Articles de revues sur le sujet « Subcubic graph »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Subcubic graph.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Subcubic graph ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

SKULRATTANAKULCHAI, SAN, et HAROLD N. GABOW. « COLORING ALGORITHMS ON SUBCUBIC GRAPHS ». International Journal of Foundations of Computer Science 15, no 01 (février 2004) : 21–40. http://dx.doi.org/10.1142/s0129054104002285.

Texte intégral
Résumé :
We present efficient algorithms for three coloring problems on subcubic graphs. (A subcubic graph has maximum degree at most three.) The first algorithm is for 4-edge coloring, or more generally, 4-list-edge coloring. Our algorithm runs in linear time, and appears to be simpler than previous ones. The second algorithm is the first randomized EREW PRAM algorithm for the same problem. It uses O(n/ log n) processors and runs in O( log n) time with high probability, where n is the number of vertices of the graph. The third algorithm is the first linear-time algorithm to 5-total-color subcubic graphs. The fourth algorithm generalizes this to get the first linear-time algorithm to 5-list-total-color subcubic graphs. Our sequential algorithms are based on a method of ordering the vertices and edges by traversing a spanning tree of a graph in a bottom-up fashion. Our parallel algorithm is based on a simple decomposition principle for subcubic graphs.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Hou, Yaoping, et Dijian Wang. « Laplacian integral subcubic signed graphs ». Electronic Journal of Linear Algebra 37 (26 février 2021) : 163–76. http://dx.doi.org/10.13001/ela.2021.5699.

Texte intégral
Résumé :
A (signed) graph is called Laplacian integral if all eigenvalues of its Laplacian matrix are integers. In this paper, we determine all connected Laplacian integral signed graphs of maximum degree 3; among these signed graphs,there are two classes of Laplacian integral signed graphs, one contains 4 infinite families of signed graphs and another contains 29 individual signed graphs.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Ma, Hongping, Zhengke Miao, Hong Zhu, Jianhua Zhang et Rong Luo. « Strong List Edge Coloring of Subcubic Graphs ». Mathematical Problems in Engineering 2013 (2013) : 1–6. http://dx.doi.org/10.1155/2013/316501.

Texte intégral
Résumé :
We study strong list edge coloring of subcubic graphs, and we prove that every subcubic graph with maximum average degree less than 15/7, 27/11, 13/5, and 36/13 can be strongly list edge colored with six, seven, eight, and nine colors, respectively.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Wang, Fang, et Xiaoping Liu. « Coloring 3-power of 3-subdivision of subcubic graph ». Discrete Mathematics, Algorithms and Applications 10, no 03 (juin 2018) : 1850041. http://dx.doi.org/10.1142/s1793830918500416.

Texte intégral
Résumé :
Let [Formula: see text] be a graph and [Formula: see text] be a positive integer. The [Formula: see text]-subdivision [Formula: see text] of [Formula: see text] is the graph obtained from [Formula: see text] by replacing each edge by a path of length [Formula: see text]. The [Formula: see text]-power [Formula: see text] of [Formula: see text] is the graph with vertex set [Formula: see text] in which two vertices [Formula: see text] and [Formula: see text] are adjacent if and only if the distance [Formula: see text] between [Formula: see text] and [Formula: see text] in [Formula: see text] is at most [Formula: see text]. Note that [Formula: see text] is the total graph [Formula: see text] of [Formula: see text]. The chromatic number [Formula: see text] of [Formula: see text] is the minimum integer [Formula: see text] for which [Formula: see text] has a proper [Formula: see text]-coloring. The total chromatic number of [Formula: see text], denoted by [Formula: see text], is the chromatic number of [Formula: see text]. Rosenfeld [On the total coloring of certain graphs, Israel J. Math. 9 (1971) 396–402] and independently, Vijayaditya [On total chromatic number of a graph, J. London Math. Soc. 2 (1971) 405–408] showed that for a subcubic graph [Formula: see text], [Formula: see text]. In this note, we prove that for a subcubic graph [Formula: see text], [Formula: see text].
Styles APA, Harvard, Vancouver, ISO, etc.
5

MOHAR, BOJAN. « Median Eigenvalues of Bipartite Subcubic Graphs ». Combinatorics, Probability and Computing 25, no 5 (21 juin 2016) : 768–90. http://dx.doi.org/10.1017/s0963548316000201.

