Littérature scientifique sur le sujet « Test Explosibility »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Test Explosibility ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Test Explosibility"

1

Eades, Robert, et Kyle Perry. « Evaluation of a 38 L Explosive Chamber for Testing Coal Dust Explosibility ». Journal of Combustion 2019 (2 septembre 2019) : 1–7. http://dx.doi.org/10.1155/2019/5810173.

Texte intégral
Résumé :
Coal dust explosions are the deadliest disasters facing the coal mining industry. Research has been conducted globally on this topic for decades. The first explosibility tests in the United States were performed by the Bureau of Mines using a 20 L chamber. This serves as the basis for all standardized tests used for combustible dusts. The purpose of this paper is to investigate the use of a new 38 L chamber for testing coal dust explosions. The 38 L chamber features design modifications to model the unique conditions present in an underground coal mine when compared to other industries where combustible dust hazards are present. A series of explosibility tests were conducted within the explosive chamber using a sample of Pittsburgh pulverized coal dust and a five kJ Sobbe igniter. Analysis to find the maximum pressure ratio and Kst combustible dust parameter was performed for each trial. Based upon this analysis, observations are made for each concentration regarding whether the explosibility test was under-fueled or over-fueled. Based upon this analysis, a recommendation for future explosibility testing concentrations is made.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Cashdollar, Kenneth L., et Martin Hertzberg. « 20‐l explosibility test chamber for dusts and gases ». Review of Scientific Instruments 56, no 4 (avril 1985) : 596–602. http://dx.doi.org/10.1063/1.1138295.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Tan, Bo, Huilin Liu, Bin Xu et Tian Wang. « Comparative study of the explosion pressure characteristics of micro- and nano-sized coal dust and methane–coal dust mixtures in a pipe ». International Journal of Coal Science & ; Technology 7, no 1 (3 janvier 2020) : 68–78. http://dx.doi.org/10.1007/s40789-019-00289-w.

Texte intégral
Résumé :
AbstractCoal dust explosion accidents often cause substantial property damage and casualties and frequently involve nano-sized coal dust. In order to study the impact of nano-sized coal on coal dust and methane–coal dust explosions, a pipe test apparatus was used to analyze the explosion pressure characteristics of five types of micro-nano particle dusts (800 nm, 1200 nm, 45 μm, 60 μm, and 75 μm) at five concentrations (100 g/m3, 250 g/m3, 500 g/m3, 750 g/m3, and 1000 g/m3). The explosion pressure characteristics were closely related to the coal dust particle size and concentration. The maximum explosion pressure, maximum rate of pressure rise, and deflagration index for nano-sized coal dust were larger than for its micro-sized counterpart, indicating that a nano-sized coal dust explosion is more dangerous. The highest deflagration index Kst for coal dust was 13.97 MPa/(m·s), indicating weak explosibility. When 7% methane was added to the air, the maximum deflagration index Kst for methane–coal dust was 42.62 MPa/(m·s), indicating very strong explosibility. This indicates that adding methane to the coal dust mixture substantially increased the hazard grade.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Addo, Albert, Ashok G. Dastidar, Jérôme R. Taveau, Luke S. Morrison, Faisal I. Khan et Paul R. Amyotte. « Niacin, lycopodium and polyethylene powder explosibility in 20-L and 1-m3 test chambers ». Journal of Loss Prevention in the Process Industries 62 (novembre 2019) : 103937. http://dx.doi.org/10.1016/j.jlp.2019.103937.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

« 95/05417 Thoughts on some dust explosibility test methods in 20L apparatus ». Fuel and Energy Abstracts 36, no 5 (septembre 1995) : 376. http://dx.doi.org/10.1016/0140-6701(95)92352-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Test Explosibility"

1

« Ignitability and Explosibility Data for Dusts from Laboratory Tests ». Dans Dust Explosions in the Process Industries, 681–704. Elsevier, 2003. http://dx.doi.org/10.1016/b978-075067602-1/50011-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Eckhoff, Rolf K. « Assessment of Ignitability, Explosibility, and Related Properties of Dusts by Laboratory-Scale Tests ». Dans Dust Explosions in the Process Industries, 473–548. Elsevier, 2003. http://dx.doi.org/10.1016/b978-075067602-1/50008-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Test Explosibility"

1

Zhao, Z., B. Gillispie, T. Han, N. Patel, G. Eesley et J. Mantese. « Kinetic Deposition of Ti Coatings Using Gas Atomized Ti Powder Particles ». Dans ITSC2005, sous la direction de E. Lugscheider. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, 2005. http://dx.doi.org/10.31399/asm.cp.itsc2005p0191.

Texte intégral
Résumé :
Abstract The kinetic spray process is a coating process that involves impingement of a substrate by metallic particles at high velocities. In this work, we investigated the kinetically sprayed Ti coatings, which were deposited onto different metallic substrates using gas-atomized powders. The powder particles were characterized in terms of size distribution, morphology, hardness, and explosibilty index. The propellant gas used for coating deposition was compressed nitrogen. The substrates were placed inside an enclosure filled with nitrogen gas during deposition. It was observed that Ti coatings can be deposited at relatively high deposition efficiencies using large particles (median size~ 100 mm). Ti coatings with a wide range of thickness and good macroscopic appearance were readily prepared. The particle temperature appears to have strong effects on the coating formation; deposition efficiencies of ~90% were achievable. Microscopic examination of the coatings revealed deposited Ti particles with significantly lower deformation when compared to ductile materials such as Al and Cu. As a result, the Ti coatings exhibited a high degree of porosity. Several methods were exploited in order to make the Ti coatings denser, including the incorporation of heavy, hard particles for in-situ peening during the coating deposition, and post deposition laser heating. Abstract only; no full-text paper available.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie