Littérature scientifique sur le sujet « Supercooled water, density, metastability »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Supercooled water, density, metastability ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Supercooled water, density, metastability"

1

Soper, A. K. « Density minimum in supercooled confined water ». Proceedings of the National Academy of Sciences 108, no 47 (11 novembre 2011) : E1192. http://dx.doi.org/10.1073/pnas.1112629108.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

English, Niall J., Peter G. Kusalik et John S. Tse. « Density equalisation in supercooled high- and low-density water mixtures ». Journal of Chemical Physics 139, no 8 (28 août 2013) : 084508. http://dx.doi.org/10.1063/1.4818876.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Lin, Chuanlong, Jesse S. Smith, Stanislav V. Sinogeikin et Guoyin Shen. « Experimental evidence of low-density liquid water upon rapid decompression ». Proceedings of the National Academy of Sciences 115, no 9 (12 février 2018) : 2010–15. http://dx.doi.org/10.1073/pnas.1716310115.

Texte intégral
Résumé :
Water is an extraordinary liquid, having a number of anomalous properties which become strongly enhanced in the supercooled region. Due to rapid crystallization of supercooled water, there exists a region that has been experimentally inaccessible for studying deeply supercooled bulk water. Using a rapid decompression technique integrated with in situ X-ray diffraction, we show that a high-pressure ice phase transforms to a low-density noncrystalline (LDN) form upon rapid release of pressure at temperatures of 140–165 K. The LDN subsequently crystallizes into ice-Ic through a diffusion-controlled process. Together with the change in crystallization rate with temperature, the experimental evidence indicates that the LDN is a low-density liquid (LDL). The measured X-ray diffraction data show that the LDL is tetrahedrally coordinated with the tetrahedral network fully developed and clearly linked to low-density amorphous ices. On the other hand, there is a distinct difference in structure between the LDL and supercooled water or liquid water in terms of the tetrahedral order parameter.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Xie, Yonglin, Karl F. Ludwig, Guarionex Morales, David E. Hare et Christopher M. Sorensen. « Noncritical behavior of density fluctuations in supercooled water ». Physical Review Letters 71, no 13 (27 septembre 1993) : 2050–53. http://dx.doi.org/10.1103/physrevlett.71.2050.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Palmer, Jeremy C., Rakesh S. Singh, Renjie Chen, Fausto Martelli et Pablo G. Debenedetti. « Density and bond-orientational relaxations in supercooled water ». Molecular Physics 114, no 18 (13 mai 2016) : 2580–85. http://dx.doi.org/10.1080/00268976.2016.1179351.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Li, Peizhao, Haibao Lu et Yong-Qing Fu. « Phase transition of supercooled water confined in cooperative two-state domain ». Journal of Physics : Condensed Matter 34, no 16 (23 février 2022) : 165403. http://dx.doi.org/10.1088/1361-648x/ac519b.

Texte intégral
Résumé :
Abstract The question of ‘what is the structure of water?’ has been regarded as one of the major scientific conundrums in condensed-matter physics due to the complex phase behavior and condensed structure of supercooled water. Great effort has been made so far using both theoretical analysis based on various mathematical models and computer simulations such as molecular dynamics and first-principle. However, these theoretical and simulation studies often do not have strong evidences of condensed-matter physics to support. In this study, a cooperative domain model is formulated to describe the dynamic phase transition of supercooled water between supercooled water and amorphous ice, both of which are composed of low- and high-density liquid water. Free volume theory is initially employed to identify the working principle of dynamic phase transition and its connection to glass transition in the supercooled water. Then a cooperative two-state model is developed to characterize the dynamic anomalies of supercooled water, including density, viscosity and self-diffusion coefficient. Finally, the proposed model is verified using the experimental results reported in literature.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Blahut, Aleš, Jiří Hykl, Pavel Peukert et Jan Hrubý. « Dual-capillary dilatometer for density measurements of supercooled water ». EPJ Web of Conferences 264 (2022) : 01004. http://dx.doi.org/10.1051/epjconf/202226401004.

Texte intégral
Résumé :
An apparatus tailored to accurate density measurements of supercooled water, i.e. liquid water in a metastable state below the freezing point temperature, was recently developed at the Institute of Thermomechanics of the Czech Academy of Sciences. The apparatus, dual-capillary dilatometer, is described, together with the measurement procedure and the evaluation methodology. The primary result of the dual-capillary method are relative densities with respect to the density at a reference temperature and given pressure. In order to calculate absolute densities, densities at the reference temperature as a function of pressure are needed. For calculation of such pressure dependence of density, so called thermodynamic integration involving literature thermodynamic data and our experimental results is used. The dual-capillary dilatometer was successfully employed in density measurements of ordinary water, heavy water and seawater. The data in the temperature range from 238.15 to 303.15 K at pressures from atmospheric up to 200 MPa are presented and compared with respective IAPWS formulations of thermodynamic properties. The data for ordinary water are also compared with an accurate equation of state for supercooled water of Holten et al. (2014) revealing good mutual agreement. The expanded uncertainty of relative densities acquired by means of the dual-capillary method is estimated to be lower than 50 ppm.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Peukert, Pavel, Michal Duška, Jiří Hykl, Petr Sladký, Zbyněk Nikl et Jan Hrubý. « Callibration of capillaries for density measurement of supercooled water ». EPJ Web of Conferences 92 (2015) : 02067. http://dx.doi.org/10.1051/epjconf/20159202067.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kaneko, Toshihiro, Jaeil Bai, Takuma Akimoto, Joseph S. Francisco, Kenji Yasuoka et Xiao Cheng Zeng. « Phase behaviors of deeply supercooled bilayer water unseen in bulk water ». Proceedings of the National Academy of Sciences 115, no 19 (24 avril 2018) : 4839–44. http://dx.doi.org/10.1073/pnas.1802342115.

Texte intégral
Résumé :
Akin to bulk water, water confined to an isolated nanoslit can show a wealth of new 2D phases of ice and amorphous ice, as well as unusual phase behavior. Indeed, 2D water phases, such as bilayer hexagonal ice and monolayer square ice, have been detected in the laboratory, confirming earlier computational predictions. Herein, we report theoretical evidence of a hitherto unreported state, namely, bilayer very low density amorphous ice (BL-VLDA), as well as evidence of a strong first-order transition between BL-VLDA and the BL amorphous ice (BL-A), and a weak first-order transition between BL-VLDA and the BL very low density liquid (BL-VLDL) water. The diffusivity of BL-VLDA is typically in the range of 10−9 cm2/s to 10−10 cm2/s. Similar to bulk (3D) water, 2D water can exhibit two forms of liquid in the deeply supercooled state. However, unlike supercooled bulk water, for which the two forms of liquid can coexist and merge into one at a critical point, the 2D BL-VLDL and BL high-density liquid (BL-HDL) phases are separated by the highly stable solid phase of BL-A whose melting line exhibits the isochore end point (IEP) near 220 K in the temperature−pressure diagram. Above the IEP temperature, BL-VLDL and BL-HDL are indistinguishable. At negative pressures, the metastable BL-VLDL exhibits a spatially and temporally heterogeneous structure induced by dynamic changes in the nanodomains, a feature much less pronounced in the BL-HDL.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Liu, D., Y. Zhang, C. C. Chen, C. Y. Mou, P. H. Poole et S. H. Chen. « Observation of the density minimum in deeply supercooled confined water ». Proceedings of the National Academy of Sciences 104, no 23 (25 mai 2007) : 9570–74. http://dx.doi.org/10.1073/pnas.0701352104.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Supercooled water, density, metastability"

1

Whiteman, C. David. « Precipitation ». Dans Mountain Meteorology. Oxford University Press, 2000. http://dx.doi.org/10.1093/oso/9780195132717.003.0015.

Texte intégral
Résumé :
Precipitation is often the primary weather factor affecting outdoor activities. Precipitation that is of an unexpected type or intensity or that comes at an unexpected time or recurs more frequently than expected can disrupt both recreational and natural resource management plans. Heavy rain or snowfall can interfere with travel and threaten safety. Precipitation is water, whether in liquid or solid form, that falls from the atmosphere and reaches the ground. Table 8.1, adapted from Federal Meteorological Handbook No. 1 (National Weather Service, 1995), describes the different types of precipitation particles, collectively called hydrometeors. International guidelines for the reporting of precipitation do not include a category for sleet. Meteorologists in the United States use the term to describe tiny ice pellets that form when rain or partially melted snowflakes refreeze before reaching the ground. These particles bounce when they strike the ground and produce tapping sounds when they hit windows. Colloquial usage of the term, often used by the news media, coincides with British usage, which defines sleet as a mixture of rain and snow. Snow pellets, or graupel, are common in high mountain areas in summer. Graupel are low density particles (i.e., not solid ice) formed when a small ice particle (an ice crystal, snowflake, ice pellet, or small hailstone) falls through a cloud of supercooled (section 8.4) water droplets. The tiny droplets freeze as they impact the larger ice particle, building it into a rounded mass containing air inclusions (figure 8.1). This coating of granular ice particles is called rime, and the particle is said to be rimed. Graupel is usually produced in deep convective clouds that extend above the freezing level. Whereas graupel reaches the ground at high elevations, it usually melts to form rain before reaching the ground at lower elevations. As falling snow accumulates, a snowpack develops that can be described in terms of water content and density. The water content of snow is usually expressed as specific gravity, a number obtained in this application by dividing the water-depth equivalent of snow by the actual snow depth.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie