Littérature scientifique sur le sujet « Supercriticall fluids »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Supercriticall fluids ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Supercriticall fluids"

1

Pavlova, Praskovya L., Andrey V. Minakov, Dmitriy V. Platonov, Vladimir A. Zhigarev et Dmitriy V. Guzei. « Supercritical Fluid Application in the Oil and Gas Industry : A Comprehensive Review ». Sustainability 14, no 2 (9 janvier 2022) : 698. http://dx.doi.org/10.3390/su14020698.

Texte intégral
Résumé :
The unique properties of supercritical fluid technology have found wide application in various industry sectors. Supercritical fluids allow for the obtainment of new types of products with special characteristics, or development and design of technological processes that are cost-effective and friendly to the environment. One of the promising areas where supercritical fluids, especially carbon dioxide, can be used is the oil industry. In this regard, the present review article summarizes the results of theoretical and experimental studies of the use of supercritical fluids in the oil and gas industry for supercritical extraction in the course of oil refining, increasing oil recovery in the production of heavy oil, hydraulic fracturing, as well as processing and disposal of oil sludge and asphaltenes. At the end of the present review, the issue of the impact of supercritical fluid on the corrosion of oil and gas equipment is considered. It is found that supercritical fluid technologies are very promising for the oil industry, but supercritical fluids also have disadvantages, such as expansion or incompatibility with materials (for example, rubber).
Styles APA, Harvard, Vancouver, ISO, etc.
2

Heřmanská, Matylda, Barbara I. Kleine et Andri Stefánsson. « Supercritical Fluid Geochemistry in Geothermal Systems ». Geofluids 2019 (5 août 2019) : 1–14. http://dx.doi.org/10.1155/2019/6023534.

Texte intégral
Résumé :
Supercritical fluids exist in the roots of many active high-temperature geothermal systems. Utilization of such supercritical resources may multiply energy production from geothermal systems; yet, their occurrence, formation mechanism, and chemical properties are poorly constrained. Flow-through experiments at 260°C and 400-420°C were performed to study the chemical and mineralogical changes associated with supercritical fluid formation near shallow magmatic intrusions by conductive heating and boiling of conventional subcritical geothermal fluids. Supercritical fluids formed by isobaric heating of liquid geothermal water had similar volatile element concentrations (B, C, and S) as the subcritical water. In contrast, mineral-forming element concentrations (Si, Na, K, Ca, Mg, and Cl) in the supercritical fluid were much lower. The results are consistent with the observed mineral deposition of quartz, aluminum silicates, and minor amount of salts during boiling. Similar concentration patterns have been predicted from geochemical modeling and were observed at Krafla, Iceland, for the IDDP-1 supercritical fluid discharge. The experimental results confirm previous findings that supercritical fluids may originate from conductive heating of subcritical geothermal reservoir fluids characterized by similar or lower elemental concentrations with minor input of volcanic gas.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Sedunov, Boris I. « Structural Transition in Supercritical Fluids ». Journal of Thermodynamics 2011 (10 octobre 2011) : 1–5. http://dx.doi.org/10.1155/2011/194353.

Texte intégral
Résumé :
The extension of the saturation curve on the PT diagram in the supercritical region for a number of monocomponent supercritical fluids by peak values for different thermophysical properties, such as heat capacities and and compressibility has been studied. These peaks signal about some sort of fluid structural transition in the supercritical region. Different methods give similar but progressively diverging curves for this transition. The zone of temperatures and pressures near these curves can be named as the zone of the fluid structural transition. The outstanding properties of supercritical fluids in this zone help to understand the physical sense of the fluid structural transition.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Orlovic, Aleksandar, et Dejan Skala. « Materials processing using supercritical fluids ». Chemical Industry 59, no 9-10 (2005) : 213–23. http://dx.doi.org/10.2298/hemind0510213o.

Texte intégral
Résumé :
One of the most interesting areas of supercritical fluids applications is the processing of novel materials. These new materials are designed to meet specific requirements and to make possible new applications in Pharmaceuticals design, heterogeneous catalysis, micro- and nano-particles with unique structures, special insulating materials, super capacitors and other special technical materials. Two distinct possibilities to apply supercritical fluids in processing of materials: synthesis of materials in supercritical fluid environment and/or further processing of already obtained materials with the help of supercritical fluids. By adjusting synthesis parameters the properties of supercritical fluids can be significantly altered which further results in the materials with different structures. Unique materials can be also obtained by conducting synthesis in quite specific environments like reversed micelles. This paper is mainly devoted to processing of previously synthesized materials which are further processed using supercritical fluids. Several new methods have been developed to produce micro- and nano-particles with the use of supercritical fluids. The following methods: rapid expansion of supercritical solutions (RESS) supercritical anti-solvent (SAS), materials synthesis under supercritical conditions and encapsulation and coating using supercritical fluids were recently developed.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Khetsuriani, N., K. Karchkhadze, V. Tsitsishvili et K. Goderdzishvili. « PRODUCTION OF BIODIESEL USING SUPERCRITICAL FLUIDS TECHNOLOGY ». Chemical Problems 15, no 1 (2017) : 21–25. http://dx.doi.org/10.32737/2221-8688-2017-1-21-25.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Madana Gopal, Jaya Vignesh, Robert Morgan, Guillaume De Sercey et Konstantina Vogiatzaki. « Overview of Common Thermophysical Property Modelling Approaches for Cryogenic Fluid Simulations at Supercritical Conditions ». Energies 16, no 2 (12 janvier 2023) : 885. http://dx.doi.org/10.3390/en16020885.

Texte intégral
Résumé :
Computational Fluid Dynamics (CFD) frameworks of supercritical cryogenic fluids need to employ Real Fluid models such as cubic Equations of State (EoS) to account for thermal and inertial driven mechanisms of fluid evolution and disintegration. Accurate estimation of the non-linear variation in density, thermodynamic and transport properties is required to computationally replicate the relevant thermo and fluid dynamics involved. This article reviews the availability, performance and the implementation of common Real Fluid EoS and data-based models in CFD studies of supercritical cryogenic fluids. A systematic analysis of supercritical cryogenic fluid (N2, O2 and CH4) thermophysical property predictions by cubic (PR and SRK) and non-cubic (SBWR) Real Fluid EoS, along with Chung’s model, reveal that: (a) SRK EoS is much more accurate than PR at low temperatures of liquid phase, whereas PR is more accurate at the pseudoboiling region and (b) SBWR EoS is more accurate than PR and SRK despite requiring the same input parameters; however, it is limited by the complexity in thermodynamic property estimation. Alternative data-based models, such as tabulation and polynomial methods, have also been shown to be reliably employed in CFD. At the end, a brief discussion on the thermophysical modelling of cryogenic fluids affected by quantum effects is included, in which the unsuitability of the common real fluid EoS models for the liquid phase of such fluids is presented.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Shen, Yunqi, Zhiwen Hu, Xin Chang et Yintong Guo. « Experimental Study on the Hydraulic Fracture Propagation in Inter-Salt Shale Oil Reservoirs ». Energies 15, no 16 (15 août 2022) : 5909. http://dx.doi.org/10.3390/en15165909.

Texte intégral
Résumé :
In response to the difficulty of fracture modification in inter-salt shale reservoirs and the unknown pattern of hydraulic fracture expansion, corresponding physical model experiments were conducted to systematically study the effects of fracturing fluid viscosity, ground stress and pumping displacement on hydraulic fracture expansion, and the latest supercritical CO2 fracturing fluid was introduced. The test results show the following. (1) The hydraulic fractures turn and expand when they encounter the weak surface of the laminae. The fracture pressure gradually increases with the increase in fracturing fluid viscosity, while the fracture pressure of supercritical CO2 is the largest and the fracture width is significantly lower than the other two fracturing fluids due to the high permeability and poor sand-carrying property. (2) Compared with the other two conventional fracturing fluids, under the condition of supercritical CO2 fracturing fluid, the increase in ground stress leads to the increase in inter-salt. (3) Compared with the other two conventional fracturing fluids, under the conditions of supercritical CO2 fracturing fluid, the fracture toughness of shale increases, the fracture pressure increases, and the fracture network complexity decreases as well. (4) With the increase in pumping displacement, the fracture network complexity increases, while the increase in the displacement of supercritical CO2 due to high permeability leads to the rapid penetration of inter-salt shale hydraulic fractures to the surface of the specimen to form a pressure relief zone; it is difficult to create more fractures with the continued injection of the fracturing fluid, and the fracture network complexity decreases instead.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Demirbaş, A. « Supercritical fluid extraction and chemicals from biomass with supercritical fluids ». Energy Conversion and Management 42, no 3 (février 2001) : 279–94. http://dx.doi.org/10.1016/s0196-8904(00)00059-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Pucciarelli, Andrea, Sara Kassem et Walter Ambrosini. « Overview of a Theory for Planning Similar Experiments with Different Fluids at Supercritical Pressure ». Energies 14, no 12 (21 juin 2021) : 3695. http://dx.doi.org/10.3390/en14123695.

Texte intégral
Résumé :
The recent advancements achieved in the development of a fluid-to-fluid similarity theory for heat transfer with fluids at supercritical pressures are summarised. The prime mover for the development of the theory was the interest in the development of Supercritical Water nuclear Reactors (SCWRs) in the frame of research being developed worldwide; however, the theory is general and can be applied to any system involving fluids at a supercritical pressure. The steps involved in the development of the rationale at the basis of the theory are discussed and presented in a synthetic form, highlighting the relevance of the results achieved so far and separately published elsewhere, with the aim to provide a complete overview of the potential involved in the application of the theory. The adopted rationale, completely different from the ones in the previous literature on the subject, was based on a specific definition of similarity, aiming to achieve, as much as possible, similar distributions of enthalpies and fluid densities in a duct containing fluids at a supercritical pressure. This provides sufficient assurance that the complex phenomena governing heat transfer in the addressed conditions, which heavily depend on the changes in fluid density and in other thermophysical properties along and across the flow duct, are represented in sufficient similarity. The developed rationale can be used for planning possible counterpart experiments, with the aid of supporting computational fluid-dynamic (CFD) calculations, and it also clarifies the role of relevant dimensionless numbers in setting up semi-empirical correlations for heat transfer in these difficult conditions, experiencing normal, enhanced and deteriorated regimes. This paper is intended as a contribution to a common reflection on the results achieved so far in view of the assessment of a sufficient body of knowledge and understanding to base successful predictive capabilities for heat transfer with fluids at supercritical pressures.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Ruiz, Helga K., Dolores R. Serrano, Lourdes Calvo et Albertina Cabañas. « Current Treatments for COVID-19 : Application of Supercritical Fluids in the Manufacturing of Oral and Pulmonary Formulations ». Pharmaceutics 14, no 11 (4 novembre 2022) : 2380. http://dx.doi.org/10.3390/pharmaceutics14112380.

Texte intégral
Résumé :
Even though more than two years have passed since the emergence of COVID-19, the research for novel or repositioned medicines from a natural source or chemically synthesized is still an unmet clinical need. In this review, the application of supercritical fluids to the development of novel or repurposed medicines for COVID-19 and their secondary bacterial complications will be discussed. We envision three main applications of the supercritical fluids in this field: (i) drug micronization, (ii) supercritical fluid extraction of bioactives and (iii) sterilization. The supercritical fluids micronization techniques can help to improve the aqueous solubility and oral bioavailability of drugs, and consequently, the need for lower doses to elicit the same pharmacological effects can result in the reduction in the dose administered and adverse effects. In addition, micronization between 1 and 5 µm can aid in the manufacturing of pulmonary formulations to target the drug directly to the lung. Supercritical fluids also have enormous potential in the extraction of natural bioactive compounds, which have shown remarkable efficacy against COVID-19. Finally, the successful application of supercritical fluids in the inactivation of viruses opens up an opportunity for their application in drug sterilization and in the healthcare field.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Supercriticall fluids"

1

Prosapio, Valentina. « Micronization by supercitical antisolvent precipitation processes ». Doctoral thesis, Universita degli studi di Salerno, 2016. http://hdl.handle.net/10556/2209.

Texte intégral
Résumé :
2014 - 2015
In the last decade, the application of microparticles, nanoparticles and composite microparticles involved several industrial fields. Conventional micronization techniques, such as jet milling, spray drying, liquid antisolvent precipitation and solvent evaporation are sometimes not suitable, since the produced particles are irregular, with broad size distribution, could be degraded due to mechanical or thermal stresses and polluted with organic solvents or other toxic substances. In this context, supercritical fluids (SCFs) based techniques have been proposed as an alternative to traditional processes thanks to the specific characteristics of SCFs, mainly solvent power and liquid-like densities with gas-like transport properties, that can be tuned varying pressure and temperature. Among supercritical assisted micronization techniques, Supercritical Antisolvent (SAS) precipitation has been successfully used to obtain microparticles and nanoparticles of several kinds of compounds, such as pharmaceuticals, coloring matters, polymers and biopolymers. In this process carbon dioxide (CO2) is used as an antisolvent at supercritical conditions: a solution containing the product to be micronized is injected into the precipitation chamber, saturated with supercritical carbon dioxide under the chosen conditions of temperature and pressure. CO2, in contact with the solution, forms a mixture in which the product is insoluble, causing the precipitation... [edited by author]
XIV n.s.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Guigard, Selma. « Solubilities in supercritical fluids ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0004/NQ40372.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Su, Wen-Ta. « Electrochemistry in supercritical fluids ». Thesis, University of Nottingham, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.537675.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Barlow, Stephen J. « Spectroscopy in supercritical fluids ». Thesis, University of Nottingham, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.247570.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Sarfraz, Adnan. « Nucleobases in supercritical fluids ». Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2010. http://dx.doi.org/10.18452/16092.

Texte intégral
Résumé :
Diese Arbeit zeigt die Verwendung ueberkritischer Fluide als analytisches Werkzeug fuer den Transport einer Gruppe nichtfluechtiger Molekuele, naemlich Nucleobasen, in die Gasphase. Das am haeufigsten verwendete ueberkritische Fluid ist Kohlendioxid, welches sich jedoch als zu ineffizient bei der Aufloesung von Nucleobasen herausstellte. Deshalb wurde ein Gemisch aus Ethylen mit Ethanol als Cosolvens als ueberkritisches Loesungsmittel verwendet. Für die Erkennung des kritischen Punktes reiner Fluide oder verduennter Fluidmischungen wurde eine neue Methode entwickelt. Die Verschiebung des kritischen Punktes von Ethylen durch Zugabe von Ethanol wurde experimentell ermittelt und mit der Zustandsgleichung von Soave Redlich Kwong in Beziehung gesetzt. Fuer einen Molenbruch des Cosolvens Ethanol von 0.054 erhoeht sich die kritische Temperatur nur um 5,5 C, wohingegen die Theorie eine Erhoehung um 10 C vorhersagt. Fuenf biologisch relevante Nucleobasen wurden mit Hilfe von 3% Ethanol als Cosolvens in ueberkritischem Ethylen geloest. Die Zusammensetzung des Ueberschall-Molekularstrahles der expandierten Loesung wurde mit einem Quadrupol-Massenspektrometer quantitativ analysiert. Das Signalverhaeltnis der Nucleobasen zu Ethylen lag in der Groessenordnung von 10^-4 bis 10^-5. Diese Nucleobasen wurden auch auf Oberflaechen abgeschieden, sowohl durch Hochdruckexpansion der ueberkritischen Loesungen, als auch durch Verdampfung von alkoholischen Loesungen (nach der ’Drop Casting’ Methode). Die dabei entstehenden Morphologien wurden ex-situ mittels Rasterkraftmikroskopie untersucht. Die Ursachen dieser Unterschiede werden anhand der relevanten Nukleationsmechanismen diskutiert.
This work highlights the use of supercritical fluids (SCF) as an analytical tool for the transfer of a group of non-volatile molecules, namely nucleobases, into the gas phase. The most commonly used SCF carbon dioxide was found inefficient in dissolving the nucleobases. Therefore, a mixture of ethylene (p_c = 50.6 bar and T_c = 9.35 C) with a cosolvent was used as the SC solvent. A new bracketing method was developed for detecting the critical point (CP) of pure fluids and diluted mixtures of fluids. The shift in CP of ethylene on addition of ethanol was determined and related to theoretical calculations by using the Soave Redlich Kwong equation of state. Comparing the experimental results to theoretical methods for calculating the CP showed large deviations. The critical temperature shifted by only 5.5 C when the mole fraction of the cosolvent i.e. ethanol was 0.054. Five biologically relevant were dissolved in SC ethylene using 3% of ethanol as cosolvent. The supersonic molecular beam composition of the expanded solution was analyzed quantitatively using a quadrupole mass spectrometer and the ratio of the nucleobases to ethylene in the beam was found to be of the order of 10^-4 to 10^-5. Surface deposition of the nucleobases through SCF solutions was carried out and the morphology was recorded using Atomic Force Microscopy. Remarkable differences were observed while comparing the morphology obtained after deposition using rapid expansion of supercritical solutions (RESS) and drop casting method. These differences are discussed in terms of diffusion, rate of evaporation of the solvent, degree of supersaturation, and the nucleation process.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Dost, Kenan. « Supercritical fluids in analytical chemistry ». Thesis, University of Nottingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.324702.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Lee, Peter D. « Organometallic synthesis in supercritical fluids ». Thesis, University of Nottingham, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336862.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Jones, David C. « Analytical applications of supercritical fluids ». Thesis, University of Nottingham, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363562.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Vyalov, Ivan. « Molecular dynamics simulation of dissolution of cellulose in supercritical fluids and mixtures of cosolvents/supercritical fluids ». Thesis, Lille 1, 2011. http://www.theses.fr/2011LIL10178/document.

