Articles de revues sur le sujet « Supported nanoclusters »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Supported nanoclusters.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Supported nanoclusters ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Montejo-Alvaro, Fernando, Jesus A. Martínez-Espinosa, Hugo Rojas-Chávez, Diana C. Navarro-Ibarra, Heriberto Cruz-Martínez et Dora I. Medina. « CO2 Adsorption over 3d Transition-Metal Nanoclusters Supported on Pyridinic N3-Doped Graphene : A DFT Investigation ». Materials 15, no 17 (4 septembre 2022) : 6136. http://dx.doi.org/10.3390/ma15176136.

Texte intégral
Résumé :
CO2 adsorption on bare 3d transition-metal nanoclusters and 3d transition-metal nanoclusters supported on pyridinic N3-doped graphene (PNG) was investigated by employing the density functional theory. First, the interaction of Co13 and Cu13 with PNG was analyzed by spin densities, interaction energies, charge transfers, and HUMO-LUMO gaps. According to the interaction energies, the Co13 nanocluster was adsorbed more efficiently than Cu13 on the PNG. The charge transfer indicated that the Co13 nanocluster donated more charges to the PNG nanoflake than the Cu13 nanocluster. The HUMO-LUMO gap calculations showed that the PNG improved the chemical reactivity of both Co13 and Cu13 nanoclusters. When the CO2 was adsorbed on the bare 3d transition-metal nanoclusters and 3d transition-metal nanoclusters supported on the PNG, it experienced a bond elongation and angle bending in both systems. In addition, the charge transfer from the nanoclusters to the CO2 molecule was observed. This study proved that Co13/PNG and Cu13/PNG composites are adequate candidates for CO2 adsorption and activation.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Montejo-Alvaro, Fernando, Diego González-Quijano, Jorge A. Valmont-Pineda, Hugo Rojas-Chávez, José M. Juárez-García, Dora I. Medina et Heriberto Cruz-Martínez. « CO2 Adsorption on PtCu Sub-Nanoclusters Deposited on Pyridinic N-Doped Graphene : A DFT Investigation ». Materials 14, no 24 (10 décembre 2021) : 7619. http://dx.doi.org/10.3390/ma14247619.

Texte intégral
Résumé :
To reduce the CO2 concentration in the atmosphere, its conversion to different value-added chemicals plays a very important role. Nevertheless, the stable nature of this molecule limits its conversion. Therefore, the design of highly efficient and selective catalysts for the conversion of CO2 to value-added chemicals is required. Hence, in this work, the CO2 adsorption on Pt4-xCux (x = 0–4) sub-nanoclusters deposited on pyridinic N-doped graphene (PNG) was studied using the density functional theory. First, the stability of Pt4-xCux (x = 0–4) sub-nanoclusters supported on PNG was analyzed. Subsequently, the CO2 adsorption on Pt4-xCux (x = 0–4) sub-nanoclusters deposited on PNG was computed. According to the binding energies of the Pt4-xCux (x = 0–4) sub-nanoclusters on PNG, it was observed that PNG is a good material to stabilize the Pt4-xCux (x = 0–4) sub-nanoclusters. In addition, charge transfer occurred from Pt4-xCux (x = 0–4) sub-nanoclusters to the PNG. When the CO2 molecule was adsorbed on the Pt4-xCux (x = 0–4) sub-nanoclusters supported on the PNG, the CO2 underwent a bond length elongation and variations in what bending angle is concerned. In addition, the charge transfer from Pt4-xCux (x = 0–4) sub-nanoclusters supported on PNG to the CO2 molecule was observed, which suggests the activation of the CO2 molecule. These results proved that Pt4-xCux (x = 0–4) sub-nanoclusters supported on PNG are adequate candidates for CO2 adsorption and activation.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Spontak, Richard J., Janet L. Burns et Charles J. Echer. « Morphological studies of nanoclusters on grid-supported polymer thin films ». Journal of Materials Research 7, no 9 (septembre 1992) : 2593–98. http://dx.doi.org/10.1557/jmr.1992.2593.

