Littérature scientifique sur le sujet « Subject GARCH model »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Subject GARCH model ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Subject GARCH model"
Valencia-Herrera, Humberto, et Francisco López-Herrera. « Markov Switching International Capital Asset Pricing Model, an Emerging Market Case : Mexico ». Journal of Emerging Market Finance 17, no 1 (26 février 2018) : 96–129. http://dx.doi.org/10.1177/0972652717748089.
Texte intégralBurda, Martin, et Louis Bélisle. « Copula multivariate GARCH model with constrained Hamiltonian Monte Carlo ». Dependence Modeling 7, no 1 (3 juin 2019) : 133–49. http://dx.doi.org/10.1515/demo-2019-0006.
Texte intégralLung Kuo, Shu, et Ching Lin Ho. « The Assessment of Time Series for an Entire Air Quality Control District in Southern Taiwan Using GARCH Model ». International Journal of Engineering & ; Technology 7, no 3.19 (7 septembre 2018) : 119. http://dx.doi.org/10.14419/ijet.v7i3.19.16999.
Texte intégralGarcía-Medina, Andrés, Norberto A. Hernández-Leandro, Graciela González Farías et Nelson Muriel. « Multistage allocation problem for Mexican pension funds ». PLOS ONE 16, no 4 (13 avril 2021) : e0249857. http://dx.doi.org/10.1371/journal.pone.0249857.
Texte intégralBangar Raju, Totakura, Ayush Bavise, Pradeep Chauhan et Bhavana Venkata Ramalingeswar Rao. « Analysing volatility spillovers between grain and freight markets ». Pomorstvo 34, no 2 (21 décembre 2020) : 428–37. http://dx.doi.org/10.31217/p.34.2.23.
Texte intégralSingh, Amit Kumar, Rajat Agarwal et Rohit Kumar Shrivastav. « Returns and Volatility Spillover Between BSE SENSEX and BSE SME Stock Exchange of India ». SEDME (Small Enterprises Development, Management & ; Extension Journal) : A worldwide window on MSME Studies 48, no 3 (septembre 2021) : 257–71. http://dx.doi.org/10.1177/09708464211070054.
Texte intégralSingh, Vipul Kumar, et Pushkar Pachori. « A Kaleidoscopic Study of Pricing Performance of Stochastic Volatility Option Pricing Models : Evidence from Recent Indian Economic Turbulence ». Vikalpa : The Journal for Decision Makers 38, no 2 (avril 2013) : 61–80. http://dx.doi.org/10.1177/0256090920130204.
Texte intégralYeshiwas, Dawit, et Yebelay Berelie. « Forecasting the Covolatility of Coffee Arabica and Crude Oil Prices : A Multivariate GARCH Approach with High-Frequency Data ». Journal of Probability and Statistics 2020 (4 avril 2020) : 1–10. http://dx.doi.org/10.1155/2020/1424020.
Texte intégralMohammed, Tanimu, Yahaya Haruna Umar et Samuel Olorunfemi Adams. « MODELING THE VOLATILITY FOR SOME SELECTED BEVERAGES STOCK RETURNS IN NIGERIA (2012-2021) : A GARCH MODEL APPROACH ». Matrix Science Mathematic 6, no 2 (2022) : 41–51. http://dx.doi.org/10.26480/msmk.02.2022.41.51.
Texte intégralBenada, Luděk. « Comparison of the Impact of Econometric Models on Hedging Performance by Crude Oil and Natural Gas ». Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 66, no 2 (2018) : 423–29. http://dx.doi.org/10.11118/actaun201866020423.
Texte intégralThèses sur le sujet "Subject GARCH model"
WOŹNIAK, Tomasz. « Granger-Causal Analysis of Conditional Mean and Volatility Models ». Doctoral thesis, 2012. http://hdl.handle.net/1814/25136.
Texte intégralExamining Board: Professor Helmut Lütkepohl, DIW Berlin and Freie Universität (External Supervisor); Professor Massimiliano Marcellino, European University Institute; Professor Jacek Osiewalski, Cracow University of Economics; Professor Giampiero Gallo, University of Florence.
Recent economic developments have shown the importance of spillover and contagion effects in financial markets as well as in macroeconomic reality. Such effects are not limited to relations between the levels of variables but also impact on the volatility and the distributions. Granger causality in conditional means and conditional variances of time series is investigated in the framework of several popular multivariate econometric models. Bayesian inference is proposed as a method of assessment of the hypotheses of Granger noncausality. First, the family of ECCC-GARCH models is used in order to perform inference about Granger-causal relations in second conditional moments. The restrictions for second-order Granger noncausality between two vectors of variables are derived. Further, in order to investigate Granger causality in conditional mean and conditional variances of time series VARMA-GARCH models are employed. Parametric restrictions for the hypothesis of noncausality in conditional variances between two groups of variables, when there are other variables in the system as well are derived. These novel conditions are convenient for the analysis of potentially large systems of economic variables. Bayesian testing procedures applied to these two problems, Bayes factors and a Lindley-type test, make the testing possible regardless of the form of the restrictions on the parameters of the model. This approach also enables the assumptions about the existence of higher-order moments of the processes required by classical tests to be relaxed. Finally, a method of testing restrictions for Granger noncausality in mean, variance and distribution in the framework of Markov-switching VAR models is proposed. Due to the nonlinearity of the restrictions derived by Warne (2000), classical tests have limited use. Bayesian inference consists of a novel Block Metropolis-Hastings sampling algorithm for the estimation of the restricted models, and of standard methods of computing posterior odds ratios. The analysis may be applied to financial and macroeconomic time series with changes of parameter values over time and heteroskedasticity.
Chapitres de livres sur le sujet "Subject GARCH model"
Al Janabi, Mazin A. M. « Evaluation of Optimum and Coherent Economic-Capital Portfolios Under Complex Market Prospects ». Dans Handbook of Research on Big Data Clustering and Machine Learning, 214–30. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-0106-1.ch011.
Texte intégralActes de conférences sur le sujet "Subject GARCH model"
Gerni, Cevat, Özge Buzdağlı, Dilek Özdemir et Ömer Selçuk Emsen. « Elections and The Real Exchange Rate Volatility In Turkey (1992-2014) ». Dans International Conference on Eurasian Economies. Eurasian Economists Association, 2016. http://dx.doi.org/10.36880/c07.01553.
Texte intégral