Littérature scientifique sur le sujet « Syngeneic model »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Syngeneic model ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Syngeneic model"
Filho, Ivo P. Torres, Beryl Hartley-Asp et Per Borgström. « Quantitative Angiogenesis in a Syngeneic Tumor Spheroid Model ». Microvascular Research 49, no 2 (mars 1995) : 212–26. http://dx.doi.org/10.1006/mvre.1995.1017.
Texte intégralChen, Yi-Fen, Kuo-Wei Chang, I.-Ting Yang, Hsi-Feng Tu et Shu-Chun Lin. « Establishment of syngeneic murine model for oral cancer therapy ». Oral Oncology 95 (août 2019) : 194–201. http://dx.doi.org/10.1016/j.oraloncology.2019.06.026.
Texte intégralFarhoodi, Henry P., Aude I. Segaliny, Zachary W. Wagoner, Jason L. Cheng, Linan Liu et Weian Zhao. « Optimization of a syngeneic murine model of bone metastasis ». Journal of Bone Oncology 23 (août 2020) : 100298. http://dx.doi.org/10.1016/j.jbo.2020.100298.
Texte intégralMezhir, James J., Kerrington D. Smith, Eric T. Kimchi, James O. Park, Carlos A. Lopez, Helena J. Mauceri, Micheal A. Beckett, Samual Hellman, Ralph R. Weichselbaum et Mitchell C. Posner. « Establishment of a Syngeneic Model of Hepatic Colorectal Oligometastases ». Journal of Surgical Research 136, no 2 (décembre 2006) : 288–93. http://dx.doi.org/10.1016/j.jss.2006.05.008.
Texte intégralMehr, Ramit, Alan S. Perelson, Ayala Sharp, Lee Segel et Amiela Globerson. « MHC-Linked Syngeneic Developmental Preference in Thymic Lobes Colonized with Bone Marrow Cells : A Mathematical model ». Developmental Immunology 5, no 4 (1998) : 303–18. http://dx.doi.org/10.1155/1998/65943.
Texte intégralSeishima, Noriko, William Becker, Purevdorj Olkhanud, Hoyoung Maeng, Miguel Lopez-Lago, Charles Wiseman, William Williams et Jay Berzofsky. « Peptide-pulsed MHC class II allogeneic dendritic cell vaccine has superior efficacy providing allogeneic help in a murine cancer model. » Journal of Immunology 212, no 1_Supplement (1 mai 2024) : 1097_4946. http://dx.doi.org/10.4049/jimmunol.212.supp.1097.4946.
Texte intégralIldstad, S. T., J. A. Bluestone et D. H. Sachs. « Alloresistance to engraftment of allogeneic donor bone marrow is mediated by an Lyt-2+ T cell in mixed allogeneic reconstitution (C57BL/10Sn + B10.D2/nSn----C57BL/10Sn). » Journal of Experimental Medicine 163, no 5 (1 mai 1986) : 1343–48. http://dx.doi.org/10.1084/jem.163.5.1343.
Texte intégralSeishima, Noriko, Purevdorj B. Olkhanud, William Becker, Hoyoung Maeng, Miguel Lopez-Lago, Charles Wiseman, William V. Williams et Jay A. Berzofsky. « Peptide-pulsed MHC class II mutant dendritic cell vaccine has superior efficacy in a murine tumor model. » Journal of Immunology 210, no 1_Supplement (1 mai 2023) : 159.10. http://dx.doi.org/10.4049/jimmunol.210.supp.159.10.
Texte intégralChade, Daher C., Priscila M. Andrade, Ricardo C. Borra, Katia R. Leite, Enrico Andrade, Fabiola E. Villanova et Miguel Srougi. « Histopathological characterization of a syngeneic orthotopic murine bladder cancer model ». International braz j urol 34, no 2 (mars 2008) : 220–29. http://dx.doi.org/10.1590/s1677-55382008000200013.
Texte intégralQuinn, Bridget A., Fang Xiao, Laura Bickel, Lainie Martin, Xiang Hua, Andres Klein-Szanto et Denise C. Connolly. « Development of a syngeneic mouse model of epithelial ovarian cancer ». Journal of Ovarian Research 3, no 1 (2010) : 24. http://dx.doi.org/10.1186/1757-2215-3-24.
Texte intégralThèses sur le sujet "Syngeneic model"
Lamkin, Donald Michael. « Inflammatory processes and depressive-like behavior in a syngeneic model of ovarian cancer ». Diss., University of Iowa, 2010. https://ir.uiowa.edu/etd/693.
Texte intégralBorgström, Annelie. « Analysis of tumour infiltrating leukocytes in colon cancer carcinoma in a syngeneic rat model ». Thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-56910.
Texte intégralTrimaglio, Giulia. « An orthotopic syngeneic mouse model to study the role of DCIR in colorectal cancer ». Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30053.
Texte intégralColorectal cancer (CRC) is the third most common and second deadliest cancer worldwide accounting for 900.000 deaths in 2018. Consequently, there is a strong need for new biomarkers as well as an improvement of the current treatments. Tumors develop in complex microenvironments where cancer cells constantly crosstalk with, and modulate, the local immune response to persist and replicate. C-type lectins receptors, expressed in particular by immune cells, actively regulate the immune response to cancer cells and, therefore, tumor development. Dendritic cell immunoreceptor (DCIR), a C-type lectin expressed by myeloid cells, has been shown to play a major role in immunity to infectious and autoimmune diseases. Yet, the role played by DCIR in tumor immunity remains unknown. Analysis of publicly available transcriptomic data from two cohorts of CRC patients revealed an association between high DCIR gene expression and improved survival of patients. In this context, the principal objective of my PhD thesis was to determine the role played by DCIR in the immune response during CRC development. First, I developed an orthotopic syngeneic pre-clinical CRC mouse model consisting in the intra-caecal injection of engineered MC38 tumor cells expressing firefly luciferase (MC38-fLuc+) in C57BL/6 mice. Monitoring of the tumor growth by bioluminescence revealed that, despite an initial growth of solid tumors in all the mice, only 30% of mice developed a progressive lethal CRC, while the remaining animals spontaneously rejected their solid tumor and survived more than 100 days. No rejection of tumors was observed in the absence of adaptive immunity, nor when MC38-fLuc+ cells were injected in other anatomical locations (i.e., liver and skin). Immunophenotyping by transcriptomic and flow cytometry showed that mice with progressive CRC tumors exhibited a pro-tumor immune response, characterized by a regulatory T cell pattern, discernible shortly post-tumor implantation, as well as myeloid suppressor cells that are well-known to favor tumor growth. By contrast, tumor-rejecting mice presented an early pro-inflammatory response and an anti-tumor microenvironment enriched with CD8+ T cells. Taken together, our results demonstrate a preponderant role of the colon-specific microenvironment in regulating the balance between anti- or pro-tumor immune responses and underline the importance of using orthotopic mouse models for in vivo studies. In a second part of my thesis, we used this CRC mouse model to compare the tumor development in wild-type (WT) C57BL/6 mice or mice deficient for mDcir1 (mDcir1-KO), a murine homologue of human DCIR. While the lack of mDCIR1 has no impact on the percentage of mice developing or rejecting CRC tumors, we observed that mDcir1-KO animals developed bigger tumors than their WT counterparts. In line with this result, we found a lower infiltration of cytotoxic CD8+ and decreased activation of both CD4+ and CD8+ T cells (i.e., T-BET+, CD44high, CTLA-4+) in CRC tumors from mDcir1-KO mice compared to WT mice. Altogether, our data point to a protective and anti-tumor role of DCIR during CRC development, probably due to a dysregulation of the balance existing between the tumor and the immune response. Overall, this study paves the way for the potential future development of pharmacological biomolecules targeting DCIR to trigger an efficient anti-tumor immune response in the context of CRC and beyond
Singh, Purba. « IN VIVO CHARACTERIZATION OF SYNGENEIC, ORTHOTOPIC MOUSE MODEL OF COX-2 POSITIVE RENAL CELL CANCER ». OpenSIUC, 2013. https://opensiuc.lib.siu.edu/theses/1326.
Texte intégralIchinose, You. « Reduction of tumorigenicity by an interferon-gamma-gene-transduced tumor on another syngeneic tumor in a murine model ». Kyoto University, 1998. http://hdl.handle.net/2433/182248.
Texte intégralMendes, Odete Rodrigues. « Role of MMP2, MMP3 and MMP9 in the development of breast cancer brain and lung metastasis in a syngeneic rat model ». Texas A&M University, 2005. http://hdl.handle.net/1969.1/2645.
Texte intégralWenske, Britta [Verfasser], Uwe-Karsten [Akademischer Betreuer] Hanisch, Tobias [Gutachter] Pukrop et Heidi [Gutachter] Hahn. « Establishing and application of a syngeneic cerebral metastasis mouse model / Britta Wenske. Betreuer : Uwe-Karsten Hanisch. Gutachter : Tobias Pukrop ; Heidi Hahn ». Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2015. http://d-nb.info/1102535486/34.
Texte intégralHarrison, Brown Meredith. « Whole body characterisation of bone marrow-derived cell kinetics : development of a syngeneic bone marrow chimera model for positron emission tomography with 18F-PBR111 ». Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/23639.
Texte intégralBolin, Celeste, Caleb Sutherland, Ken Tawara, Jim Moselhy et Cheryl Jorcyk. « Novel mouse mammary cell lines for in vivo bioluminescence imaging (BLI) of bone metastasis ». BioMed Central, 2012. http://hdl.handle.net/10150/610032.
Texte intégralUonaga, Taeko. « FGF-21 enhances islet engraftment in mouse syngeneic islet transplantation model ». Kyoto University, 2011. http://hdl.handle.net/2433/135378.
Texte intégralLivres sur le sujet "Syngeneic model"
Stelljes, Matthias. Chimärismus syngener und allogener Lymphozyten nach nicht-myeloablativer Chemotherapie im murinen Modell. 1999.
Trouver le texte intégralChapitres de livres sur le sujet "Syngeneic model"
Kaminska, Paulina, Salwador Cyranowski, Paulina Pilanc et Anna R. Malik. « Syngeneic Mouse Model of Glioblastoma : Intracranial Implantation of GL261 Cells ». Dans Methods in Molecular Biology, 135–46. New York, NY : Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3585-8_11.
Texte intégralGreenaway, James B., et Jim J. Petrik. « Orthotopic, Syngeneic Mouse Model to Study the Effects of Epithelial–Stromal Interaction ». Dans Methods in Molecular Biology, 409–23. Totowa, NJ : Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-547-7_31.
Texte intégralRodríguez-Baena, Francisco Javier, Silvia Redondo-García, María del Carmen Plaza-Calonge, Rubén Fernández-Rodríguez et Juan Carlos Rodríguez-Manzaneque. « Evaluation of Tumor Vasculature Using a Syngeneic Tumor Model in Wild-Type and Genetically Modified Mice ». Dans Methods in Molecular Biology, 179–92. New York, NY : Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7595-2_17.
Texte intégralEccles, S. A., H. P. Purvies et D. P. McIntosh. « Prospects for the Use of Immunotoxins Against Solid Tumour Metastases : Studies in a Syngeneic Rat Model System ». Dans Lectins and Glycoconjugates in Oncology, 103–12. Berlin, Heidelberg : Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73662-9_10.
Texte intégralCorbett, Thomas H., Lisa Polin, Bill J. Roberts, Alfred J. Lawson, Wilbur R. Leopold, Kathryn White, Juiwanna Kushner et al. « Transplantable Syngeneic Rodent Tumors ». Dans Tumor Models in Cancer Research, 41–71. Totowa, NJ : Humana Press, 2002. https://doi.org/10.1007/978-1-59259-100-8_3.
Texte intégralNguyen-Hoai, Tam, Antonio Pezzutto et Jörg Westermann. « Gene Gun Her2/neu DNA Vaccination : Evaluation of Vaccine Efficacy in a Syngeneic Her2/neu Mouse Tumor Model ». Dans Methods in Molecular Biology, 17–37. New York, NY : Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2727-2_2.
Texte intégralNguyen-Hoai, Tam, Oliver Hohn, Antonio Pezzutto et Jörg Westermann. « Gene Gun Her2/neu DNA Vaccination : Evaluation of Vaccine Efficacy in a Syngeneic Her2/neu Mouse Tumor Model ». Dans Methods in Molecular Biology, 129–54. New York, NY : Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2441-8_7.
Texte intégralBulin, Anne-Laure, Jean-François Adam et Hélène Elleaume. « Stereotaxic Implantation of F98 Cells in Fischer Rats : A Syngeneic Model to Investigate Photodynamic Therapy Response in Glioma ». Dans Methods in Molecular Biology, 203–10. New York, NY : Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2099-1_15.
Texte intégralGiavazzi, Raffaella, et Alessandra Decio. « Syngeneic Murine Metastasis Models : B16 Melanoma ». Dans Methods in Molecular Biology, 131–40. New York, NY : Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8244-4_10.
Texte intégralPolin, Lisa, Thomas H. Corbett, Bill J. Roberts, Alfred J. Lawson, Wilbur R. Leopold, Kathryn White, Juiwanna Kushner et al. « Transplantable Syngeneic Rodent Tumors : Solid Tumors in Mice ». Dans Tumor Models in Cancer Research, 43–78. Totowa, NJ : Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-968-0_3.
Texte intégralActes de conférences sur le sujet "Syngeneic model"
Piranlioglu, Raziye, Maria Ouzounova, Eunmi Lee, Alicia Hudson, Sumeyye Korkaya, Ali Arbab et Hasan Korkaya. « Abstract 908 : Immune regulation of tumor dormancy in syngeneic mouse model ». Dans Proceedings : AACR 107th Annual Meeting 2016 ; April 16-20, 2016 ; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-908.
Texte intégralZhang, Lan, Binchen Mao et Qian Shi. « Abstract 1665 : MuScreenTM : A well-characterized syngeneic model platform for rapidin vivoscreening ». Dans Proceedings : AACR Annual Meeting 2017 ; April 1-5, 2017 ; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-1665.
Texte intégralMatsumoto, Takuro, Atsushi Suetsugu, Yuhei Shibata, Nobuhiko Nakamura, Hitomi Aoki, Takahiro Kunisada, Masahito Shimizu, Hisashi Tsurumi et Robert M. Hoffman. « Abstract 4201 : Development of a syngeneic metastatic mouse model of malignant lymphoma ». Dans Proceedings : AACR 106th Annual Meeting 2015 ; April 18-22, 2015 ; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-4201.
Texte intégralTang, Xin, Lily Tong, Annie Xiaoyu An, Likun Zhang, Jie Cai, Qian Shi, Jean Pierre Wery et Davy Xuesong Ouyang. « Abstract A003 : Developing an AML mouse syngeneic model for combinatory chemotherapy and immunotherapy ». Dans Abstracts : AACR-NCI-EORTC International Conference : Molecular Targets and Cancer Therapeutics ; October 26-30, 2017 ; Philadelphia, PA. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1535-7163.targ-17-a003.
Texte intégralNafia, Imane, Assia Chaibi, Doriane Bortolotto, Christophe Rey, Antoine Italiano et Alban Bessede. « Abstract 6658 : Deciphering anti-PDL1 effect in a syngeneic mouse model of sarcoma ». Dans Proceedings : AACR Annual Meeting 2020 ; April 27-28, 2020 and June 22-24, 2020 ; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-6658.
Texte intégralHum, Nicholas, Aimy Sebastian, Wei He, Monica L. Moya, William F. Hynes, Jonathan J. Adorno, Aubree Hinckley, Elizabeth K. Wheeler, Matthew A. Coleman et Gabriela G. Loots. « Abstract 37 : RNA-seq comparisons ofin vitroandin vivocancer model platforms : Monolayer, spheroids, immunodeficient, and syngeneic mouse model ». Dans Proceedings : AACR Annual Meeting 2019 ; March 29-April 3, 2019 ; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-37.
Texte intégralHum, Nicholas, Aimy Sebastian, Wei He, Monica L. Moya, William F. Hynes, Jonathan J. Adorno, Aubree Hinckley, Elizabeth K. Wheeler, Matthew A. Coleman et Gabriela G. Loots. « Abstract 37 : RNA-seq comparisons ofin vitroandin vivocancer model platforms : Monolayer, spheroids, immunodeficient, and syngeneic mouse model ». Dans Proceedings : AACR Annual Meeting 2019 ; March 29-April 3, 2019 ; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-37.
Texte intégralZhivkova, N., J. Schäfer, H. Alizor, I. Ernst, D. Gottfried-Brand, H. Janssen, D. Strand, PR Galle et S. Strand. « Sirtuin 6 regulates innate immune responses in a syngeneic mouse model of hepatocellular carcinoma ». Dans 35. Jahrestagung der Deutschen Arbeitsgemeinschaft zum Studium der Leber. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0038-1677244.
Texte intégralUrs, Sumithra, Sheri Barnes, Stacey Roys et Maryland R. Franklin. « Abstract 3718 : ID8-Luc syngeneic ovarian cancer model for preclinical evaluation of immunomodulatory molecules ». Dans Proceedings : AACR Annual Meeting 2019 ; March 29-April 3, 2019 ; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-3718.
Texte intégralRolland, Sylvie, Stephan Klinz, Sophie Chaumeron, Florence Meyer-Losic et Marc Hillairet de Boisferon. « Abstract PO053 : Efficacy of cabozantinib after immune checkpoint inhibition in a syngeneic tumor model ». Dans Abstracts : AACR Virtual Special Conference : Tumor Immunology and Immunotherapy ; October 19-20, 2020. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/2326-6074.tumimm20-po053.
Texte intégral