Texte intégral
Résumé :
La cellulose est le polymère naturel le plus abondant. Cependant son utilisation est limitée par sa faible dissolution due à des liaisons hydrogènes intra et inter moléculaires. Jusqu’à aujourd’hui des solvants toxiques sont utilisés dans les procédés de dissolutions de la cellulose. Par conséquent de nouveaux solvants pour la dissolution de la cellulose ont été intensivement étudiés comme solutions de rechange de ces procédés polluants. Une des solutions est d’utiliser la technologie des fluides supercritiques utilisant le dioxyde de carbone. Malheureusement, la cellulose reste insoluble dans le CO2 dans les conditions supercritiques et il est donc important d'étudier un mélange binaire d’un co-solvant (organique ou liquide ionique) et le CO2 pour le développement d’un nouveau procédé. Cependant la connaissance du point fondamental des paramètres contrôlant le processus de dissolution dans ces fluides ralentit le développement de l’utilisation de cet outil propre et peu couteux en énergie. Nous avons donc utilisé la simulation de dynamique moléculaire pour caractériser le processus de dissolution de la cellulose dans ces fluides. Pour cela, nous nous sommes intéressés aux fluides supercritiques purs, puis aux mélanges des fluides supercritiques avec un co-solvant et enfin nous avons étudié le processus de dissolution de modèle de celluloses et de caractériser l’effet de la pression, la température, la composition du mélange ainsi que les propriétés structurales de ces modèles de cellulose sur le processus de dissolution
Cellulose is insoluble in neat supercritical CO2 and the main objective of this work was to investigate mixtures of scCO2 with polar cosolvents for the development of new processing technologies for the cellulose dissolution. The objective is achieved by studying the dissolution process of monomer of cellulose and its various polymorphs. The effect of the t/d parameters on the dissolution process was analyzed by molecular dynamics simulation. We begin with analyzing structure of pure supercritical fluids and mixtures of supercritical fluids/cosolvents using unconvential tools: Voronoi tesselations and nearest neighbours approach.Thermodynamics of the mixtures of scCO2/cosolvents is analysed in order to check the validity of the potential models used in our simulations for what the method of thermodynamic integration to calculate the energy, entropy and free energy of mixing was applied. To analyze the dissolution of cellulose we started from studying the solvation free energy of cellobiose(cellulose monomer) which was calculated from molecular dynamics simulations using free energy perturbation method. The influence of conformational degrees of freedom on solvation free energy of cellobiose was also considered.Finally, the direct dissolution of cellulose crystals models in well-known good cellulose solvent(1-ethyl-3-methylimidazolium chloride) and then considered supercritical solvents. It was found that various mixtures of CO2 with cosolvents do not dissolve cellulose but they can considerably affect its crystalline structure whereas ammonia fluid can dissolve cellulose and this process is significantly influenced by temperature, pressure and density
Styles APA, Harvard, Vancouver, ISO, etc.
10

Smail, Fiona R. « Continuous Organic Reactions in Supercritical Fluids ». Thesis, University of Nottingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.489692.

Texte intégral
Résumé :
This Thesis describes how continuous flow reactors and heterogeneous catalysts have been used in conjunction with supercritical fluid solvents to develop a new process for carrying out catalytic organic reactions. The process exploits both the advantages of supercritical fluids (e.g. solvent tunability allowing facile product separation from the solvent) and heterogeneous catalysts and can be considered a 'Green' method of chemistry. Various reaction types have been explored, namely noble-metal catalysed hydrogenation reactions, supported-acid catalysed Friedel-Crafts alkylation reactions and supported-acid catalysed Friedel-Crafts acylation reactions. Chapter 1: Introduction This Chapter begins with an introduction to the concept of 'Green Chemistry' and its significance at the present time. The problems with the use of conventional solvents are highlighted, and examples of two 'greener' solvent systems - ionic liquids and supercritical fluids - are described. For each of these solvent systems, a brief review .of their use in more recent reaction chemistry is included. Chapter 2: Experimental This Chapter begins by describing the supercritical flow equipment developed at Nottingham in some detail, and includes equipment modifications which were made both to improve the effectiveness and safe operation of the equipment. The final sections of the Chapter describe the catalysts and analytical techniques used during the course of the research. Chapter 3: Continuous Hydrogenation in Supereritical Fluids This Chapter opens with a summary of some initial hydrogenation work carried out at Nottingham prior to this research. The results section reports a range of non-selective hydrogenation reactions, commencing with a detailed study of the hydrogenation of cyclohexene which was used to explore the capabilities of the equipment. Chapter 4: Continuous Selective Hydrogenation in Supercritical Fluids This Chapter is a continuation of Chapter 3 and begins with an introduction to different types of selective hydrogenation, then highlights some literature examples of selective hydrogenations conducted in supercritical fluids. The results section reports several selective hydrogenation reactions conducted at Nottingham. Chapter 5: Continuous Friedel-Crafts Alkylation and Acylation Reactions This Chapter begins with a discussion of the problems associated with conventional Friedel-Crafts chemistry, most of which are associated with the homogeneous catalysts normally used. A review of the use of various solid acid materials investigated for Friedel-Crafts type activity follows and this section concludes with literature examples of some supercritical Friedel-Crafts processes. The results section begins by reporting Friedel-Crafts alkylation reactions and closes with a brief amount ofFriedel-Crafts acylation.
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Supercriticall fluids"

1

John, McHardy, et Sawan Samuel P, dir. Supercritical fluid cleaning : Fundamentals, technology, and applications. Westwood, N.J : Noyes Publications, 1998.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Belinsky, Marcel R. Supercritical fluids. New York : Nova Science Publishers, Inc., 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Squires, Thomas G., et Michael E. Paulaitis, dir. Supercritical Fluids. Was,hington, DC : American Chemical Society, 1987. http://dx.doi.org/10.1021/bk-1987-0329.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Abraham, Martin A., et Aydin K. Sunol, dir. Supercritical Fluids. Washington, DC : American Chemical Society, 1997. http://dx.doi.org/10.1021/bk-1997-0670.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Kiran, Erdogan, et Johanna M. H. Levelt Sengers, dir. Supercritical Fluids. Dordrecht : Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8295-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Arai, Yasuhiko, Takeshi Sako et Yoshihiro Takebayashi, dir. Supercritical Fluids. Berlin, Heidelberg : Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56238-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kiran, Erdogan, Pablo G. Debenedetti et Cor J. Peters, dir. Supercritical Fluids. Dordrecht : Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-3929-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

1946-, Kiran Erdogan, Debenedetti Pablo G. 1953-, Peters Cor J, North Atlantic Treaty Organization. Scientific Affairs Division. et NATO Advanced Study Institute on Supercritical Fluids--Fundamentals and Applications (1998 : Kemer, Kemer Bucağı, Antalya İli, Turkey), dir. Supercritical fluids : Fundamentals and applications. Dordrecht : Kluwer Academic Publishers, 2000.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

England) Meeting on Supercritical Fluids : Chemistry and Materials (6th 1999 Nottingham. Proceedings of the 6th Meeting on Supercritical Fluids, Chemistry and Materials : 10-13 April 1999, Nottingham (United Kingdom). Vandoeuvre : Institut national polytechnique de Lorraine, 1999.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

1955-, Johnston Keith P., Penninger, Johannes M. L., 1942-, American Institute of Chemical Engineers. et American Institute of Chemical Engineers. Meeting, dir. Supercritical fluid science and technology. Washington, DC : American Chemical Society, 1989.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Supercriticall fluids"

1

Anisimov, M. A., et J. V. Sengers. « Critical and Crossover Phenomena in Fluids and Fluid Mixtures ». Dans Supercritical Fluids, 89–121. Dordrecht : Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-3929-8_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Brunner, Gerd. « Chromatography with Supercritical Fluids (Supercritical Fluid Chromatography, SFC) ». Dans Topics in Physical Chemistry, 313–82. Heidelberg : Steinkopff, 1994. http://dx.doi.org/10.1007/978-3-662-07380-3_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Lamanna, Grazia, Christoph Steinhausen, Andreas Preusche et Andreas Dreizler. « Experimental Investigations of Near-critical Fluid Phenomena by the Application of Laser Diagnostic Methods ». Dans Fluid Mechanics and Its Applications, 169–88. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09008-0_9.

Texte intégral
Résumé :
AbstractPhysics of supercritical fluids is extremely complex and not yet fully understood. The importance of the presented investigations into the physics of supercritical fluids is twofold. First, the presented approach links the microscopic dynamics and macroscopic thermodynamics of supercritical fluids. Second, free falling droplets in a near to supercritical environment are investigated using spontaneous Raman scattering and a laser induced fluorescence/phosphorescence thermometry approach. The resulting spectroscopic data are employed to validate theoretical predictions of an improved evaporation model. Finally, laser induced thermal acoustics is used to investigate acoustic damping rates in the supercritical region of pure fluids.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Taleb, A. « Supercritical Fluids ». Dans Nanomaterials and Nanochemistry, 473–85. Berlin, Heidelberg : Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-72993-8_20.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Gordon, Charles M., et Walter Leitner. « Supercritical Fluids ». Dans Catalysis by Metal Complexes, 215–36. Dordrecht : Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4087-3_8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Sengers, Johanna M. H. Levelt. « Critical Behavior of Fluids : Concepts and Applications ». Dans Supercritical Fluids, 3–38. Dordrecht : Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8295-7_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Vesovic, V. « On Correlating the Transport Properties of Supercritical Fluids ». Dans Supercritical Fluids, 273–83. Dordrecht : Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8295-7_10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Cummings, Peter T. « Introduction to Integral Equation Approximations with Application to Near-Critical and Supercritical Fluids ». Dans Supercritical Fluids, 287–311. Dordrecht : Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8295-7_11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Lomba, Enrique. « On the Non-Solution Region of the Hypernetted Chain and Related Equations for Ionic and Simple Fluids ». Dans Supercritical Fluids, 313–23. Dordrecht : Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8295-7_12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Meroni, Alberto. « Critical Behavior in Modern Liquid State Theories ». Dans Supercritical Fluids, 325–63. Dordrecht : Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8295-7_13.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Supercriticall fluids"

1

Banuti, Daniel, Muralikrishna Raju, Peter C. Ma, Matthias Ihme et Jean-Pierre Hickey. « Seven questions about supercritical fluids - towards a new fluid state diagram ». Dans 55th AIAA Aerospace Sciences Meeting. Reston, Virginia : American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-1106.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Jyothiprakash, K. H., Agniv Saha, Arihant Kumar Patawari et K. N. Seetharamu. « FLUID PROPERTY VARIATION ANALYSIS IN A HEAT EXCHANGER USING SUPERCRITICAL FLUIDS ». Dans 5th Thermal and Fluids Engineering Conference (TFEC). Connecticut : Begellhouse, 2020. http://dx.doi.org/10.1615/tfec2020.hex.032151.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

He, Jundi, Junjie Yan, Wei Wang et Shuisheng He. « DIRECT NUMERICAL SIMULATION STUDY FOR FLUID-TO-FLUID SCALING FOR FLUIDS AT SUPERCRITICAL PRESSURE ». Dans International Heat Transfer Conference 16. Connecticut : Begellhouse, 2018. http://dx.doi.org/10.1615/ihtc16.cov.023265.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Krishnan, A., et M. Giridharan. « Transport phenomena in supercritical fluids ». Dans Fluid Dynamics Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-2233.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

van Heesch, E. J. M., Jin Zhang, Takao Namihira, A. H. Markosyan, F. J. C. M. Beckers, T. Huiskamp, W. F. L. M. Hoeben, A. J. M. Pemen et U. Ebert. « Supercritical fluids for high-power switching ». Dans 2014 IEEE International Power Modulator and High Voltage Conference (IPMHVC). IEEE, 2014. http://dx.doi.org/10.1109/ipmhvc.2014.7287224.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Lim, Chang Hyeon, Stephen R. Johnston et Devesh Ranjan. « Experimental Investigation in Turbulent Shear Mixing Layer at Supercritical Condition ». Dans ASME 2022 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/fedsm2022-87029.

Texte intégral
Résumé :
Abstract With limitations of traditional power cycles on their operating temperature ranges and max efficiencies, the research community has shifted the attention to usage of supercritical fluids as the main working fluid of power cycles. Among the supercritical fluids, supercritical carbon dioxide (sCO2) is considered as the most promising candidate for its relatively low critical point, low cost, and availability. The main merit of using sCO2 is its high density near the fluid’s critical point, which reduces the required compression power. This leads to decrease in the volume of turbomachinery and increase in the overall cycle efficiency. However, non-linear property variations and mixing of different supercritical regimes in close proximity to the critical point pose great risks for cycles taking the full advantage of these benefits. The non-linear property variations close to the critical point provide a challenge in developing a multiphysics model, which can serve as a backbone for simulating more advanced geometries of sCO2 power cycle processes. To understand the physical phenomena of property variations and mixing of supercritical fluids at differing conditions, a classical shear layer experiment is performed in a high-pressure test chamber with supporting closed-loop cycle facilities. Experiments are conducted under various fluid density and velocity ratios at multiple isobars to understand if classical mixing theories and hydrodynamics follow the same trend in supercritical conditions. Specifically, turbulent flow characteristics and the growth parameters are captured through density gradients between two channels using Schlieren visualization. The qualitative results show that the mixing interfacial features follow the classical mixing growth rate theories despite nonlinear fluid property variations. Dissipative nature of the supercritical fluids contributes to resemblance of gas-gas mixing and presents decrease in mixing intensity as inlet conditions deviate away from the critical point.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Katona, Adrienn, et Attila R. Imre. « Supercritical fluids in energy storage and consumption ». Dans 2017 6th International Youth Conference on Energy (IYCE). IEEE, 2017. http://dx.doi.org/10.1109/iyce.2017.8003737.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Sharma, Deewakar, Arnaud Erriguible et Sakir Amiroudine. « THERMAL INSTABILITIES IN SUPERCRITICAL FLUIDS UNDER VIBRATION ». Dans THMT-18. Turbulence Heat and Mass Transfer 9 Proceedings of the Ninth International Symposium On Turbulence Heat and Mass Transfer. Connecticut : Begellhouse, 2018. http://dx.doi.org/10.1615/thmt-18.230.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Darr, J. A. « Nano- and biomaterials using supercritical fluids technologies ». Dans IEE Seminar on MNT in Medicine. IEE, 2004. http://dx.doi.org/10.1049/ic:20040586.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Chen, Wei, et Xiaolin Xiong. « Zircon solubility in KAlSi3O8-H2O supercritical fluids ». Dans Goldschmidt2022. France : European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.11940.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Supercriticall fluids"

1

Phelps, M. R., M. O. Hogan et L. J. Silva. Fluid dynamic effects on precision cleaning with supercritical fluids. Office of Scientific and Technical Information (OSTI), juin 1994. http://dx.doi.org/10.2172/10165549.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Phelps, M. R., W. A. Willcox, L. J. Silva et R. S. Butner. Effects of fluid dynamics on cleaning efficacy of supercritical fluids. Office of Scientific and Technical Information (OSTI), mars 1993. http://dx.doi.org/10.2172/10136973.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Phelps, M. R., W. A. Willcox, L. J. Silva et R. S. Butner. Effects of fluid dynamics on cleaning efficacy of supercritical fluids. Office of Scientific and Technical Information (OSTI), mars 1993. http://dx.doi.org/10.2172/6665473.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Propp, W. A., T. E. Carleson, Chen M. Wai, P. R. Taylor, K. W. Daehling, Shaoping Huang et M. Abdel-Latif. Corrosion in supercritical fluids. Office of Scientific and Technical Information (OSTI), mai 1996. http://dx.doi.org/10.2172/274146.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Oschwald, M., J. J. Smith, R. Branam, J. Hussong et A. Schik. Injection of Fluids into Supercritical Environments. Fort Belvoir, VA : Defense Technical Information Center, septembre 2004. http://dx.doi.org/10.21236/ada426295.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Adkins, C. L. J., E. M. Russick, J. Cesarano, M. E. Tadros et J. A. Voigt. Ceramic powder synthesis in supercritical fluids. Office of Scientific and Technical Information (OSTI), avril 1996. http://dx.doi.org/10.2172/239278.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Faris, Gregory W. Advanced Stimulated Scattering Measurements in Supercritical Fluids. Fort Belvoir, VA : Defense Technical Information Center, janvier 2002. http://dx.doi.org/10.21236/ada399684.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Faris, Gregory W. Advanced Stimulated Scattering Measurements in Supercritical Fluids. Fort Belvoir, VA : Defense Technical Information Center, septembre 2006. http://dx.doi.org/10.21236/ada457760.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Bright, F. V. Determination of solvation kinetics in supercritical fluids. Office of Scientific and Technical Information (OSTI), janvier 1993. http://dx.doi.org/10.2172/6306028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Fayer, Michael D. Ultrafast Nonlinear Optical Investigations of Supercritical Fluids. Fort Belvoir, VA : Defense Technical Information Center, avril 1997. http://dx.doi.org/10.21236/ada329620.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie