reddito. Per questa ragione l’utilizzo dei biocarburanti come misura volta a stimolare lo sviluppo nei paesi poveri dovrebbe essere evitata. È altamente improbabile che i poveri nelle zone rurali traggano alcun beneficio dallo sviluppo del settore dei biocarburanti nei loro paesi poiché gran parte della terra è posseduta da grandi compagnie multinazionali o, in alcuni casi, da paesi terzi (land grabbing). Lo sviluppo del settore dei biocarburanti nei paesi in via di sviluppo contribuirebbe, dall’interno, a mantenere elevati i prezzi dei generi alimentari anche dove finora tale effetto, a causa del basso livello di trasmissione dei prezzi agricoli mondiali, è stato marginale. L’aumento dell’inflazione alimentare causato dalla produzione di biocarburanti avrebbe effetti negativi sia sui poveri delle aree urbane che sue quelli delle aree rurali poiché in molti casi i piccoli coltivatori, nei paesi in via di sviluppo, sono compratori netti di generi alimentari. Molti studi, anche da parte di organizzazioni governative internazionali, mettono in risalto il fatto che la produzione di biocarburanti possa diventare sostenibile solo attraverso lo sviluppo delle cosiddette tecnologie di seconda o terza generazione (cioè quelle che permettono l’uso di materia prima non-food per la produzione di biocarburanti) e l’uso di terreni degradati e marginali per la coltivazione delle materie prime. Tuttavia, tutto ciò è di difficile realizzazione. Attualmente i biocarburanti di seconda o terza generazione sono ancora in fase di sviluppo e la loro produzione non crescerà in maniera sostanziale se non tramite forti investimenti da parte dei vari governi e, in determinate circostanze, di investitori privati. Va ricordato che non sono i governi quelli che decidono se la coltivazione di materia prima per la produzione di biocarburanti in aree degradate o marginali sia economicamente conveniente: sono infatti i coltivatori quelli che prendono le decisioni ed essi non lo faranno se non vi troveranno alcun beneficio economico. L’attuale livello, molto elevato, dei prezzi agricoli pone seri dubbi sul fatto che i coltivatori siano disposti a passare dalla produzione di materie prime food a quelle non-food in assenza di forti incentivi pubblici in tal senso. Tuttavia, un aumento del livello di supporto all’agricoltura, anche solo nel caso delle colture energetiche, difficilmente avverrà nel breve termine, a causa soprattutto della crisi economica, che ha ristretto i budget di spesa di molti paesi, e le pressioni, in sede WTO, per una riduzione del livello di protezione dei mercati. Nel caso in cui si decida di mantenere gli aiuti di stato al settore dei biocarburanti, sarà necessario progettare e sviluppare nuove politiche, questa volta a livello sovranazionale, cosa che implicherebbe un elevato livello di coordinazione e di flessibilità tra i vari paesi, oltre che difficile da raggiungere nel breve o medio termine. Un caso emblematico, in tal senso, è rappresentato dalle metodologie di conteggio delle emissioni di gas serra che sono attualmente basate sull’analisi del ciclo di vita e che sono molto spesso incomplete (limitate, ad esempio, a determinati paesi o regioni) o ancora non in grado di considerare il ruolo di tutti i fattori (es. cambiamenti indiretti d’uso del suolo). La ricerca, negli anni a venire, dovrà focalizzarsi su due argomenti principali. Da una parte, le tecniche di produzione dei biocarburanti di seconda e terza generazione dovranno essere raffinate, rese economicamente convenienti e sostenibili dal punto di vista sociale e ambientale. Possibilmente ciò dovrà avvenire di pari passo con la progressiva riduzione del livello di supporto ai biocarburanti di prima generazione. Dall’altra parte, sarà necessario definire meglio le metodologie di quantificazione dell’impatto dei biocarburanti in termini ambientali, economici e sociali, in modo da determinare con certezza la loro sostenibilità e da consentire lo sviluppo di politiche più appropriate. In particolare, la messa a punto di metodologie affidabili per la valutazione dell’impatto dei vari biocarburanti è molto importante poiché, in futuro, le sovvenzioni potrebbero essere calcolate in maniera tale da premiare la produzione di quei biocarburanti in grado di fornire esternalità positive per l’ambiente e il benessere sociale.
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "The trasmission gap"

1

Salieri, P., G. Giusfredi, S. Cecchi et F. T. Arecchi. « Intrinsic Oscillations and Multistability in the Trasmission of a Na Vapor filled Fabry-Perot in absence of a Buffer Gas. » Dans Instabilities and Dynamics of Lasers and Nonlinear Optical Systems. Washington, D.C. : Optica Publishing Group, 1985. http://dx.doi.org/10.1364/idlnos.1985.wa4.

Texte intégral
Résumé :
In previous experiments on the trasmission properties of a Fabry-Perot interferometer filled with Na vapor |1,2| a buffer gas was added to collisionally broaden the resonance, with velocity changing collisions inducing broad ground state pumping over the whole line. Here we consider the very different inhomogeneous regime (no buffer gas), where optical pumping takes place on single homogeneous velocity groups. We carefully control direction and strength of the magnetic field and examine the cavity transmission properties, both in intensity and polarization, in the temperature range 130 - 180 °C (0.5 - 9.2·1011 atoms/cm3), as the laser is tuned across the DI line.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie