Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Tersoff.

Articles de revues sur le sujet « Tersoff »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Tersoff ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

LeGoues, F. K., P. M. Mooney et J. Tersoff. « LeGoues, Mooney, and Tersoff reply ». Physical Review Letters 72, no 25 (20 juin 1994) : 4056. http://dx.doi.org/10.1103/physrevlett.72.4056.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Oluwajobi, Akinjide O., et Xun Chen. « Choosing Appropriate Interatomic Potentials for Nanometric Molecular Dynamics (MD) Simulations ». Key Engineering Materials 686 (février 2016) : 194–99. http://dx.doi.org/10.4028/www.scientific.net/kem.686.194.

Texte intégral
Résumé :
There is a need to choose appropriate interatomic empirical potentials for the molecular dynamics (MD) simulation of nanomachining, so as to represent chip formation and other cutting processes reliably. Popularly applied potentials namely; Lennard-Jones (LJ), Morse, Embedded Atom Method (EAM) and Tersoff were employed in the molecular dynamics simulation of nanometric machining of copper workpiece with diamond tool. The EAM potentials were used for the modelling of the copper-copper atom interactions. The pairs of EAM-Morse and EAM-LJ were used for the workpiece-tool (copper-diamond) atomic interface. The Tersoff potential was used for the carbon-carbon interactions in the diamond tool. Multi-pass simulations were carried out and it was observed that the EAM-LJ and the EAM-Morse pair potentials with the tool modelled as deformable with Tersoff potential were best suitable for the simulation. The former exhibit the lowest cutting forces and the latter has the lowest potential energy.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Mahdizadeh, Sayyed Jalil, et Golnoosh Akhlamadi. « Optimized Tersoff empirical potential for germanene ». Journal of Molecular Graphics and Modelling 72 (mars 2017) : 1–5. http://dx.doi.org/10.1016/j.jmgm.2016.11.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Zhang, Zhi Bo, et Herbert M. Urbassek. « Comparative Study of Interatomic Interaction Potentials for Describing Indentation into Si Using Molecular Dynamics Simulation ». Applied Mechanics and Materials 869 (août 2017) : 3–8. http://dx.doi.org/10.4028/www.scientific.net/amm.869.3.

Texte intégral
Résumé :
We compare the performance of three interatomic interaction potentials for describing the evolution of plasticity and phase transformations in Si: the well established Stillinger-Weber potential, a recent modification used in the description of Al/Si composites, and a modification of the well known Tersoff potential. We show that the generation of dislocations and the evolution of plasticity are well described by the Stillinger-Weber potential and its modification, while the phase transformation to the high-pressure bct5 modification and the subsequent amorphization are better included in the modified Tersoff potential.
Styles APA, Harvard, Vancouver, ISO, etc.
5

YAN, WANJUN, QUAN XIE, TINGHONG GAO et XIAOTIAN GUO. « MICROSTRUCTURAL EVOLUTION OF SiC DURING MELTING PROCESS ». Modern Physics Letters B 27, no 31 (3 décembre 2013) : 1350231. http://dx.doi.org/10.1142/s021798491350231x.

Texte intégral
Résumé :
Microstructural evolution of SiC during melting process is simulated with Tersoff potential by using molecular dynamics. Microstructural characteristics are analyzed by radial distribution function, angle distribution function and Voronoi polyhedron index. The results show that the melting point of SiC with Tersoff potential is 3249 K. Tersoff potential can exactly describe the changes of bond length, bond angle and Voronoi clusters during the process of melting. Before melting, the length of the C – C bond, Si – Si bond and Si – C bond is 3.2, 3.2 and 1.9 Å, respectively. The bond angle distributes near the tetrahedral bond angle 109°, and the Voronoi clusters are all (4 0 0 0) tetrahedron structures. After melting, the C – C bond and Si – Si bond are reduced, while the Si – C bond is almost unchanged. The range of bond angle distribution is wider than before, and most of the (4 0 0 0) structures turn into three-fold coordinated structures, (2 3 0 0), (0 6 0 0) and (2 2 2 0) structures. The simulation results clearly present the microstructural evolution properties of SiC during the melting process.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Kang, Jeong Won, et Ho Jung Hwang. « Comparison of III- Nitride Nanotubes : Atomistic Simulations ». Materials Science Forum 449-452 (mars 2004) : 1185–88. http://dx.doi.org/10.4028/www.scientific.net/msf.449-452.1185.

Texte intégral
Résumé :
We have investigated the single-wall boron-, aluminum- and gallium-nitride nanotubes using atomistic simulations based on the Tersoff potential. The Tersoff potential for III-nitride effectively describes the properties of III-nitride nanotubes. Structures, energetic and nanomechanics of III-nitride nanotubes were investigated and compared with each other. Young’s moduli of III-N nanotubes were lower than that of CNT. Though the graphite-like sheet formation of AlN was very difficult, since the elastic energy per atom to curve the sheet into cylinder for AlN was very low, if graphite-like sheets of AlN were formed, the extra cost to produce the tubes would be very low
Styles APA, Harvard, Vancouver, ISO, etc.
7

XIE, X. P., M. H. LIANG, Z. M. CHOO et S. LI. « A COMPARATIVE SIMULATION STUDY OF SILICON (001) SURFACE RECONSTRUCTION USING DIFFERENT INTERATOMIC POTENTIALS ». Surface Review and Letters 08, no 05 (octobre 2001) : 471–75. http://dx.doi.org/10.1142/s0218625x01001397.

Texte intégral
Résumé :
We have performed a comparative study of Si (001) surface reconstruction employing molecular dynamics simulation using the interatomic potentials of Stillinger–Weber, Tersoff and Bazant–Kaxiras. Simulations were carried out for temperatures at 300 K and 1000 K using each of these three potentials. At 300 K, the three potentials were found to generate surface features comprising mainly the simple (2 × 1) reconstruction. At 1000 K, more complex reconstruction similar to the p (2 × 2) and c (2 × 2) patterns was observed on the surfaces of Stillinger–Weber and Tersoff crystals while the surface generated on Bazant–Kaxiras crystal is characterized by disorderliness with no identifiable pattern of reconstruction.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Shi, Liping, Xiaoliang Ma, Mingwei Li, Yesheng Zhong, Lin Yang, Weilong Yin et Xiaodong He. « Molecular dynamics simulation of phonon thermal transport in nanotwinned diamond with a new optimized Tersoff potential ». Physical Chemistry Chemical Physics 23, no 14 (2021) : 8336–43. http://dx.doi.org/10.1039/d1cp00399b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Powell, Dave, Max A. Migliorato et Anthony G. Cullis. « The Tersoff potential for phonons in GaAs ». Physica E : Low-dimensional Systems and Nanostructures 32, no 1-2 (mai 2006) : 270–72. http://dx.doi.org/10.1016/j.physe.2005.12.051.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

He, Yang Jun, et Gui Jun Zhang. « Global Optimization of Tersoff Clusters Using Differential Evolution with Inexact Line Search ». Applied Mechanics and Materials 48-49 (février 2011) : 565–68. http://dx.doi.org/10.4028/www.scientific.net/amm.48-49.565.

Texte intégral
Résumé :
Differential Evolution with Inexact Line Search (DEILS) is proposed to determination of the ground-state geometry of atom clusters. DEILS algorithm adopts probabilistic inexact line search method in acceptance rule of differential evolution to accelerate the convergence as the region of global minimum is approached. More realistic many-body potential energy functions, namely the Tersoff and Tersoff-like semi-empirical potentials for silicon, are considered. Numerical studies indicate that the new algorithm is considerably faster and more reliable than original differential evolution algorithm, especially for large-scale global optimization problem of MBP6/Si(C). Moreover, some ground-state solutions, which are superior to the known best solution given in literature, are reported.
Styles APA, Harvard, Vancouver, ISO, etc.
11

LIANG, M. H., X. XIE et S. LI. « COMPUTER SIMULATION OF EPITAXIAL GROWTH OF SILICON ON Si (001) SURFACE ». International Journal of Modern Physics B 16, no 01n02 (20 janvier 2002) : 227–32. http://dx.doi.org/10.1142/s0217979202009688.

Texte intégral
Résumé :
Epitaxial growth of silicon on Si (001) surface has been studied with interatomic potential based molecular dynamics simulation method. Three silicon interatomic potentials developed separately by Stillinger-Weber, Tersoff, and Bazant-Kaxiras were used. Energetic beam of 8 eV, substrate temperature of 500K and deposition rate of 1.15 ps/atom were used as the deposition conditions. Morphologies of the growth were obtained and densities in the growth direction analyzed. Epitaxial growth under the deposition conditions imposed was found possible only using the Stillinger-Weber potential. Disordered growths of differing degree were obtained using the Bazant-Kaxiras and Tersoff potentials. The disordered growth may be attributed to the existence of an epitaxial transition temperature higher than 500K that these potentials might have.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Deb Nath, S. K., et Sung-Gaun Kim. « Study of the Nanomechanics of CNTs under Tension by Molecular Dynamics Simulation Using Different Potentials ». ISRN Condensed Matter Physics 2014 (13 mars 2014) : 1–18. http://dx.doi.org/10.1155/2014/606017.

Texte intégral
Résumé :
At four different strain rates, the tensile stress strain relationship of single-walled 12-12 CNT with aspect ratio 9.1 obtained by Rebo potential (Brenner, 1990), Airebo potential (Stuart et al., 2000), and Tersoff potential (Tersoff, 1988) is compared with that of Belytschko et al. (2002) to validate the present model. Five different empirical potentials such as Rebo potential (Brenner, 1990), Rebo potential (Brenner et al., 2002), Inclusion LJ with Rebo potential (Brenner, 1990), Airebo potential (Stuart et al., 2000), and Tersoff potential (Tersoff, 1988) are used to simulate CNT subjected to axial tension differing its geometry at high strain rate. In Rebo potential (Mashreghi and Moshksar, 2010) only bond-order term is used and in Rebo potential (Brenner et al., 2002) torsional term is included with the bond-order term. At high strain rate the obtained stress strain relationships of CNTs subjected to axial tension differing its geometries using five different potentials are compared with the published results and from the comparison of the results, the drawback of the published results and limitations of different potentials are evaluated and the appropriate potential is selected which is the best among all other potentials to study the elastic, elastic-plastic properties of different types of CNTs. The present study will help a new direction to get reliable elastic, elastic-plastic properties of CNTs at different strain rates. Effects of long range Van der Waals interaction and torsion affect the elastic, elastic-plastic properties of CNTs and why these two effects are really needed to consider in bond-order Rebo potential (Brenner, 1990) to get reliable elastic, elastic-plastic properties of CNTs is also discussed. Effects of length-to-diameter ratio, layering of CNTs, and different empirical potentials on the elastic, elastic-plastic properties of CNTs are discussed in graphical and tabular forms with published results as a comparative manner to understand the nanomechanics of CNTs under tension using molecular dynamics simulation.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Chavoshi, Saeed Zare, Shuozhi Xu et Saurav Goel. « Addressing the discrepancy of finding the equilibrium melting point of silicon using molecular dynamics simulations ». Proceedings of the Royal Society A : Mathematical, Physical and Engineering Sciences 473, no 2202 (juin 2017) : 20170084. http://dx.doi.org/10.1098/rspa.2017.0084.

Texte intégral
Résumé :
We performed molecular dynamics simulations to study the equilibrium melting point of silicon using (i) the solid–liquid coexistence method and (ii) the Gibbs free energy technique, and compared our novel results with the previously published results obtained from the Monte Carlo (MC) void-nucleated melting method based on the Tersoff-ARK interatomic potential (Agrawal et al. Phys. Rev. B 72 , 125206. ( doi:10.1103/PhysRevB.72.125206 )). Considerable discrepancy was observed (approx. 20%) between the former two methods and the MC void-nucleated melting result, leading us to question the applicability of the empirical MC void-nucleated melting method to study a wide range of atomic and molecular systems. A wider impact of the study is that it highlights the bottleneck of the Tersoff-ARK potential in correctly estimating the melting point of silicon.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Matsunaga, Katsuyuki, Craig Fisher et Hideaki Matsubara. « Tersoff Potential Parameters for Simulating Cubic Boron Carbonitrides ». Japanese Journal of Applied Physics 39, Part 2, No. 1A/B (15 janvier 2000) : L48—L51. http://dx.doi.org/10.1143/jjap.39.l48.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Tungare, Mihir, Yunfeng Shi, Neeraj Tripathi, Puneet Suvarna et Fatemeh Shadi Shahedipour-Sandvik. « A Tersoff-based interatomic potential for wurtzite AlN ». physica status solidi (a) 208, no 7 (1 juin 2011) : 1569–72. http://dx.doi.org/10.1002/pssa.201001086.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

TARENTO, R. J., P. JOYES et J. VAN DE WALLE. « INFLUENCE OF THE METALLIC CLUSTER BAND DEGENERACY ON THE CHARGE TRANSFER BETWEEN METALLIC CLUSTER AND SEMICONDUCTOR SUBSTRATE ». Surface Review and Letters 03, no 01 (février 1996) : 969–71. http://dx.doi.org/10.1142/s0218625x9600173x.

Texte intégral
Résumé :
A self-consistent analysis of the charge transallographie semiconductor has been investigated with respect to the cluster size, the metal-band degeneracy, and the semiconductor doping concentration. The calculation has been carried out with the Tersoff idea on the pinning of the Fermi level.
Styles APA, Harvard, Vancouver, ISO, etc.
17

YASHIRO, Kisaragi, et Masahiro FUJIHARA. « Local Lattice Instability Analysis on Silicon by Tersoff Potential ». Journal of the Society of Materials Science, Japan 60, no 11 (2011) : 968–75. http://dx.doi.org/10.2472/jsms.60.968.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Brenner, Donald W. « Relationship between the embedded-atom method and Tersoff potentials ». Physical Review Letters 63, no 9 (28 août 1989) : 1022. http://dx.doi.org/10.1103/physrevlett.63.1022.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Pettifor, D. G., et I. I. Oleinik. « Analytic bond-order potentials beyond Tersoff-Brenner. I. Theory ». Physical Review B 59, no 13 (1 avril 1999) : 8487–99. http://dx.doi.org/10.1103/physrevb.59.8487.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Nejat Pishkenari, Hossein, et Pooriya Ghaf Ghanbari. « Vibrational analysis of the fullerene family using Tersoff potential ». Current Applied Physics 17, no 1 (janvier 2017) : 72–77. http://dx.doi.org/10.1016/j.cap.2016.11.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Munetoh, Shinji, Teruaki Motooka, Koji Moriguchi et Akira Shintani. « Interatomic potential for Si–O systems using Tersoff parameterization ». Computational Materials Science 39, no 2 (avril 2007) : 334–39. http://dx.doi.org/10.1016/j.commatsci.2006.06.010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Ohira, Tatsuya, Takaji Inamuro et Takeshi Adachi. « Molecular dynamics simulation of amorphous silicon with Tersoff potential ». Solar Energy Materials and Solar Cells 34, no 1-4 (septembre 1994) : 565–70. http://dx.doi.org/10.1016/0927-0248(94)90086-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Sekkal, W., A. Laref, H. Aourag, A. Zaoui et M. Certier. « The miscibility of CuxAg1−xI using a Tersoff potential ». Superlattices and Microstructures 28, no 1 (juillet 2000) : 55–66. http://dx.doi.org/10.1006/spmi.1999.0782.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Kim, Ju Young, Baik Woo Lee, Ho Seok Nam et Dong Il Kwon. « Molecular Dynamics Analysis of Structure and Intrinsic Stress in Amorphous Silicon Carbide Film with Deposition Process Parameters ». Materials Science Forum 449-452 (mars 2004) : 97–100. http://dx.doi.org/10.4028/www.scientific.net/msf.449-452.97.

Texte intégral
Résumé :
Amorphous silicon carbide (a-SiC) films were deposited using molecular dynamics simulations employing the Tersoff potential. The structure and intrinsic stress of a-SiC films changed dramatically with changes in such principal deposition process parameters as substrate temperature and incident energy. Changes in structure and intrinsic stress with deposition process parameters were analyzed.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Wu, Guoqiang, Zhaowei Sun, Xianren Kong et Dan Zhao. « Molecular dynamics simulation on the out‐of plane thermal conductivity of single‐crystal silicon thin films ». Aircraft Engineering and Aerospace Technology 77, no 6 (1 décembre 2005) : 475–77. http://dx.doi.org/10.1108/00022660510628462.

Texte intégral
Résumé :
PurposeCombining the characteristic of satellite “minisize nucleus” non‐equilibrium molecular dynamics (NEMD) method is used. We select corresponding Tersoff potential energy function to build model and, respectively, simulate thermal conductivities of silicon nanometer thin film.Design/methodology/approachNEMD method is used, and the corresponding Tersoff potential energy function is used to build model.FindingsThe thermal conductivities of silicon nanometer thin film are markedly below the corresponding thermal conductivities of their crystals under identical temperature. The thermal conductivities are rising with the increase of thickness of thin film; what's more, the conductivities have a linear approximation with thickness of the thin film.Research limitations/implicationsIt is difficult to do physics experiment.Practical implicationsThe findings have some theory guidance to analyze satellite thermal control.Originality/valueThe calculation results of thermal conductivities specify distinct size effect. The normal direction thick film thermal conductivity of silicon crystal declines with the increasing temperature. The thermal conductivities are rising with the increase of thickness of thin film; what's more, the conductivities have a linear approximation with thickness of the thin film.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Jeong, Seong Min, et Takayuki Kitamura. « Structural Transformation of Single Crystal Silicon under Uniaxial Stress ». Key Engineering Materials 345-346 (août 2007) : 963–66. http://dx.doi.org/10.4028/www.scientific.net/kem.345-346.963.

Texte intégral
Résumé :
The diamond structure of single crystal silicon transforms to other structures under mechanical stress. We investigate the structural transformation of diamond cubic structure to betatin structure in silicon under uniaxial stress using atomistic simulation on the basis of the Tersoff potential. As a result, under extensive compressive strain, the structural transformation from Si-I to Si-II is found.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Zeng, Zhifeng, Yihua Tang, Shilu Chen et Min Xu. « Pattern Formation in Swarming Spacecrafts using Tersoff-Brenner Potential Field ». International Journal of Intelligent Systems and Applications 5, no 6 (1 mai 2013) : 1–11. http://dx.doi.org/10.5815/ijisa.2013.06.01.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

OHISHI, Naoki, et Kisaragi Yashiro. « 1025 Local Lattice Instability Analysis for Silicon by Tersoff Potential ». Proceedings of The Computational Mechanics Conference 2010.23 (2010) : 544–45. http://dx.doi.org/10.1299/jsmecmd.2010.23.544.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Dodson, Brian W. « Development of a many-body Tersoff-type potential for silicon ». Physical Review B 35, no 6 (15 février 1987) : 2795–98. http://dx.doi.org/10.1103/physrevb.35.2795.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

SAITO, Yoko, Naoya SASAKI, Hiroshi MORIYA, Akiko KAGATSUME et Shingo NORO. « Parameter Optimization of Tersoff Interatomic Potentials using a Genetic Algorithm. » Transactions of the Japan Society of Mechanical Engineers Series A 66, no 642 (2000) : 213–19. http://dx.doi.org/10.1299/kikaia.66.213.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

SAITO, Yoko, Naoya SASAKI, Hiroshi MORIYA, Akiko KAGATSUME et Shingo NORO. « Parameter Optimization of Tersoff Interatomic Potentials Using a Genetic Algorithm. » JSME International Journal Series A 44, no 2 (2001) : 207–13. http://dx.doi.org/10.1299/jsmea.44.207.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

IZUMI, Satoshi, et Shinsuke SAKAI. « Internal Displacement and Elastic Properties of the Silicon Tersoff Model ». JSME International Journal Series A 47, no 1 (2004) : 54–61. http://dx.doi.org/10.1299/jsmea.47.54.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Aghajamali, Alireza, Carla de Tomas, Irene Suarez-Martinez et Nigel A. Marks. « Unphysical nucleation of diamond in the extended cutoff Tersoff potential ». Molecular Simulation 44, no 2 (30 juillet 2017) : 164–71. http://dx.doi.org/10.1080/08927022.2017.1355555.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Nguyen, Trung Dac. « GPU-accelerated Tersoff potentials for massively parallel Molecular Dynamics simulations ». Computer Physics Communications 212 (mars 2017) : 113–22. http://dx.doi.org/10.1016/j.cpc.2016.10.020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Aghajamali, Alireza, et Amir Karton. « Comparative Study of Carbon Force Fields for the Simulation of Carbon Onions ». Australian Journal of Chemistry 74, no 10 (2021) : 709. http://dx.doi.org/10.1071/ch21172.

Texte intégral
Résumé :
We evaluate the performance of ten common carbon force fields for the interaction energies in double and triple layered carbon onions. In particular, we consider the C20@C60, C20@C80, C20@C180, C80@C240, C60@C240 and C240@C540 double-layer carbon onions and C60@C240@C540 and C80@C240@C540 triple-layered carbon onions. We consider the following carbon force fields: Tersoff, REBO-II, AIREBO, AIREBO-M, screened versions of Tersoff and REBO-II, LCBOP-I, 2015 and 2020 versions of ReaxFF, and the machine-learning GAP force field. We show that the ReaxFF force fields give the best performance for the interaction energies of the cabon onions relative to density functional theory interaction energies obtained at the PBE0-D3/def2-TZVP level of theory. We proceed to use the ReaxFF-15 force field to explore the interaction energies in a giant ten-layered carbon onion with a C60 core and show that the interaction energy between the outer layer and the inner layers increases linearly with the number of layers in the carbon onion (with a squared correlation coefficient of R2 = 0.9996). This linear increase in the stabilization energy with each consecutive layer may have important thermodynamic consequences for describing the formation and growth of large carbon onions.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Kang, Jeong Won, Jae Jeong Seo et Ho Jung Hwang. « Molecular Dynamics Study of Hypothetical Silicon Nanotubes Using the Tersoff Potential ». Journal of Nanoscience and Nanotechnology 2, no 6 (1 décembre 2002) : 687–91. http://dx.doi.org/10.1166/jnn.2002.146.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Titantah, J. T., D. Lamoen, M. Schowalter et A. Rosenauer. « Bond length variation in Ga1−xInxAs crystals from the Tersoff potential ». Journal of Applied Physics 101, no 12 (15 juin 2007) : 123508. http://dx.doi.org/10.1063/1.2748338.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Sha, Z. D., P. S. Branicio, Q. X. Pei, V. Sorkin et Y. W. Zhang. « A modified Tersoff potential for pure and hydrogenated diamond-like carbon ». Computational Materials Science 67 (février 2013) : 146–50. http://dx.doi.org/10.1016/j.commatsci.2012.08.042.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

YASUKAWA, Akio. « 404 Analysis of Elastic Constants by Using Tersoff-Type Interatomic Potential ». Proceedings of Ibaraki District Conference 2000 (2000) : 97–98. http://dx.doi.org/10.1299/jsmeibaraki.2000.97.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Sacks, W. « Beyond Tersoff and Hamann : A generalized expression for the tunneling current ». Journal of Vacuum Science & ; Technology B : Microelectronics and Nanometer Structures 9, no 2 (mars 1991) : 488. http://dx.doi.org/10.1116/1.585552.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

HAYASHI, RYOKO, KENJI TANAKA, SUSUMU HORIGUCHI et YASUAKI HIWATARI. « A PARALLELIZATION CASE-STUDY OF MD SIMULATION OF A LOW DENSITY PHYSICAL SYSTEM ». Parallel Processing Letters 15, no 04 (décembre 2005) : 481–89. http://dx.doi.org/10.1142/s0129626405002398.

Texte intégral
Résumé :
A case study on the parallelization of a classical molecular dynamics code for simulating the formation of carbon clusters is presented. Parallelization is based on the domain decomposition method, as the Tersoff potentials used are short-range. However, at low particle densities, high-performance parallel execution of MD simulations is quite difficult. Methods for improving the performance achieved by parallelization of low density MD simulations are discussed and initial results for a low density system are presented.
Styles APA, Harvard, Vancouver, ISO, etc.
42

LI, DENGFENG, et ZHIGUO WANG. « TENSILE BEHAVIOR OF AMORPHOUS LAYER COATED SILICON CARBIDE NANOWIRES : AN ATOMIC SIMULATION ». Modern Physics Letters B 25, no 05 (20 février 2011) : 325–32. http://dx.doi.org/10.1142/s0217984911025717.

Texte intégral
Résumé :
The tensile behavior of amorphous layer coated SiC nanowires was investigated using molecular dynamics with Tersoff potential at room temperature. Simulation results show that the amorphous layer coating leads to the decrease of the critical stress and Young's modulus, but does not affect the fracture mode of nanowires with large diameter and thin coating layer. The decrease of critical stress and Young's modulus can be attributed to the weakening of the Si – C bonds in the amorphous coating layers.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Wang, J. B., X. Guo et Hong Wu Zhang. « Studies of Energy and Mechanical Properties of Single-Walled Carbon Nanotubes via Higher Order Cauchy Born Rule ». Solid State Phenomena 121-123 (mars 2007) : 1029–32. http://dx.doi.org/10.4028/www.scientific.net/ssp.121-123.1029.

Texte intégral
Résumé :
Based on the higher order Cauchy-Born rule, a nanoscale finite deformation continuum theory, which links interatomic potentials and atomic microstructure of carbon nanotubes to a constitutive model, is presented for analysis of the mechanics of carbon nanotubes. By using of Tersoff-Brenner potential with two sets of parameters, the energy and Young’s modulus of graphite sheet and single-walled carbon nanotubes are studied based on the theory presented. The findings are in good agreement with the existing experimental and theoretical results.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Inui, Norio, et Kazunori Maebuchi. « Bending a graphene cantilever by a diamagnetic force ». Journal of Applied Physics 132, no 12 (28 septembre 2022) : 125107. http://dx.doi.org/10.1063/5.0105472.

Texte intégral
Résumé :
The application of a magnetic field perpendicular to the surface of a graphene cantilever generates a bending force owing to the strong anisotropy of the magnetic susceptibility. We calculate the mechanically stable equilibrium shape of a graphene cantilever in the presence of a magnetic field by minimizing the magnetic and bending energies, which are calculated using the tight-binding model and the Tersoff–Brenner potential, respectively. Furthermore, the introduction of a continuous model enables the size-dependence of the displacement by bending to be considered.
Styles APA, Harvard, Vancouver, ISO, etc.
45

Nguyen, Danh Truong. « THE SIZE EFFECT IN MECHANICS PROPERTIES OF BORON NITRIDE NANOTUBE UNDER TENSION ». Vietnam Journal of Science and Technology 55, no 4 (11 août 2017) : 475. http://dx.doi.org/10.15625/2525-2518/55/4/9452.

Texte intégral
Résumé :
This work aimed at investigating the mechanicals properties of boron nitride nanotubes (BN-NTs) under uniaxial tension using atomic finite element method with Tersoff potential. The zigzag and armchair nanotubes with different length and diameter are considered for researching effect on mechanicals behavior of BN-NTs. It is found that Young’s modulus of BN-NTs are independent of the tubular length, but slightly increase when the diameter go rise. At the given strain, axial stress in the armchair tubes is higher than that in the zigzag ones.
Styles APA, Harvard, Vancouver, ISO, etc.
46

Mukuno, Renji, et Manabu Ishimaru. « Application of the Tersoff interatomic potential to pressure-induced polyamorphism of silicon ». Japanese Journal of Applied Physics 58, no 10 (26 septembre 2019) : 101006. http://dx.doi.org/10.7567/1347-4065/ab42f3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

TÜRELİ, Marta Vidal, et Şakir ERKOÇ. « Structural Stability and Energetics of Carbon Clusters : Tersoff Potential Energy Function Calculation ». Turkish Journal of Physics 20, no 9 (1 janvier 1996) : 1074–82. http://dx.doi.org/10.55730/1300-0101.2492.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Rajasekaran, G., Rajesh Kumar et Avinash Parashar. « Tersoff potential with improved accuracy for simulating graphene in molecular dynamics environment ». Materials Research Express 3, no 3 (18 mars 2016) : 035011. http://dx.doi.org/10.1088/2053-1591/3/3/035011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Xia, Yueyuan, Chunyu Tan, Yuelin Xing, Hong Yang, Xiufang Sun et Bin Gong. « Molecular-Dynamics Simulation of Surface Relaxation for Tersoff-Dodson Type (100) Si ». Chinese Physics Letters 11, no 12 (décembre 1994) : 751–53. http://dx.doi.org/10.1088/0256-307x/11/12/010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Oleinik, I. I., et D. G. Pettifor. « Analytic bond-order potentials beyond Tersoff-Brenner. II. Application to the hydrocarbons ». Physical Review B 59, no 13 (1 avril 1999) : 8500–8507. http://dx.doi.org/10.1103/physrevb.59.8500.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie