Littérature scientifique sur le sujet « Supercriticall fluids »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Supercriticall fluids ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Supercriticall fluids"
Pavlova, Praskovya L., Andrey V. Minakov, Dmitriy V. Platonov, Vladimir A. Zhigarev et Dmitriy V. Guzei. « Supercritical Fluid Application in the Oil and Gas Industry : A Comprehensive Review ». Sustainability 14, no 2 (9 janvier 2022) : 698. http://dx.doi.org/10.3390/su14020698.
Texte intégralHeřmanská, Matylda, Barbara I. Kleine et Andri Stefánsson. « Supercritical Fluid Geochemistry in Geothermal Systems ». Geofluids 2019 (5 août 2019) : 1–14. http://dx.doi.org/10.1155/2019/6023534.
Texte intégralSedunov, Boris I. « Structural Transition in Supercritical Fluids ». Journal of Thermodynamics 2011 (10 octobre 2011) : 1–5. http://dx.doi.org/10.1155/2011/194353.
Texte intégralOrlovic, Aleksandar, et Dejan Skala. « Materials processing using supercritical fluids ». Chemical Industry 59, no 9-10 (2005) : 213–23. http://dx.doi.org/10.2298/hemind0510213o.
Texte intégralKhetsuriani, N., K. Karchkhadze, V. Tsitsishvili et K. Goderdzishvili. « PRODUCTION OF BIODIESEL USING SUPERCRITICAL FLUIDS TECHNOLOGY ». Chemical Problems 15, no 1 (2017) : 21–25. http://dx.doi.org/10.32737/2221-8688-2017-1-21-25.
Texte intégralMadana Gopal, Jaya Vignesh, Robert Morgan, Guillaume De Sercey et Konstantina Vogiatzaki. « Overview of Common Thermophysical Property Modelling Approaches for Cryogenic Fluid Simulations at Supercritical Conditions ». Energies 16, no 2 (12 janvier 2023) : 885. http://dx.doi.org/10.3390/en16020885.
Texte intégralShen, Yunqi, Zhiwen Hu, Xin Chang et Yintong Guo. « Experimental Study on the Hydraulic Fracture Propagation in Inter-Salt Shale Oil Reservoirs ». Energies 15, no 16 (15 août 2022) : 5909. http://dx.doi.org/10.3390/en15165909.
Texte intégralDemirbaş, A. « Supercritical fluid extraction and chemicals from biomass with supercritical fluids ». Energy Conversion and Management 42, no 3 (février 2001) : 279–94. http://dx.doi.org/10.1016/s0196-8904(00)00059-5.
Texte intégralPucciarelli, Andrea, Sara Kassem et Walter Ambrosini. « Overview of a Theory for Planning Similar Experiments with Different Fluids at Supercritical Pressure ». Energies 14, no 12 (21 juin 2021) : 3695. http://dx.doi.org/10.3390/en14123695.
Texte intégralRuiz, Helga K., Dolores R. Serrano, Lourdes Calvo et Albertina Cabañas. « Current Treatments for COVID-19 : Application of Supercritical Fluids in the Manufacturing of Oral and Pulmonary Formulations ». Pharmaceutics 14, no 11 (4 novembre 2022) : 2380. http://dx.doi.org/10.3390/pharmaceutics14112380.
Texte intégralThèses sur le sujet "Supercriticall fluids"
Prosapio, Valentina. « Micronization by supercitical antisolvent precipitation processes ». Doctoral thesis, Universita degli studi di Salerno, 2016. http://hdl.handle.net/10556/2209.
Texte intégralIn the last decade, the application of microparticles, nanoparticles and composite microparticles involved several industrial fields. Conventional micronization techniques, such as jet milling, spray drying, liquid antisolvent precipitation and solvent evaporation are sometimes not suitable, since the produced particles are irregular, with broad size distribution, could be degraded due to mechanical or thermal stresses and polluted with organic solvents or other toxic substances. In this context, supercritical fluids (SCFs) based techniques have been proposed as an alternative to traditional processes thanks to the specific characteristics of SCFs, mainly solvent power and liquid-like densities with gas-like transport properties, that can be tuned varying pressure and temperature. Among supercritical assisted micronization techniques, Supercritical Antisolvent (SAS) precipitation has been successfully used to obtain microparticles and nanoparticles of several kinds of compounds, such as pharmaceuticals, coloring matters, polymers and biopolymers. In this process carbon dioxide (CO2) is used as an antisolvent at supercritical conditions: a solution containing the product to be micronized is injected into the precipitation chamber, saturated with supercritical carbon dioxide under the chosen conditions of temperature and pressure. CO2, in contact with the solution, forms a mixture in which the product is insoluble, causing the precipitation... [edited by author]
XIV n.s.
Guigard, Selma. « Solubilities in supercritical fluids ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0004/NQ40372.pdf.
Texte intégralSu, Wen-Ta. « Electrochemistry in supercritical fluids ». Thesis, University of Nottingham, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.537675.
Texte intégralBarlow, Stephen J. « Spectroscopy in supercritical fluids ». Thesis, University of Nottingham, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.247570.
Texte intégralSarfraz, Adnan. « Nucleobases in supercritical fluids ». Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2010. http://dx.doi.org/10.18452/16092.
Texte intégralThis work highlights the use of supercritical fluids (SCF) as an analytical tool for the transfer of a group of non-volatile molecules, namely nucleobases, into the gas phase. The most commonly used SCF carbon dioxide was found inefficient in dissolving the nucleobases. Therefore, a mixture of ethylene (p_c = 50.6 bar and T_c = 9.35 C) with a cosolvent was used as the SC solvent. A new bracketing method was developed for detecting the critical point (CP) of pure fluids and diluted mixtures of fluids. The shift in CP of ethylene on addition of ethanol was determined and related to theoretical calculations by using the Soave Redlich Kwong equation of state. Comparing the experimental results to theoretical methods for calculating the CP showed large deviations. The critical temperature shifted by only 5.5 C when the mole fraction of the cosolvent i.e. ethanol was 0.054. Five biologically relevant were dissolved in SC ethylene using 3% of ethanol as cosolvent. The supersonic molecular beam composition of the expanded solution was analyzed quantitatively using a quadrupole mass spectrometer and the ratio of the nucleobases to ethylene in the beam was found to be of the order of 10^-4 to 10^-5. Surface deposition of the nucleobases through SCF solutions was carried out and the morphology was recorded using Atomic Force Microscopy. Remarkable differences were observed while comparing the morphology obtained after deposition using rapid expansion of supercritical solutions (RESS) and drop casting method. These differences are discussed in terms of diffusion, rate of evaporation of the solvent, degree of supersaturation, and the nucleation process.
Dost, Kenan. « Supercritical fluids in analytical chemistry ». Thesis, University of Nottingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.324702.
Texte intégralLee, Peter D. « Organometallic synthesis in supercritical fluids ». Thesis, University of Nottingham, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336862.
Texte intégralJones, David C. « Analytical applications of supercritical fluids ». Thesis, University of Nottingham, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363562.
Texte intégralVyalov, Ivan. « Molecular dynamics simulation of dissolution of cellulose in supercritical fluids and mixtures of cosolvents/supercritical fluids ». Thesis, Lille 1, 2011. http://www.theses.fr/2011LIL10178/document.
Texte intégralCellulose is insoluble in neat supercritical CO2 and the main objective of this work was to investigate mixtures of scCO2 with polar cosolvents for the development of new processing technologies for the cellulose dissolution. The objective is achieved by studying the dissolution process of monomer of cellulose and its various polymorphs. The effect of the t/d parameters on the dissolution process was analyzed by molecular dynamics simulation. We begin with analyzing structure of pure supercritical fluids and mixtures of supercritical fluids/cosolvents using unconvential tools: Voronoi tesselations and nearest neighbours approach.Thermodynamics of the mixtures of scCO2/cosolvents is analysed in order to check the validity of the potential models used in our simulations for what the method of thermodynamic integration to calculate the energy, entropy and free energy of mixing was applied. To analyze the dissolution of cellulose we started from studying the solvation free energy of cellobiose(cellulose monomer) which was calculated from molecular dynamics simulations using free energy perturbation method. The influence of conformational degrees of freedom on solvation free energy of cellobiose was also considered.Finally, the direct dissolution of cellulose crystals models in well-known good cellulose solvent(1-ethyl-3-methylimidazolium chloride) and then considered supercritical solvents. It was found that various mixtures of CO2 with cosolvents do not dissolve cellulose but they can considerably affect its crystalline structure whereas ammonia fluid can dissolve cellulose and this process is significantly influenced by temperature, pressure and density
Smail, Fiona R. « Continuous Organic Reactions in Supercritical Fluids ». Thesis, University of Nottingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.489692.
Texte intégralLivres sur le sujet "Supercriticall fluids"
John, McHardy, et Sawan Samuel P, dir. Supercritical fluid cleaning : Fundamentals, technology, and applications. Westwood, N.J : Noyes Publications, 1998.
Trouver le texte intégralBelinsky, Marcel R. Supercritical fluids. New York : Nova Science Publishers, Inc., 2010.
Trouver le texte intégralSquires, Thomas G., et Michael E. Paulaitis, dir. Supercritical Fluids. Was,hington, DC : American Chemical Society, 1987. http://dx.doi.org/10.1021/bk-1987-0329.
Texte intégralAbraham, Martin A., et Aydin K. Sunol, dir. Supercritical Fluids. Washington, DC : American Chemical Society, 1997. http://dx.doi.org/10.1021/bk-1997-0670.
Texte intégralKiran, Erdogan, et Johanna M. H. Levelt Sengers, dir. Supercritical Fluids. Dordrecht : Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8295-7.
Texte intégralArai, Yasuhiko, Takeshi Sako et Yoshihiro Takebayashi, dir. Supercritical Fluids. Berlin, Heidelberg : Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56238-9.
Texte intégralKiran, Erdogan, Pablo G. Debenedetti et Cor J. Peters, dir. Supercritical Fluids. Dordrecht : Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-3929-8.
Texte intégral1946-, Kiran Erdogan, Debenedetti Pablo G. 1953-, Peters Cor J, North Atlantic Treaty Organization. Scientific Affairs Division. et NATO Advanced Study Institute on Supercritical Fluids--Fundamentals and Applications (1998 : Kemer, Kemer Bucağı, Antalya İli, Turkey), dir. Supercritical fluids : Fundamentals and applications. Dordrecht : Kluwer Academic Publishers, 2000.
Trouver le texte intégralEngland) Meeting on Supercritical Fluids : Chemistry and Materials (6th 1999 Nottingham. Proceedings of the 6th Meeting on Supercritical Fluids, Chemistry and Materials : 10-13 April 1999, Nottingham (United Kingdom). Vandoeuvre : Institut national polytechnique de Lorraine, 1999.
Trouver le texte intégral1955-, Johnston Keith P., Penninger, Johannes M. L., 1942-, American Institute of Chemical Engineers. et American Institute of Chemical Engineers. Meeting, dir. Supercritical fluid science and technology. Washington, DC : American Chemical Society, 1989.
Trouver le texte intégralChapitres de livres sur le sujet "Supercriticall fluids"
Anisimov, M. A., et J. V. Sengers. « Critical and Crossover Phenomena in Fluids and Fluid Mixtures ». Dans Supercritical Fluids, 89–121. Dordrecht : Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-3929-8_4.
Texte intégralBrunner, Gerd. « Chromatography with Supercritical Fluids (Supercritical Fluid Chromatography, SFC) ». Dans Topics in Physical Chemistry, 313–82. Heidelberg : Steinkopff, 1994. http://dx.doi.org/10.1007/978-3-662-07380-3_9.
Texte intégralLamanna, Grazia, Christoph Steinhausen, Andreas Preusche et Andreas Dreizler. « Experimental Investigations of Near-critical Fluid Phenomena by the Application of Laser Diagnostic Methods ». Dans Fluid Mechanics and Its Applications, 169–88. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09008-0_9.
Texte intégralTaleb, A. « Supercritical Fluids ». Dans Nanomaterials and Nanochemistry, 473–85. Berlin, Heidelberg : Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-72993-8_20.
Texte intégralGordon, Charles M., et Walter Leitner. « Supercritical Fluids ». Dans Catalysis by Metal Complexes, 215–36. Dordrecht : Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4087-3_8.
Texte intégralSengers, Johanna M. H. Levelt. « Critical Behavior of Fluids : Concepts and Applications ». Dans Supercritical Fluids, 3–38. Dordrecht : Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8295-7_1.
Texte intégralVesovic, V. « On Correlating the Transport Properties of Supercritical Fluids ». Dans Supercritical Fluids, 273–83. Dordrecht : Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8295-7_10.
Texte intégralCummings, Peter T. « Introduction to Integral Equation Approximations with Application to Near-Critical and Supercritical Fluids ». Dans Supercritical Fluids, 287–311. Dordrecht : Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8295-7_11.
Texte intégralLomba, Enrique. « On the Non-Solution Region of the Hypernetted Chain and Related Equations for Ionic and Simple Fluids ». Dans Supercritical Fluids, 313–23. Dordrecht : Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8295-7_12.
Texte intégralMeroni, Alberto. « Critical Behavior in Modern Liquid State Theories ». Dans Supercritical Fluids, 325–63. Dordrecht : Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8295-7_13.
Texte intégralActes de conférences sur le sujet "Supercriticall fluids"
Banuti, Daniel, Muralikrishna Raju, Peter C. Ma, Matthias Ihme et Jean-Pierre Hickey. « Seven questions about supercritical fluids - towards a new fluid state diagram ». Dans 55th AIAA Aerospace Sciences Meeting. Reston, Virginia : American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-1106.
Texte intégralJyothiprakash, K. H., Agniv Saha, Arihant Kumar Patawari et K. N. Seetharamu. « FLUID PROPERTY VARIATION ANALYSIS IN A HEAT EXCHANGER USING SUPERCRITICAL FLUIDS ». Dans 5th Thermal and Fluids Engineering Conference (TFEC). Connecticut : Begellhouse, 2020. http://dx.doi.org/10.1615/tfec2020.hex.032151.
Texte intégralHe, Jundi, Junjie Yan, Wei Wang et Shuisheng He. « DIRECT NUMERICAL SIMULATION STUDY FOR FLUID-TO-FLUID SCALING FOR FLUIDS AT SUPERCRITICAL PRESSURE ». Dans International Heat Transfer Conference 16. Connecticut : Begellhouse, 2018. http://dx.doi.org/10.1615/ihtc16.cov.023265.
Texte intégralKrishnan, A., et M. Giridharan. « Transport phenomena in supercritical fluids ». Dans Fluid Dynamics Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-2233.
Texte intégralvan Heesch, E. J. M., Jin Zhang, Takao Namihira, A. H. Markosyan, F. J. C. M. Beckers, T. Huiskamp, W. F. L. M. Hoeben, A. J. M. Pemen et U. Ebert. « Supercritical fluids for high-power switching ». Dans 2014 IEEE International Power Modulator and High Voltage Conference (IPMHVC). IEEE, 2014. http://dx.doi.org/10.1109/ipmhvc.2014.7287224.
Texte intégralLim, Chang Hyeon, Stephen R. Johnston et Devesh Ranjan. « Experimental Investigation in Turbulent Shear Mixing Layer at Supercritical Condition ». Dans ASME 2022 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/fedsm2022-87029.
Texte intégralKatona, Adrienn, et Attila R. Imre. « Supercritical fluids in energy storage and consumption ». Dans 2017 6th International Youth Conference on Energy (IYCE). IEEE, 2017. http://dx.doi.org/10.1109/iyce.2017.8003737.
Texte intégralSharma, Deewakar, Arnaud Erriguible et Sakir Amiroudine. « THERMAL INSTABILITIES IN SUPERCRITICAL FLUIDS UNDER VIBRATION ». Dans THMT-18. Turbulence Heat and Mass Transfer 9 Proceedings of the Ninth International Symposium On Turbulence Heat and Mass Transfer. Connecticut : Begellhouse, 2018. http://dx.doi.org/10.1615/thmt-18.230.
Texte intégralDarr, J. A. « Nano- and biomaterials using supercritical fluids technologies ». Dans IEE Seminar on MNT in Medicine. IEE, 2004. http://dx.doi.org/10.1049/ic:20040586.
Texte intégralChen, Wei, et Xiaolin Xiong. « Zircon solubility in KAlSi3O8-H2O supercritical fluids ». Dans Goldschmidt2022. France : European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.11940.
Texte intégralRapports d'organisations sur le sujet "Supercriticall fluids"
Phelps, M. R., M. O. Hogan et L. J. Silva. Fluid dynamic effects on precision cleaning with supercritical fluids. Office of Scientific and Technical Information (OSTI), juin 1994. http://dx.doi.org/10.2172/10165549.
Texte intégralPhelps, M. R., W. A. Willcox, L. J. Silva et R. S. Butner. Effects of fluid dynamics on cleaning efficacy of supercritical fluids. Office of Scientific and Technical Information (OSTI), mars 1993. http://dx.doi.org/10.2172/10136973.
Texte intégralPhelps, M. R., W. A. Willcox, L. J. Silva et R. S. Butner. Effects of fluid dynamics on cleaning efficacy of supercritical fluids. Office of Scientific and Technical Information (OSTI), mars 1993. http://dx.doi.org/10.2172/6665473.
Texte intégralPropp, W. A., T. E. Carleson, Chen M. Wai, P. R. Taylor, K. W. Daehling, Shaoping Huang et M. Abdel-Latif. Corrosion in supercritical fluids. Office of Scientific and Technical Information (OSTI), mai 1996. http://dx.doi.org/10.2172/274146.
Texte intégralOschwald, M., J. J. Smith, R. Branam, J. Hussong et A. Schik. Injection of Fluids into Supercritical Environments. Fort Belvoir, VA : Defense Technical Information Center, septembre 2004. http://dx.doi.org/10.21236/ada426295.
Texte intégralAdkins, C. L. J., E. M. Russick, J. Cesarano, M. E. Tadros et J. A. Voigt. Ceramic powder synthesis in supercritical fluids. Office of Scientific and Technical Information (OSTI), avril 1996. http://dx.doi.org/10.2172/239278.
Texte intégralFaris, Gregory W. Advanced Stimulated Scattering Measurements in Supercritical Fluids. Fort Belvoir, VA : Defense Technical Information Center, janvier 2002. http://dx.doi.org/10.21236/ada399684.
Texte intégralFaris, Gregory W. Advanced Stimulated Scattering Measurements in Supercritical Fluids. Fort Belvoir, VA : Defense Technical Information Center, septembre 2006. http://dx.doi.org/10.21236/ada457760.
Texte intégralBright, F. V. Determination of solvation kinetics in supercritical fluids. Office of Scientific and Technical Information (OSTI), janvier 1993. http://dx.doi.org/10.2172/6306028.
Texte intégralFayer, Michael D. Ultrafast Nonlinear Optical Investigations of Supercritical Fluids. Fort Belvoir, VA : Defense Technical Information Center, avril 1997. http://dx.doi.org/10.21236/ada329620.
Texte intégral