Texte intégral
Résumé :
Modification of substrates by controlled deposition of nanometer-size particulates (nanoclusters) is an efficient means of fabricating materials designed for applications in which specific surface interactions play a vital role (e.g., molecular catalysis and microelectronics). We have found that highly dispersed nanoclusters form on thin films of poly(siloxaneimide) (PSI) copolymers supported on copper transmission electron microscopy (TEM) grids when subjected to long anneals at elevated temperatures. In this note, we report on the composition and source of these anomalous nanoclusters, as determined by a variety of electron microscopical techniques. Spectra obtained with parallel electron energy-loss spectroscopy (PEELS) indicate that these particulates, which typically measure 4–18 nm in diameter, are composed of copper with a mean valence of +1. Electron microdiffraction patterns reveal that the nanoclusters are polycrystalline, possessing lattice spacings similar to those of Cu2O. Mechanistic routes of formation are suggested based on experimental design, and factors influencing formation are also described.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Yu, Weiyong, Hanfan Liu et Xiaohua An. « Novel catalytic properties of supported metal nanoclusters ». Journal of Molecular Catalysis A : Chemical 129, no 1 (mars 1998) : L9—L13. http://dx.doi.org/10.1016/s1381-1169(97)00306-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Amitouche, F., S. Bouarab et C. Demangeat. « Supported magnetic Pd nanoclusters on Ag(001) ». Catalysis Today 89, no 3 (mars 2004) : 375–78. http://dx.doi.org/10.1016/j.cattod.2003.12.011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Lünskens, Tobias, Philipp Heister, Martin Thämer, Constantin A. Walenta, Aras Kartouzian et Ulrich Heiz. « Plasmons in supported size-selected silver nanoclusters ». Physical Chemistry Chemical Physics 17, no 27 (2015) : 17541–44. http://dx.doi.org/10.1039/c5cp01582k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Palmer, Richard. « Atomic Structure and Mass-Production of Supported Size-Selected Nanoclusters ». Acta Crystallographica Section A Foundations and Advances 70, a1 (5 août 2014) : C733. http://dx.doi.org/10.1107/s2053273314092663.

Texte intégral
Résumé :
Deposition of size-selected nanoclusters assembled from atoms in the gas phase is a novel route to the fabrication of <10nm surface features. I will focus on the creation and atomic structure of monodispersed metal cluster arrays which enable new model catalysts and protein biochips. The atomic structure of the clusters – previously the province of theory - is revealed experimentally [1] by aberration-corrected scanning transmission electron microscopy (STEM) in the HAADF imaging regime; we can "count" atoms and obtain 3D information not just 2D projections. Results include mass spectrometry of thiolated Au clusters, adatom dynamics on Au923 magic-number nanoclusters [2], first atomic imaging results for Au55 and Au20 and a method to explore the potential energy landscape of (Au923) clusters via cluster transformations [3], presenting a reference system for theory. A new kind of cluster beam source, to allow super-abundant generation of size-selected nanoclusters, will also be demonstrated.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Bazylewski, P., D. W. Boukhvalov, A. I. Kukharenko, E. Z. Kurmaev, A. Hunt, A. Moewes, Y. H. Lee, S. O. Cholakh et G. S. Chang. « The characterization of Co-nanoparticles supported on graphene ». RSC Advances 5, no 92 (2015) : 75600–75606. http://dx.doi.org/10.1039/c5ra12893e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Karanjit, Sangita, Ayumu Tamura, Masaya Kashihara, Kazuki Ushiyama, Lok Kumar Shrestha, Katsuhiko Ariga, Atsushi Nakayama et Kosuke Namba. « Hydrotalcite-Supported Ag/Pd Bimetallic Nanoclusters Catalyzed Oxidation and One-Pot Aldol Reaction in Water ». Catalysts 10, no 10 (29 septembre 2020) : 1120. http://dx.doi.org/10.3390/catal10101120.

Texte intégral
Résumé :
A highly active hydrotalcite-supported Ag/Pd bimetallic nanocluster catalyst has been developed by a simple, easy and safe chemical reduction method. The catalyst was characterized by high-resolution transmission electron microscopy (HR-TEM), which revealed very small (3.2 ± 0.7 nm) nanoclusters with a narrow size distribution. The bimetallic Ag/Pd catalyst showed strong cooperation between Ag and Pd for the alcohol oxidation reaction. The developed catalyst provided an efficient and environmentally friendly method for alcohol oxidation and one-pot cross-aldol condensation in water. A broad scope of α,β-unsaturated ketones with good to excellent yields were obtained under very mild conditions. This catalytic system offers an easy preparation method with a simple recovery process, good activity and reusability of up to five cycles without significant loss in the catalytic activity.
Styles APA, Harvard, Vancouver, ISO, etc.
10

BORMAN, V. D., P. V. BORISYUK, I. V. TRONIN, V. N. TRONIN, V. I. TROYAN, M. A. PUSHKIN et O. S. VASILIEV. « MELTING POINT AND LATTICE PARAMETER SHIFT IN SUPPORTED METAL NANOCLUSTERS ». International Journal of Modern Physics B 23, no 19 (30 juillet 2009) : 3903–11. http://dx.doi.org/10.1142/s0217979209053321.

Texte intégral
Résumé :
The dependencies of the melting point and the lattice parameter of supported metal nanoclusters as functions of clusters height are theoretically investigated in the framework of the uniform approach. The vacancy mechanism describing the melting point and the lattice parameter shifts in nanoclusters with decrease in their sizes is proposed. It is shown that under the high vacuum conditions (p < 10-7 torr ) the essential role in clusters melting point and lattice parameter shifts is played by van der Waals forces of cluster–substrate interaction. The proposed model satisfactorily accounts for the experimental data.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Truttmann, Vera, Christopher Herzig, Ivonne Illes, Andreas Limbeck, Ernst Pittenauer, Michael Stöger-Pollach, Günter Allmaier, Thomas Bürgi, Noelia Barrabés et Günther Rupprechter. « Ligand engineering of immobilized nanoclusters on surfaces : ligand exchange reactions with supported Au11(PPh3)7Br3 ». Nanoscale 12, no 24 (2020) : 12809–16. http://dx.doi.org/10.1039/c9nr10353h.

Texte intégral
Résumé :
Ligand exchange on Au nanoclusters has been proven to be a powerful tool for tuning their properties, but has so far been limited to dissolved clusters in solution. Within this work, ligand exchange has been extended to supported Au11 nanoclusters.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Liu, Xi, Thomas F. Jaramillo, Andrei Kolmakov, Sung-Hyeon Baeck, Martin Moskovits, Galen D. Stucky et Eric W. McFarland. « Synthesis of Au nanoclusters supported upon a TiO2 nanotube array ». Journal of Materials Research 20, no 5 (mai 2005) : 1093–96. http://dx.doi.org/10.1557/jmr.2005.0170.

Texte intégral
Résumé :
Gold nanoclusters were successfully deposited in the interior of TiO2 nanotubes fabricated as ordered arrays. This approach is a useful fabrication platform for miniature planar fuel cells, gas sensors, and heterogeneous catalysts. A pressure impregnation process was used to inject the titania and Au precursors into mesoporous alumina. After thermal treatment, Au nanoclusters were well-dispersed on the interior walls of nanotubular TiO2. The TiO2 nanotubes were shown by x-ray diffraction to be entirely anatase. Transmission electron microscopy imaging confirmed that 80% of the Au particles were 4.1 nm ± 2.0 nm in diameter. This material exhibited catalytic CO oxidation activity at low temperatures.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Kawamura, Kouhei, Atsuya Ikeda, Ayaka Inui, Ken Yamamoto et Hideya Kawasaki. « TiO2-supported Au144 nanoclusters for enhanced sonocatalytic performance ». Journal of Chemical Physics 155, no 12 (28 septembre 2021) : 124702. http://dx.doi.org/10.1063/5.0055933.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Huang, Shi-Ping, Daniela S. Mainardi et Perla B. Balbuena. « Structure and dynamics of graphite-supported bimetallic nanoclusters ». Surface Science 545, no 3 (novembre 2003) : 163–79. http://dx.doi.org/10.1016/j.susc.2003.08.050.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

CARLSSON, A., M. BRORSON et H. TOPSØE. « Supported metal sulphide nanoclusters studied by HAADF-STEM ». Journal of Microscopy 223, no 3 (septembre 2006) : 179–81. http://dx.doi.org/10.1111/j.1365-2818.2006.01614.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Fampiou, Ioanna, et Ashwin Ramasubramaniam. « CO Adsorption on Defective Graphene-Supported Pt13 Nanoclusters ». Journal of Physical Chemistry C 117, no 39 (24 septembre 2013) : 19927–33. http://dx.doi.org/10.1021/jp403468h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Wang, Dong, Qingyuan Bi, Guoheng Yin, Wenli Zhao, Fuqiang Huang, Xiaoming Xie et Mianheng Jiang. « Direct synthesis of ethanol via CO2 hydrogenation using supported gold catalysts ». Chemical Communications 52, no 99 (2016) : 14226–29. http://dx.doi.org/10.1039/c6cc08161d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Hung, Ting-Chieh, Ting-Wei Liao, Zhen-He Liao, Po-Wei Hsu, Pei-Yang Cai, Wen-Hua Lu, Jeng-Han Wang et Meng-Fan Luo. « Dependence on size of supported Rh nanoclusters for CO adsorption ». RSC Advances 6, no 5 (2016) : 3830–39. http://dx.doi.org/10.1039/c5ra20384h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Kim, Yeonhoo, Yong Seok Choi, Seo Yun Park, Taehoon Kim, Seung-Pyo Hong, Tae Hyung Lee, Cheon Woo Moon et al. « Au decoration of a graphene microchannel for self-activated chemoresistive flexible gas sensors with substantially enhanced response to hydrogen ». Nanoscale 11, no 6 (2019) : 2966–73. http://dx.doi.org/10.1039/c8nr09076a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Lai, King C., et James W. Evans. « Complex oscillatory decrease with size in diffusivity of {100}-epitaxially supported 3D fcc metal nanoclusters ». Nanoscale 11, no 37 (2019) : 17506–16. http://dx.doi.org/10.1039/c9nr05845a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Ding, Rong, Qian Chen, Qian Luo, Lingxi Zhou, Yi Wang, Yun Zhang et Guangyin Fan. « Salt template-assisted in situ construction of Ru nanoclusters and porous carbon : excellent catalysts toward hydrogen evolution, ammonia-borane hydrolysis, and 4-nitrophenol reduction ». Green Chemistry 22, no 3 (2020) : 835–42. http://dx.doi.org/10.1039/c9gc03986d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Shi, Yongliang, Muztoba Rabbani, Álvaro Vázquez-Mayagoitia, Jin Zhao et Wissam A. Saidi. « Controlling the nucleation and growth of ultrasmall metal nanoclusters with MoS2 grain boundaries ». Nanoscale 14, no 3 (2022) : 617–25. http://dx.doi.org/10.1039/d1nr07836d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Yuan, Mengyu, Cheng Wang, Yong Wang, Yuan Wang, Xiaomei Wang et Yukou Du. « General fabrication of RuM (M = Ni and Co) nanoclusters for boosting hydrogen evolution reaction electrocatalysis ». Nanoscale 13, no 30 (2021) : 13042–47. http://dx.doi.org/10.1039/d1nr02752b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Hakim Siddiki, S. M. A., Kenichi Kon, Abeda Sultana Touchy et Ken-ichi Shimizu. « Direct synthesis of quinazolinones by acceptorless dehydrogenative coupling of o-aminobenzamide and alcohols by heterogeneous Pt catalysts ». Catal. Sci. Technol. 4, no 6 (2014) : 1716–19. http://dx.doi.org/10.1039/c4cy00092g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Nigam, Sandeep, et Chiranjib Majumder. « ORR viability of alumina-supported platinum nanocluster : exploring oxidation behaviour by DFT ». Physical Chemistry Chemical Physics 19, no 29 (2017) : 19308–15. http://dx.doi.org/10.1039/c7cp04029f.

Texte intégral
Résumé :
Despite abundant use of alumina-supported platinum nanoclusters as catalyst for various chemical reactions, their potential as an ORR catalyst is yet to be explored. Therefore, the present study aimed to assess the viability of alumina supported platinum clusters as ORR catalysts.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Liu, Yulu, Hao Li, Wanglai Cen, Jianjun Li, Zhengming Wang et Graeme Henkelman. « A computational study of supported Cu-based bimetallic nanoclusters for CO oxidation ». Physical Chemistry Chemical Physics 20, no 11 (2018) : 7508–13. http://dx.doi.org/10.1039/c7cp08578h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Peredkov, S., S. Peters, M. Al-Hada, A. Erko, M. Neeb et W. Eberhardt. « Structural investigation of supported Cun clusters under vacuum and ambient air conditions using EXAFS spectroscopy ». Catalysis Science & ; Technology 6, no 18 (2016) : 6942–52. http://dx.doi.org/10.1039/c6cy00436a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Xu, Hongda, Houjuan Zhu, Mingtai Sun, Huan Yu, Huihui Li, Fang Ma et Suhua Wang. « Graphene oxide supported gold nanoclusters for the sensitive and selective detection of nitrite ions ». Analyst 140, no 5 (2015) : 1678–85. http://dx.doi.org/10.1039/c4an02181a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Ohgi, Taizo, Yukihiro Sakotsubo, Daisuke Fujita et Youiti Ootuka. « Capacitance dependence of chemical potential distribution in supported nanoclusters ». Surface Science 566-568 (septembre 2004) : 402–5. http://dx.doi.org/10.1016/j.susc.2004.05.079.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Li, Weili, et Qingjie Ge. « Oxide-supported Aun(SR)m nanoclusters for CO oxidation ». Chinese Journal of Catalysis 36, no 2 (février 2015) : 135–38. http://dx.doi.org/10.1016/s1872-2067(14)60233-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Ozensoy, E., B. K. Min, A. K. Santra et D. W. Goodman. « CO Dissociation at Elevated Pressures on Supported Pd Nanoclusters ». Journal of Physical Chemistry B 108, no 14 (avril 2004) : 4351–57. http://dx.doi.org/10.1021/jp030928o.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

van den Oetelaar, L. C. A., O. W. Nooij, S. Oerlemans, A. W. Denier van der Gon, H. H. Brongersma, L. Lefferts, A. G. Roosenbrand et J. A. R. van Veen. « Surface Segregation in Supported Pd−Pt Nanoclusters and Alloys ». Journal of Physical Chemistry B 102, no 18 (avril 1998) : 3445–55. http://dx.doi.org/10.1021/jp973395q.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Shi, Yongliang, Boao Song, Reza Shahbazian-Yassar, Jin Zhao et Wissam A. Saidi. « Experimentally Validated Structures of Supported Metal Nanoclusters on MoS2 ». Journal of Physical Chemistry Letters 9, no 11 (16 mai 2018) : 2972–78. http://dx.doi.org/10.1021/acs.jpclett.8b01233.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Kim, Meeri. « Reactivity of platinum and rhodium nanoclusters supported by graphene ». Scilight 2019, no 50 (13 décembre 2019) : 501108. http://dx.doi.org/10.1063/10.0000394.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Del Vitto, Annalisa, Carmen Sousa, Francesc Illas et Gianfranco Pacchioni. « Optical properties of Cu nanoclusters supported on MgO(100) ». Journal of Chemical Physics 121, no 15 (15 octobre 2004) : 7457–66. http://dx.doi.org/10.1063/1.1796311.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Mottet, C., J. Goniakowski, F. Baletto, R. Ferrando et G. Treglia. « Modeling free and supported metallic nanoclusters : structure and dynamics ». Phase Transitions 77, no 1-2 (janvier 2004) : 101–13. http://dx.doi.org/10.1080/1411590310001622473.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Gotterbarm, Karin, Carina Bronnbauer, Udo Bauer, Christian Papp et Hans-Peter Steinrück. « Graphene-Supported Pd Nanoclusters Probed by Carbon Monoxide Adsorption ». Journal of Physical Chemistry C 118, no 43 (21 octobre 2014) : 25097–103. http://dx.doi.org/10.1021/jp508454h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Zhu, Lihua, Yingying Jiang, Jinbao Zheng, Nuowei Zhang, Changlin Yu, Yunhua Li, Chih-Wen Pao et al. « Ultrafine Nanoparticle-Supported Ru Nanoclusters with Ultrahigh Catalytic Activity ». Small 11, no 34 (16 juin 2015) : 4385–93. http://dx.doi.org/10.1002/smll.201500654.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Shen, Jie, Juanjuan Jia, Kirill Bobrov, Laurent Guillemot et Vladimir A. Esaulov. « Electron transfer processes on Au nanoclusters supported on graphite ». Gold Bulletin 46, no 4 (5 octobre 2013) : 343–47. http://dx.doi.org/10.1007/s13404-013-0109-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Valden, Mika, et D. Wayne Goodman. « Structure-Activity Correlations for Au Nanoclusters Supported on TiO2 ». Israel Journal of Chemistry 38, no 4 (1998) : 285–92. http://dx.doi.org/10.1002/ijch.199800034.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Bin, Duan, Fangfang Ren, Huiwen Wang, Ke Zhang, Beibei Yang, Chunyang Zhai, Mingshan Zhu, Ping Yang et Yukou Du. « Facile synthesis of PVP-assisted PtRu/RGO nanocomposites with high electrocatalytic performance for methanol oxidation ». RSC Adv. 4, no 74 (2014) : 39612–18. http://dx.doi.org/10.1039/c4ra07742c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Singh, Rupesh, Deepak Kunzru et Sri Sivakumar. « Co-promoted MoO3 nanoclusters for hydrodesulfurization ». Catalysis Science & ; Technology 6, no 15 (2016) : 5949–60. http://dx.doi.org/10.1039/c5cy02221e.

Texte intégral
Résumé :
In this paper, we report the synthesis of ultrasmall Co-promoted MoO3 nanoclusters (∼2 nm) supported over γ-Al2O3 possessing an increased number of Mo edge atoms, using colloidal synthesis for hydrodesulfurization reaction.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Düll, Fabian, Udo Bauer, Florian Späth, Philipp Bachmann, Johann Steinhauer, Hans-Peter Steinrück et Christian Papp. « Bimetallic Pd–Pt alloy nanocluster arrays on graphene/Rh(111) : formation, stability, and dynamics ». Physical Chemistry Chemical Physics 20, no 33 (2018) : 21294–301. http://dx.doi.org/10.1039/c8cp03749c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Taiping Gao, Taiping Gao, Xiaolin Ma Xiaolin Ma, Xin Li Xin Li et Qiang Xu and Yubao Wang Qiang Xu and Yubao Wang. « Mesoporous Silica Nanoparticles Supported Atomically Precise Palladium Nanoclusters Catalyzed Aerobic Oxidation of Alcohols in Water ». Journal of the chemical society of pakistan 43, no 2 (2021) : 193. http://dx.doi.org/10.52568/000562/jcsp/43.02.2021.

Texte intégral
Résumé :
The first mesoporous silica nanoparticles (MSNs) supported atomically precise palladium nanoclusters catalyzed alcohol oxidation reactions in water have been achieved. The catalysts was synthesized with simple impregnation method and well characterized by TEM, FT-IR, XPS anddiffuse reflectance optical spectrum and the results proved that the Pd nanoclustersimmobilized into the pores of MSNs.The as-prepared catalyst show excellent activity for the alcohol oxidation reactions with high yield under extremely mild aqueous conditions utilizes 1 atmosphere of molecular oxygen as sole oxidant. The features of clean system, gram-scale oxidation and easy recovery catalyst make this method cost effectively and environmentally benign.
Styles APA, Harvard, Vancouver, ISO, etc.
45

Taiping Gao, Taiping Gao, Xiaolin Ma Xiaolin Ma, Xin Li Xin Li et Qiang Xu and Yubao Wang Qiang Xu and Yubao Wang. « Mesoporous Silica Nanoparticles Supported Atomically Precise Palladium Nanoclusters Catalyzed Aerobic Oxidation of Alcohols in Water ». Journal of the chemical society of pakistan 43, no 2 (2021) : 193. http://dx.doi.org/10.52568/000562.

Texte intégral
Résumé :
The first mesoporous silica nanoparticles (MSNs) supported atomically precise palladium nanoclusters catalyzed alcohol oxidation reactions in water have been achieved. The catalysts was synthesized with simple impregnation method and well characterized by TEM, FT-IR, XPS anddiffuse reflectance optical spectrum and the results proved that the Pd nanoclustersimmobilized into the pores of MSNs.The as-prepared catalyst show excellent activity for the alcohol oxidation reactions with high yield under extremely mild aqueous conditions utilizes 1 atmosphere of molecular oxygen as sole oxidant. The features of clean system, gram-scale oxidation and easy recovery catalyst make this method cost effectively and environmentally benign.
Styles APA, Harvard, Vancouver, ISO, etc.
46

Bera, Raj Kumar, Hongjun Park, Seung Hyeon Ko et Ryong Ryoo. « Highly dispersed Pt nanoclusters supported on zeolite-templated carbon for the oxygen reduction reaction ». RSC Advances 10, no 54 (2020) : 32290–95. http://dx.doi.org/10.1039/d0ra05654e.

Texte intégral
Résumé :
Electrochemically synthesized highly dispersed Pt nanoclusters (PtNCs) stabilized by the nanocages of zeolite-templated carbon (ZTC) exhibit excellent electrocatalytic performance toward the oxygen reduction reaction.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Acharyya, Shankha S., Shilpi Ghosh et Rajaram Bal. « Nanoclusters of Cu(ii) supported on nanocrystalline W(vi) oxide : a potential catalyst for single-step conversion of cyclohexane to adipic acid ». Green Chemistry 17, no 6 (2015) : 3490–99. http://dx.doi.org/10.1039/c5gc00379b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Chesnyak, Valeria, Srdjan Stavrić, Mirco Panighel, Giovanni Comelli, Maria Peressi et Cristina Africh. « Carbide coating on nickel to enhance the stability of supported metal nanoclusters ». Nanoscale 14, no 9 (2022) : 3589–98. http://dx.doi.org/10.1039/d1nr06485a.

Texte intégral
Résumé :
Cobalt (Co) on bare Ni(100) surface forms 2D islands which are unstable and completely dissolve into bulk at 250 °C. Carbide coating favors the formation of 3D Co nanoclusters and acts as a protective layer against Co dissolution.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Spanjers, Charles S., Thomas P. Senftle, Adri C. T. van Duin, Michael J. Janik, Anatoly I. Frenkel et Robert M. Rioux. « Illuminating surface atoms in nanoclusters by differential X-ray absorption spectroscopy ». Phys. Chem. Chem. Phys. 16, no 48 (2014) : 26528–38. http://dx.doi.org/10.1039/c4cp02146k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Tsunoyama, Hironori, Haruchika Ito, Masafumi Komori, Ryota Kobayashi, Masahiro Shibuta, Toyoaki Eguchi et Atsushi Nakajima. « Liquid-phase catalysis by single-size palladium nanoclusters supported on strontium titanate : size-specific catalysts for Suzuki–Miyaura coupling ». Catalysis Science & ; Technology 8, no 22 (2018) : 5827–34. http://dx.doi.org/10.1039/c8cy01645c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie