Littérature scientifique sur le sujet « Telomere protection »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Telomere protection ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Telomere protection"
Hsu, Joseph K., Tao Lin et Robert Y. L. Tsai. « Nucleostemin prevents telomere damage by promoting PML-IV recruitment to SUMOylated TRF1 ». Journal of Cell Biology 197, no 5 (28 mai 2012) : 613–24. http://dx.doi.org/10.1083/jcb.201109038.
Texte intégralBunch, Jeremy T., Nancy S. Bae, Jessica Leonardi et Peter Baumann. « Distinct Requirements for Pot1 in Limiting Telomere Length and Maintaining Chromosome Stability ». Molecular and Cellular Biology 25, no 13 (1 juillet 2005) : 5567–78. http://dx.doi.org/10.1128/mcb.25.13.5567-5578.2005.
Texte intégralMattern, Karin A., Susan J. J. Swiggers, Alex L. Nigg, Bob Löwenberg, Adriaan B. Houtsmuller et J. Mark J. M. Zijlmans. « Dynamics of Protein Binding to Telomeres in Living Cells : Implications for Telomere Structure and Function ». Molecular and Cellular Biology 24, no 12 (15 juin 2004) : 5587–94. http://dx.doi.org/10.1128/mcb.24.12.5587-5594.2004.
Texte intégralKelleher, Colleen, Isabel Kurth et Joachim Lingner. « Human Protection of Telomeres 1 (POT1) Is a Negative Regulator of Telomerase Activity In Vitro ». Molecular and Cellular Biology 25, no 2 (15 janvier 2005) : 808–18. http://dx.doi.org/10.1128/mcb.25.2.808-818.2005.
Texte intégralSmogorzewska, Agata, Bas van Steensel, Alessandro Bianchi, Stefan Oelmann, Matthias R. Schaefer, Gisela Schnapp et Titia de Lange. « Control of Human Telomere Length by TRF1 and TRF2 ». Molecular and Cellular Biology 20, no 5 (1 mars 2000) : 1659–68. http://dx.doi.org/10.1128/mcb.20.5.1659-1668.2000.
Texte intégralKibe, Tatsuya, Yuuki Ono, Koichiro Sato et Masaru Ueno. « Fission Yeast Taz1 and RPA Are Synergistically Required to Prevent Rapid Telomere Loss ». Molecular Biology of the Cell 18, no 6 (juin 2007) : 2378–87. http://dx.doi.org/10.1091/mbc.e06-12-1084.
Texte intégralFernandes, Stina George, Rebecca Dsouza, Gouri Pandya, Anuradha Kirtonia, Vinay Tergaonkar, Sook Y. Lee, Manoj Garg et Ekta Khattar. « Role of Telomeres and Telomeric Proteins in Human Malignancies and Their Therapeutic Potential ». Cancers 12, no 7 (14 juillet 2020) : 1901. http://dx.doi.org/10.3390/cancers12071901.
Texte intégralDonate, Luis E., et Maria A. Blasco. « Telomeres in cancer and ageing ». Philosophical Transactions of the Royal Society B : Biological Sciences 366, no 1561 (12 janvier 2011) : 76–84. http://dx.doi.org/10.1098/rstb.2010.0291.
Texte intégralCalado, Rodrigo T. « Telomeres and marrow failure ». Hematology 2009, no 1 (1 janvier 2009) : 338–43. http://dx.doi.org/10.1182/asheducation-2009.1.338.
Texte intégralMaddar, Haggar, Nir Ratzkovsky et Anat Krauskopf. « Role for Telomere Cap Structure in Meiosis ». Molecular Biology of the Cell 12, no 10 (octobre 2001) : 3191–203. http://dx.doi.org/10.1091/mbc.12.10.3191.
Texte intégralThèses sur le sujet "Telomere protection"
Karpov, Victor. « A study on telomere protection and telomerase-and-cap-independent mechanisms of telomere maintenance in yeast Saccharomyces cerevisiae ». Mémoire, Université de Sherbrooke, 2008. http://savoirs.usherbrooke.ca/handle/11143/3940.
Texte intégralPerera, Yatawarage Omesha Nalindri. « A non-canonical function of human telomerase reverse transcriptase in telomere protection ». Thesis, The University of Sydney, 2015. http://hdl.handle.net/2123/14963.
Texte intégralXu, Mengyuan. « The Role of Shelterin Proteins in Telomere DNA Protection and Regulation ». Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1585760345643995.
Texte intégralANBALAGAN, SAVANI. « Role of saccharomyces cerevisiae Rif1 and Rif2 proteins in protection of telomeres ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2013. http://hdl.handle.net/10281/43717.
Texte intégralYe, Ying. « The role of Apollo (DCLRE1B) in telomere protection during replication ». Lyon, École normale supérieure (sciences), 2009. http://www.theses.fr/2009ENSL0512.
Texte intégralOikemus, Sarah R. « Epigenetic Telomere Protection by Drosophila DNA Damage Response Pathways : A Dissertation ». eScholarship@UMMS, 2006. https://escholarship.umassmed.edu/gsbs_diss/229.
Texte intégralKhan, Sheik Jamaludin. « Functions of TRF2 : From Telomere Protection to DNA Damage Signaling and Vascular Remodeling ». Scholarly Repository, 2008. http://scholarlyrepository.miami.edu/oa_dissertations/123.
Texte intégralKhurana, Jaspreet S. « Drosophila piRNA Function in Genome Maintenance, Telomere Protection and Genome Evolution : A Dissertation ». eScholarship@UMMS, 2010. https://escholarship.umassmed.edu/gsbs_diss/518.
Texte intégralArora, Amit, Mark A. Beilstein et Dorothy E. Shippen. « Evolution of Arabidopsis protection of telomeres 1 alters nucleic acid recognition and telomerase regulation ». OXFORD UNIV PRESS, 2016. http://hdl.handle.net/10150/622915.
Texte intégralMENIN, LUCA. « Role of Tel1/ATM in protecting and signaling abnormal replication forks and short telomeres ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2019. http://hdl.handle.net/10281/241165.
Texte intégralEukaryotic cells prevent genomic instability by activating a complex network of safeguard pathways called DNA Damage Response (DDR). S. cerevisiae Mec1 and Tel1 protein kinases, orthologs of human ATR and ATM, play a central role in the DDR. These proteins activate a checkpoint cascade which coordinates DNA damage repair with cell cycle progression. The role of Tel1 is particularly evident in the presence of DNA Double-Strand Breaks (DSBs), one of the most cytotoxic forms of DNA lesions. DSBs can be repaired by Homologous Recombination (HR), which requires the degradation of 5’-ended strands of the break (resection). Tel1 contributes to DSB repair by promoting resection initiation. Despite Tel1 functions in DDR, the absence of Tel1 confers a moderate sensitivity to camptothecin (CPT), an inhibitor of type I DNA topoisomerases. Since CPT derivatives are currently used in chemotherapy, understanding the molecular basis of tel1Δ mutant sensitivity to CPT is relevant for the development of anti-cancer therapies based on combined treatments with CPT derivatives and ATM inhibitors. In addition, Tel1 is important for the maintenance of telomeres, which are replicated by a reverse transcriptase called telomerase. In particular, Tel1 promotes the recruitment of telomerase and therefore telomere homeostasis. Telomerase is inactivated in most human tissues, which undergo progressive telomere shortening. When telomeres become critically short, a block of cell division, known as replicative senescence, limits cell proliferation, thus acting as a cancer-suppressor mechanism. Senescence is triggered by the activation of a checkpoint response governed by Mec1/ATR and Tel1/ATM. While Mec1/ATR is known to block cell division in the presence of extended ssDNA, the molecular mechanism by which Tel1/ATM triggers senescence is still unclear. During my PhD I have managed two different projects with the aim to shed light into the molecular mechanisms that involve Tel1 in response to CPT and in the induction of replicative senescence. Regarding the first project, in both yeast and mammals, CPT induces replication fork reversal, which has been proposed to stabilize stalled replication forks, thus providing time for the repair of CPT-induced lesions and supporting replication restart. tel1∆ cells have a reduced amount of CPT-induced reversed forks compared to wild type cells. The lack of Mre11 nuclease activity restores wild-type levels of reversed forks in CPT-treated tel1Δ cells, without affecting fork reversal in wild-type cells. Moreover, Mrc1 inactivation prevents fork reversal in wild-type, tel1Δ, and mre11 nuclease-deficient cells and relieves the hypersensitivity of tel1Δ cells to CPT. Altogether, these data indicate that Tel1 stabilizes Mrc1-dependent reversed forks generated in the presence of CPT by counteracting Mre11 nucleolytic activity at these structures. Regarding the second project, to studying the role of Tel1/ATM in the induction of senescence, I took advantage of telomerase-deficient yeast cells, which are considered a reliable model of replicative senescence, and the TEL1-hy184 allele, previously identified because it was able to suppress the checkpoint defects of Mec1-deficient cells. Upon telomerase inactivation, Tel1-hy184 accelerates senescence compared to wild type Tel1, while the lack of Tel1 was found to delay senescence. The enhanced senescence in telomerase-negative TEL1-hy184 cells depends on the activation of a checkpoint that is completely Rad9-dependent and only partially dependent on Mec1. Furthermore, Tel1-hy184 does not appear to increase ssDNA at DNA ends, suggesting that Tel1 induces replicative senescence by directly contributing to checkpoint signaling at dysfunctional telomeres. Taken together, the results that I have obtained during my PhD allow to better understand the functions of Tel1/ATM in the maintenance of genome stability.
Chapitres de livres sur le sujet "Telomere protection"
Schneider, Michael D. « Dual Roles of Telomerase in Cardiac Protection and Repair ». Dans Novartis Foundation Symposia, 260–71. Chichester, UK : John Wiley & Sons, Ltd, 2008. http://dx.doi.org/10.1002/0470029331.ch16.
Texte intégral« Telomeres and cancer protection ». Dans Dynamics of Cancer, 375–401. WORLD SCIENTIFIC, 2014. http://dx.doi.org/10.1142/9789814566377_0020.
Texte intégralActes de conférences sur le sujet "Telomere protection"
Chow, Tracy T., et Elizabeth H. Blackburn. « Abstract LB-161 : Exploiting non-canonical heterochromatin-mediated telomere protection mechanisms in human cells ». Dans Proceedings : AACR 107th Annual Meeting 2016 ; April 16-20, 2016 ; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-lb-161.
Texte intégralMuthumalage, T., I. K. Sundar et I. Rahman. « Telomere Protection Protein 1 (TPP1) Deletion in Lung Epithelial Cells Augments Cigarette Smoke-Induced Lung Inflammation ». Dans American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a1231.
Texte intégralMuthumalage, T., et I. Rahman. « Selective Ablation of Telomere Protection Protein 1 (TPP1) in Lung Epithelium Induce an Age-Dependent Augmentation of the Inflammatory Response by Tobacco Smoke Exposure ». Dans American Thoracic Society 2021 International Conference, May 14-19, 2021 - San Diego, CA. American Thoracic Society, 2021. http://dx.doi.org/10.1164/ajrccm-conference.2021.203.1_meetingabstracts.a4295.
Texte intégralMuthumalage, T., et I. Rahman. « Conditional Knockout of Telomere Protection Protein 1 (TPP1) in Lung Epithelium Triggers Senescence-Associated Lung Diseases and Increases Cancer Risk Upon Cigarette Smoke Exposure ». Dans American Thoracic Society 2022 International Conference, May 13-18, 2022 - San Francisco, CA. American Thoracic Society, 2022. http://dx.doi.org/10.1164/ajrccm-conference.2022.205.1_meetingabstracts.a3902.
Texte intégralZou, Jiang, Ru Sun, Jingruo Xia, Dan Xiao, Chang Liu, Hebin Liao, Lei Xu et al. « Abstract 341 : The role of telomere protective protein TPP1 in hepatocellular carcinoma ». Dans Proceedings : AACR Annual Meeting 2018 ; April 14-18, 2018 ; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-341.
Texte intégralBaribault, Michelle E., Mark J. Swanson et Nancy S. Bae. « Abstract 2261 : Natural redistribution of end-protection proteins in aging cells as telomeres shorten ». Dans Proceedings : AACR Annual Meeting 2014 ; April 5-9, 2014 ; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-2261.
Texte intégralMashtalyar, D. V., S. V. Gnedenkov, S. L. Sinebryukhov, K. V. Nadaraia, D. P. Kiryukhin, P. P. Kushch, G. A. Kichigina et V. M. Buznik. « Formation of protective composite coatings with the use of solution of TFE telomers ». Dans ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING : FROM THEORY TO APPLICATIONS : Proceedings of the International Conference on Electrical and Electronic Engineering (IC3E 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.4998101.
Texte intégralRapports d'organisations sur le sujet "Telomere protection"
Cervantes, Rachel. The Role of the Telomere End Protection Complex in Telomere Main. Fort Belvoir, VA : Defense Technical Information Center, juin 2003. http://dx.doi.org/10.21236/ada437895.
Texte intégralCervantes, Rachel B. The Role of the Telomere End Protection Complex in Telomere Maintenance. Fort Belvoir, VA : Defense Technical Information Center, juin 2003. http://dx.doi.org/10.21236/ada417832.
Texte intégral