Texte intégral
Résumé :
It is proved that the median eigenvalues of every connected bipartite graph G of maximum degree at most three belong to the interval [−1, 1] with a single exception of the Heawood graph, whose median eigenvalues are $\pm\sqrt{2}$. Moreover, if G is not isomorphic to the Heawood graph, then a positive fraction of its median eigenvalues lie in the interval [−1, 1]. This surprising result has been motivated by the problem about HOMO-LUMO separation that arises in mathematical chemistry.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Bu, Yuehua, et Hongguo Zhu. « Strong edge-coloring of subcubic planar graphs ». Discrete Mathematics, Algorithms and Applications 09, no 01 (février 2017) : 1750013. http://dx.doi.org/10.1142/s1793830917500136.

Texte intégral
Résumé :
A strong[Formula: see text]-edge-coloring of a graph [Formula: see text] is a mapping [Formula: see text]: [Formula: see text], such that [Formula: see text] for every pair of distinct edges at distance at most two. The strong chromatical index of a graph [Formula: see text] is the least integer [Formula: see text] such that [Formula: see text] has a strong-[Formula: see text]-edge-coloring, denoted by [Formula: see text]. In this paper, we prove [Formula: see text] for any subcubic planar graph with [Formula: see text] and [Formula: see text]-cycles are not adjacent to [Formula: see text]-cycles.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Cranston, Daniel W., et Seog-Jin Kim. « List-coloring the square of a subcubic graph ». Journal of Graph Theory 57, no 1 (2007) : 65–87. http://dx.doi.org/10.1002/jgt.20273.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

HE, Zhengyue, Li LIANG et Wei GAO. « Two-distance vertex-distinguishing total coloring of subcubic graphs ». Proceedings of the Romanian Academy, Series A : Mathematics, Physics, Technical Sciences, Information Science 24, no 2 (28 juin 2023) : 113–20. http://dx.doi.org/10.59277/pra-ser.a.24.2.02.

Texte intégral
Résumé :
A 2-distance vertex-distinguishing total coloring of graph G is a proper total coloring of G such that any pair of vertices at distance of two have distinct sets of colors. The 2-distance vertex-distinguishing total chromatic number $\chi_{d2}^{''}(G)$ of G is the minimum number of colors needed for a 2-distance vertex-distinguishing total coloring of G. In this paper, it's proved that if G is a subcubic graph, then $\chi_{d2}^{''}(G)\le 7$.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Woodall, Douglas R. « The average degree of a subcubic edge‐chromatic critical graph ». Journal of Graph Theory 91, no 2 (29 novembre 2018) : 103–21. http://dx.doi.org/10.1002/jgt.22423.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Little, C. H. C., et F. Rendl. « Operations preserving the pfaffian property of a graph ». Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 50, no 2 (avril 1991) : 248–57. http://dx.doi.org/10.1017/s1446788700032730.

Texte intégral
Résumé :
AbstractPfaffian graphs are those which can be oriented so that the 1-factors have equal sign, as calculated according to the prescription of Kasteleyn. We consider various operations on graphs and examine their effect on the Pfaffian property. We show that the study of Pfaffian graphs may be reduced to the case of subcubic graphs (graphs in which no vertex has degree greater than 3) or bricks (3-connected bicritical graphs).
Styles APA, Harvard, Vancouver, ISO, etc.
11

Gharibyan, Aram H., et Petros A. Petrosyan. « ON LOCALLY-BALANCED 2-PARTITIONS OF BIPARTITE GRAPHS ». Proceedings of the YSU A : Physical and Mathematical Sciences 54, no 3 (253) (15 décembre 2020) : 137–45. http://dx.doi.org/10.46991/pysu:a/2020.54.3.137.

Texte intégral
Résumé :
A \emph{$2$-partition of a graph $G$} is a function $f:V(G)\rightarrow \{0,1\}$. A $2$-partition $f$ of a graph $G$ is a \emph{locally-balanced with an open neighborhood}, if for every $v\in V(G)$, $\left\vert \vert \{u\in N_{G}(v)\colon\,f(u)=0\}\vert - \vert \{u\in N_{G}(v)\colon\,f(u)=1\}\vert \right\vert\leq 1$. A bipartite graph is \emph{$(a,b)$-biregular} if all vertices in one part have degree $a$ and all vertices in the other part have degree $b$. In this paper we prove that the problem of deciding, if a given graph has a locally-balanced $2$-partition with an open neighborhood is $NP$-complete even for $(3,8)$-biregular bipartite graphs. We also prove that a $(2,2k+1)$-biregular bipartite graph has a locally-balanced $2$-partition with an open neighbourhood if and only if it has no cycle of length $2 \pmod{4}$. Next, we prove that if $G$ is a subcubic bipartite graph that has no cycle of length $2 \pmod{4}$, then $G$ has a locally-balanced $2$-partition with an open neighbourhood. Finally, we show that all doubly convex bipartite graphs have a locally-balanced $2$-partition with an open neighbourhood.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Chen, Lily, et Yanyi Li. « A New Proof for a Result on the Inclusion Chromatic Index of Subcubic Graphs ». Axioms 11, no 1 (17 janvier 2022) : 33. http://dx.doi.org/10.3390/axioms11010033.

Texte intégral
Résumé :
Let G be a graph with a minimum degree δ of at least two. The inclusion chromatic index of G, denoted by χ⊂′(G), is the minimum number of colors needed to properly color the edges of G so that the set of colors incident with any vertex is not contained in the set of colors incident to any of its neighbors. We prove that every connected subcubic graph G with δ(G)≥2 either has an inclusion chromatic index of at most six, or G is isomorphic to K^2,3, where its inclusion chromatic index is seven.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Bueno, Letícia R., Lucia D. Penso, Fábio Protti, Victor R. Ramos, Dieter Rautenbach et Uéverton S. Souza. « On the hardness of finding the geodetic number of a subcubic graph ». Information Processing Letters 135 (juillet 2018) : 22–27. http://dx.doi.org/10.1016/j.ipl.2018.02.012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Khoeilar, R., H. Karami, M. Chellali, S. M. Sheikholeslami et L. Volkmann. « A proof of a conjecture on the differential of a subcubic graph ». Discrete Applied Mathematics 287 (décembre 2020) : 27–39. http://dx.doi.org/10.1016/j.dam.2020.07.018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Feghali, Carl, et Robert Šámal. « Decomposing a triangle-free planar graph into a forest and a subcubic forest ». European Journal of Combinatorics 116 (février 2024) : 103878. http://dx.doi.org/10.1016/j.ejc.2023.103878.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Kim, Seog-Jin, et Xiaopan Lian. « The square of every subcubic planar graph of girth at least 6 is 7-choosable ». Discrete Mathematics 347, no 6 (juin 2024) : 113963. http://dx.doi.org/10.1016/j.disc.2024.113963.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Lei, Yuxiang, Yulei Sui, Shin Hwei Tan et Qirun Zhang. « Recursive State Machine Guided Graph Folding for Context-Free Language Reachability ». Proceedings of the ACM on Programming Languages 7, PLDI (6 juin 2023) : 318–42. http://dx.doi.org/10.1145/3591233.

Texte intégral
Résumé :
Context-free language reachability (CFL-reachability) is a fundamental framework for program analysis. A large variety of static analyses can be formulated as CFL-reachability problems, which determines whether specific source-sink pairs in an edge-labeled graph are connected by a reachable path, i.e., a path whose edge labels form a string accepted by the given CFL. Computing CFL-reachability is expensive. The fastest algorithm exhibits a slightly subcubic time complexity with respect to the input graph size. Improving the scalability of CFL-reachability is of practical interest, but reducing the time complexity is inherently difficult. In this paper, we focus on improving the scalability of CFL-reachability from a more practical perspective---reducing the input graph size. Our idea arises from the existence of trivial edges, i.e., edges that do not affect any reachable path in CFL-reachability. We observe that two nodes joined by trivial edges can be folded---by merging the two nodes with all the edges joining them removed---without affecting the CFL-reachability result. By studying the characteristic of the recursive state machines (RSMs), an alternative form of CFLs, we propose an approach to identify foldable node pairs without the need to verify the underlying reachable paths (which is equivalent to solving the CFL-reachability problem). In particular, given a CFL-reachability problem instance with an input graph G and an RSM, based on the correspondence between paths in G and state transitions in RSM, we propose a graph folding principle, which can determine whether two adjacent nodes are foldable by examining only their incoming and outgoing edges. On top of the graph folding principle, we propose an efficient graph folding algorithm GF. The time complexity of GF is linear with respect to the number of nodes in the input graph. Our evaluations on two clients (alias analysis and value-flow analysis) show that GF significantly accelerates RSM/CFL-reachability by reducing the input graph size. On average, for value-flow analysis, GF reduces 60.96% of nodes and 42.67% of edges of the input graphs, obtaining a speedup of 4.65× and a memory usage reduction of 57.35%. For alias analysis, GF reduces 38.93% of nodes and 35.61% of edges of the input graphs, obtaining a speedup of 3.21× and a memory usage reduction of 65.19%.
Styles APA, Harvard, Vancouver, ISO, etc.
18

JOHNSON, J. ROBERT, et KLAS MARKSTRÖM. « Turán and Ramsey Properties of Subcube Intersection Graphs ». Combinatorics, Probability and Computing 22, no 1 (3 octobre 2012) : 55–70. http://dx.doi.org/10.1017/s0963548312000429.

Texte intégral
Résumé :
The discrete cube {0, 1}d is a fundamental combinatorial structure. A subcube of {0, 1}d is a subset of 2k of its points formed by fixing k coordinates and allowing the remaining d − k to vary freely. This paper is concerned with patterns of intersections among subcubes of the discrete cube. Two sample questions along these lines are as follows: given a family of subcubes in which no r + 1 of them have non-empty intersection, how many pairwise intersections can we have? How many subcubes can we have if among them there are no k which have non-empty intersection and no l which are pairwise disjoint?These questions are naturally expressed using intersection graphs. The intersection graph of a family of sets has one vertex for each set in the family with two vertices being adjacent if the corresponding subsets intersect. Let $\I(n,d)$ be the set of all n vertex graphs which can be represented as the intersection graphs of subcubes in {0, 1}d. With this notation our first question above asks for the largest number of edges in a Kr+1-free graph in $\I(n,d)$. As such it is a Turán-type problem. We answer this question asymptotically for some ranges of r and d. More precisely we show that if $(k+1)2^{\lfloor\frac{d}{k+1}\rfloor}<n\leq k2^{\lfloor\frac{d}{k}\rfloor}$ for some integer k ≥ 2 then the maximum edge density is $\bigl(1-\frac{1}{k}-o(1)\bigr)$ provided that n is not too close to the lower limit of the range.The second question can be thought of as a Ramsey-type problem. The maximum such n can be defined in the same way as the usual Ramsey number but only considering graphs which are in $\I(n,d)$. We give bounds for this maximum n mainly concentrating on the case that l is fixed, and make some comparisons with the usual Ramsey number.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Wang, Dijian, et Yaoping Hou. « Integral signed subcubic graphs ». Linear Algebra and its Applications 593 (mai 2020) : 29–44. http://dx.doi.org/10.1016/j.laa.2020.01.037.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Bessy, Stéphane, Johannes Pardey et Dieter Rautenbach. « Exponential independence in subcubic graphs ». Discrete Mathematics 344, no 8 (août 2021) : 112439. http://dx.doi.org/10.1016/j.disc.2021.112439.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Karthick, T., et C. R. Subramanian. « Star coloring of subcubic graphs ». Discussiones Mathematicae Graph Theory 33, no 2 (2013) : 373. http://dx.doi.org/10.7151/dmgt.1672.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Joos, Felix, Dieter Rautenbach et Thomas Sasse. « Induced Matchings in Subcubic Graphs ». SIAM Journal on Discrete Mathematics 28, no 1 (janvier 2014) : 468–73. http://dx.doi.org/10.1137/130944424.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Skulrattanakulchai, San. « Acyclic colorings of subcubic graphs ». Information Processing Letters 92, no 4 (novembre 2004) : 161–67. http://dx.doi.org/10.1016/j.ipl.2004.08.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Liu, Chun-Hung, et Gexin Yu. « Linear colorings of subcubic graphs ». European Journal of Combinatorics 34, no 6 (août 2013) : 1040–50. http://dx.doi.org/10.1016/j.ejc.2013.02.008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

ANGELES-CANUL, RICARDO JAVIER, RACHAEL M. NORTON, MICHAEL C. OPPERMAN, CHRISTOPHER C. PARIBELLO, MATTHEW C. RUSSELL et CHRISTINO TAMON. « QUANTUM PERFECT STATE TRANSFER ON WEIGHTED JOIN GRAPHS ». International Journal of Quantum Information 07, no 08 (décembre 2009) : 1429–45. http://dx.doi.org/10.1142/s0219749909006103.

Texte intégral
Résumé :
This paper studies quantum perfect state transfer on weighted graphs. We prove that the join of a weighted two-vertex graph with any regular graph has perfect state transfer. This generalizes a result of Casaccino et al.1 where the regular graph is a complete graph with or without a missing edge. In contrast, we prove that the half-join of a weighted two-vertex graph with any weighted regular graph has no perfect state transfer. As a corollary, unlike for complete graphs, adding weights in complete bipartite graphs does not produce perfect state transfer. We also observe that any Hamming graph has perfect state transfer between each pair of its vertices. The result is a corollary of a closure property on weighted Cartesian products of perfect state transfer graphs. Moreover, on a hypercube, we show that perfect state transfer occurs between uniform superpositions on pairs of arbitrary subcubes, thus generalizing results of Bernasconi et al.2 and Moore and Russell.3
Styles APA, Harvard, Vancouver, ISO, etc.
26

Munaro, Andrea. « On line graphs of subcubic triangle-free graphs ». Discrete Mathematics 340, no 6 (juin 2017) : 1210–26. http://dx.doi.org/10.1016/j.disc.2017.01.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Pradeep, Kavita, et V. Vijayalakshmi. « Star Edge Coloring of Subcubic Graphs ». Applied Mathematics & ; Information Sciences 13, no 2 (1 mars 2019) : 279–84. http://dx.doi.org/10.18576/amis/130216.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Małafiejska, Anna, et Michał Małafiejski. « Interval incidence coloring of subcubic graphs ». Discussiones Mathematicae Graph Theory 37, no 2 (2017) : 427. http://dx.doi.org/10.7151/dmgt.1962.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Atanasov, Risto, Mirko Petruševski et Riste Škrekovski. « Odd edge-colorability of subcubic graphs ». Ars Mathematica Contemporanea 10, no 2 (1 mars 2016) : 359–70. http://dx.doi.org/10.26493/1855-3974.957.97c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Wigal, Michael C., Youngho Yoo et Xingxing Yu. « Approximating TSP walks in subcubic graphs ». Journal of Combinatorial Theory, Series B 158 (janvier 2023) : 70–104. http://dx.doi.org/10.1016/j.jctb.2022.09.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Kang, Ross J., Matthias Mnich et Tobias Müller. « Induced Matchings in Subcubic Planar Graphs ». SIAM Journal on Discrete Mathematics 26, no 3 (janvier 2012) : 1383–411. http://dx.doi.org/10.1137/100808824.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Chen, Min, et André Raspaud. « Acyclic improper choosability of subcubic graphs ». Applied Mathematics and Computation 356 (septembre 2019) : 92–98. http://dx.doi.org/10.1016/j.amc.2019.03.027.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Zhang, Xin. « Equitable vertex arboricity of subcubic graphs ». Discrete Mathematics 339, no 6 (juin 2016) : 1724–26. http://dx.doi.org/10.1016/j.disc.2016.02.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Basavaraju, Manu, et L. Sunil Chandran. « Acyclic edge coloring of subcubic graphs ». Discrete Mathematics 308, no 24 (décembre 2008) : 6650–53. http://dx.doi.org/10.1016/j.disc.2007.12.036.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Kavita Pradeep et V Vijayalakshmi. « Star Chromatic Index of Subcubic Graphs ». Electronic Notes in Discrete Mathematics 53 (septembre 2016) : 155–64. http://dx.doi.org/10.1016/j.endm.2016.05.014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Brešar, Boštjan, Nicolas Gastineau et Olivier Togni. « Packing colorings of subcubic outerplanar graphs ». Aequationes mathematicae 94, no 5 (28 avril 2020) : 945–67. http://dx.doi.org/10.1007/s00010-020-00721-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Hocquard, Hervé, et Petru Valicov. « Strong edge colouring of subcubic graphs ». Discrete Applied Mathematics 159, no 15 (septembre 2011) : 1650–57. http://dx.doi.org/10.1016/j.dam.2011.06.015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Gui, Hao, Weifan Wang, Yiqiao Wang et Zhao Zhang. « Equitable total-coloring of subcubic graphs ». Discrete Applied Mathematics 184 (mars 2015) : 167–70. http://dx.doi.org/10.1016/j.dam.2014.11.014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Fürst, Maximilian, Michael A. Henning et Dieter Rautenbach. « Uniquely restricted matchings in subcubic graphs ». Discrete Applied Mathematics 262 (juin 2019) : 189–94. http://dx.doi.org/10.1016/j.dam.2019.02.013.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Chen, Min, André Raspaud et Weifan Wang. « 6-Star-Coloring of Subcubic Graphs ». Journal of Graph Theory 72, no 2 (1 juin 2012) : 128–45. http://dx.doi.org/10.1002/jgt.21636.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Aboulker, Pierre, Marko Radovanović, Nicolas Trotignon, Théophile Trunck et Kristina Vušković. « Linear Balanceable and Subcubic Balanceable Graphs* ». Journal of Graph Theory 75, no 2 (14 février 2013) : 150–66. http://dx.doi.org/10.1002/jgt.21728.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Foucaud, Florent, Hervé Hocquard, Suchismita Mishra, Narayanan Narayanan, Reza Naserasr, Éric Sopena et Petru Valicov. « Exact square coloring of subcubic planar graphs ». Discrete Applied Mathematics 293 (avril 2021) : 74–89. http://dx.doi.org/10.1016/j.dam.2021.01.007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Kerdjoudj, Samia, Alexander V. Kostochka et André Raspaud. « List star edge-coloring of subcubic graphs ». Discussiones Mathematicae Graph Theory 38, no 4 (2018) : 1037. http://dx.doi.org/10.7151/dmgt.2037.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Kostochka, Alexandr, et Xujun Liu. « Packing (1,1,2,4)-coloring of subcubic outerplanar graphs ». Discrete Applied Mathematics 302 (octobre 2021) : 8–15. http://dx.doi.org/10.1016/j.dam.2021.05.031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Lv, Jian-Bo, Jianxi Li et Nian Hong Zhou. « List injective edge-coloring of subcubic graphs ». Discrete Applied Mathematics 302 (octobre 2021) : 163–70. http://dx.doi.org/10.1016/j.dam.2021.07.010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Dvořák, Zdeněk, Riste Škrekovski et Martin Tancer. « List-Coloring Squares of Sparse Subcubic Graphs ». SIAM Journal on Discrete Mathematics 22, no 1 (janvier 2008) : 139–59. http://dx.doi.org/10.1137/050634049.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Huo, Jingjing, Weifan Wang et Chuandong Xu. « Neighbor Sum Distinguishing Index of Subcubic Graphs ». Graphs and Combinatorics 33, no 2 (7 janvier 2017) : 419–31. http://dx.doi.org/10.1007/s00373-017-1760-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Gu, Jing, Weifan Wang, Yiqiao Wang et Ying Wang. « Strict Neighbor-Distinguishing Index of Subcubic Graphs ». Graphs and Combinatorics 37, no 1 (9 novembre 2020) : 355–68. http://dx.doi.org/10.1007/s00373-020-02246-w.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Juvan, Martin, Bojan Mohar et Riste Sˇkrekovski. « On list edge-colorings of subcubic graphs ». Discrete Mathematics 187, no 1-3 (juin 1998) : 137–49. http://dx.doi.org/10.1016/s0012-365x(97)00230-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Zhu, Xuding. « Bipartite density of triangle-free subcubic graphs ». Discrete Applied Mathematics 157, no 4 (février 2009) : 710–14. http://dx.doi.org/10.1016/j.dam.2008.07.007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie