Littérature scientifique sur le sujet « Structures »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Structures ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Structures"
Yamasaki, Satoshi, et Kazuhiko Fukui. « 2P266 Tertiary structure prediction of RNA-RNA complex structures using secondary structure information(22A. Bioinformatics : Structural genomics,Poster) ». Seibutsu Butsuri 53, supplement1-2 (2013) : S203. http://dx.doi.org/10.2142/biophys.53.s203_1.
Texte intégralJanoschek, Rudolf. « Structures, Structures, and Structures ». Angewandte Chemie International Edition in English 31, no 3 (mars 1992) : 290–92. http://dx.doi.org/10.1002/anie.199202901.
Texte intégralSmith, Henry E. « Structured Settlements as Structures of Rights ». Virginia Law Review 88, no 8 (décembre 2002) : 1953. http://dx.doi.org/10.2307/1074013.
Texte intégralHORNUNG, Martin, Takahisa DOBA, Rajat AGARWAL, Mark BUTLER et Olaf LAMMERSCHOP. « Structural Adhesives for Energy Management and Reinforcement of Body Structures ». Journal of The Adhesion Society of Japan 44, no 7 (2008) : 258–63. http://dx.doi.org/10.11618/adhesion.44.258.
Texte intégralIbrahim, M. K. « Radix-2nmultiplier structures : a structured design methodology ». IEE Proceedings E (Computers and Digital Techniques) 140, no 4 (juillet 1993) : 185–90. http://dx.doi.org/10.1049/ip-e.1993.0026.
Texte intégralElyiğit, Belkıs, et Cevdet Emin Ekinci. « A RESEARCH ON STRUCTURAL AND NON-STRUCTURAL DAMAGES AND DAMAGE ASSESSMENT IN REINFORCED CONCRETE STRUCTURES ». NWSA Academic Journals 18, no 2 (25 avril 2023) : 19–42. http://dx.doi.org/10.12739/nwsa.2023.18.2.1a0485.
Texte intégralKhalaf, Mohammed M., et Ahmed Elmoasry. « -WEAK STRUCTURES ». Indian Journal of Applied Research 4, no 1 (1 octobre 2011) : 351–55. http://dx.doi.org/10.15373/2249555x/jan2014/103.
Texte intégralZilberman, M., N. D. Schwade, R. S. Meidell et R. C. Eberhart. « Structured drug-loaded bioresorbable films for support structures ». Journal of Biomaterials Science, Polymer Edition 12, no 8 (janvier 2001) : 875–92. http://dx.doi.org/10.1163/156856201753113079.
Texte intégralKraus, Felix, Ezequiel Miron, Justin Demmerle, Tsotne Chitiashvili, Alexei Budco, Quentin Alle, Atsushi Matsuda, Heinrich Leonhardt, Lothar Schermelleh et Yolanda Markaki. « Quantitative 3D structured illumination microscopy of nuclear structures ». Nature Protocols 12, no 5 (13 avril 2017) : 1011–28. http://dx.doi.org/10.1038/nprot.2017.020.
Texte intégralJie Chen, M. K. H. Fan et C. N. Nett. « Structured singular values with nondiagonal structures. I. Characterizations ». IEEE Transactions on Automatic Control 41, no 10 (1996) : 1507–11. http://dx.doi.org/10.1109/9.539434.
Texte intégralThèses sur le sujet "Structures"
Guy, Nicolas. « Modèle et commande structurés : application aux grandes structures spatiales flexibles ». Thesis, Toulouse, ISAE, 2013. http://www.theses.fr/2013ESAE0036/document.
Texte intégralIn this thesis, modeling and robust attitude control problems of large flexible space structures are considered. To meet the required pointing performance of future space missions scenarios, we propose to directly optimize a reduced order control law on high order model validation and criteria that directly exploit the model structure. Thus, the work of this thesis is naturally divided into two parts : one part on obtaining a wisely structured dynamic model of the spacecraft to be used in the synthesis step, a second part about getting the law control. This work is illustrated on the example of the academic spring-masses system, which is the simplest representation of a one degree of freedom flexible system. In addition, a geostationary satellite study case is processed to validate developed approaches on a more realistic example of an industrial problem
Sibai, Munira. « Optimization of an Unfurlable Space Structure ». Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/99908.
Texte intégralMaster of Science
Spacecraft, or artificial satellites, do not fly from earth to space on their own. They are launched into their orbits by placing them inside launch vehicles, also known as carrier rockets. Some parts or components of spacecraft are large and cannot fit in their designated space inside launch vehicles without being stowed into smaller volumes first. Examples of large components on spacecraft include solar arrays, which provide power to the spacecraft, and antennas, which are used on satellite for communication purposes. Many methods have been developed to stow such large components. Many of these methods involve folding about joints or hinges, whether it is done in a simple manner or by more complex designs. Moreover, components that are flexible enough could be rolled or wrapped before they are placed in launch vehicles. This method reduces the mass which the launch vehicle needs to carry, since added mass of joints is eliminated. Low mass is always desirable in space applications. Furthermore, wrapping is very effective at minimizing the volume of a component. These structures store energy inside them as they are wrapped due to the stiffness of their materials. This behavior is identical to that observed in a deformed spring. When the structures are released in space, that energy is released, and thus, they deploy and try to return to their original form. This is due to inertia, where the stored strain energy turns into kinetic energy as the structure deploys. The physical analysis of these structures, which enables their design, is complex and requires computational solutions and numerical modeling. The best design for a given problem can be found through numerical optimization. Numerical optimization uses mathematical approximations and computer programming to give the values of design parameters that would result in the best design based on specified criterion and goals. In this thesis, numerical optimization was conducted for a simple unfurlable structure. The structure consists of a thin rectangular panel that wraps tightly around a central cylinder. The cylinder and panel are connected with a hinge that is a rotational spring with some stiffness. The optimization was solved to obtain the best values for the stiffness of the hinge, the thickness of the panel, which is allowed to vary along its length, and the stiffness or elasticity of the panel's material. The goals or objective of the optimization was to ensure that the deployed panel meets stiffness requirement specified for similar space components. Those requirements are set to make certain that the spacecraft can be controlled from earth even with its large component deployed. Additionally, the second goal of the optimization was to guarantee that the unfurling panel does not have very high energy stored while it's wrapped, so that it would not cause large motion the connected spacecraft in the zero gravity environments of space. A computer simulation was run with the resulting hinge stiffness and panel elasticity and thickness values with the cylinder and four panels connected to a structure representing a spacecraft. The simulation results and deployment animation were assessed to confirm that desired results were achieved.
Keyhani, Ali. « A Study On The Predictive Optimal Active Control Of Civil Engineering Structures ». Thesis, Indian Institute of Science, 2000. https://etd.iisc.ac.in/handle/2005/223.
Texte intégralKeyhani, Ali. « A Study On The Predictive Optimal Active Control Of Civil Engineering Structures ». Thesis, Indian Institute of Science, 2000. http://hdl.handle.net/2005/223.
Texte intégralPeters, David W. « Design of diffractive optical elements through low-dimensional optimization ». Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/54614.
Texte intégralPlessas, Spyridon D. « Fluid-structure interaction in composite structures ». Thesis, Monterey, California : Naval Postgraduate School, 2014. http://hdl.handle.net/10945/41432.
Texte intégralIn this research, dynamic characteristics of polymer composite beam and plate structures were studied when the structures were in contact with water. The effect of fluid-structure interaction (FSI) on natural frequencies, mode shapes, and dynamic responses was examined for polymer composite structures using multiphysics-based computational techniques. Composite structures were modeled using the finite element method. The fluid was modeled as an acoustic medium using the cellular automata technique. Both techniques were coupled so that both fluid and structure could interact bi-directionally. In order to make the coupling easier, the beam and plate finite elements have only displacement degrees of freedom but no rotational degrees of freedom. The fast Fourier transform (FFT) technique was applied to the transient responses of the composite structures with and without FSI, respectively, so that the effect of FSI can be examined by comparing the two results. The study showed that the effect of FSI is significant on dynamic properties of polymer composite structures. Some previous experimental observations were confirmed using the results from the computer simulations, which also enhanced understanding the effect of FSI on dynamic responses of composite structures.
Carpentier, Mathilde. « Méthodes de détection des similarités structurales : caractérisation des motifs conservés dans les familles de structures pour l' annotation des génomes ». Paris 6, 2005. http://www.theses.fr/2005PA066571.
Texte intégralEdrees, Tarek. « Structural Identification of Civil Engineering Structures ». Licentiate thesis, Luleå tekniska universitet, Byggkonstruktion och -produktion, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-26719.
Texte intégralGodkänd; 2014; 20141023 (taredr); Nedanstående person kommer att hålla licentiatseminarium för avläggande av teknologie licentiatexamen. Namn: Tarek Edrees Saaed Ämne: Konstruktionsteknik/Structural Engineering Uppsats: Structural Identification of Civil Engineering Structures Examinator: Professor Jan-Erik Jonasson, Institutionen för samhällsbyggnad och naturresurser, Luleå tekniska universitet Diskutant: Forskare Andreas Andersson, Brobyggnad inklusive Stålbyggnad, Kungliga Tekniska Högskolan Tid: Torsdag den 20 november 2014 kl 10:00 Plats: F1031, Luleå tekniska universitet
BABAEI, IMAN. « Structural Testing of Composite Crash Structures ». Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2910072.
Texte intégralRasmussen, Kim J. R. « Stability of thin-walled structural members and systems ». Thesis, The University of Sydney, 2017. http://hdl.handle.net/2123/18194.
Texte intégralLivres sur le sujet "Structures"
Baerlocher, C., J. M. Bennett, W. Depmeier, A. N. Fitch, H. Jobic, H. van Koningsveld, W. M. Meier, A. Pfenninger et O. Terasaki, dir. Structures and Structure Determination. Berlin, Heidelberg : Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-69749-7.
Texte intégralKwon, Young W. Fluid-Structure Interaction of Composite Structures. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57638-7.
Texte intégralBui, Tinh Quoc, Le Thanh Cuong et Samir Khatir, dir. Structural Health Monitoring and Engineering Structures. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0945-9.
Texte intégralMoreira, Pedro M. G. P., Lucas F. M. da Silva et Paulo M. S. T. de Castro, dir. Structural Connections for Lightweight Metallic Structures. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-18187-0.
Texte intégralChamis, C. C. Computational structural mechanics for engine structures. [Washington, DC] : National Aeronautics and Space Administration, 1989.
Trouver le texte intégralM, Silva Lucas F., Castro, Paulo M.S.T. et SpringerLink (Online service), dir. Structural Connections for Lightweight Metallic Structures. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012.
Trouver le texte intégralMoore, Fuller. Understanding structures = Introduction to structural systems. Taipei : McGraw Hill, 2000.
Trouver le texte intégralInternational Association for Shell and Spatial Structures, dir. Structural design of retractable roof structures. Southampton : WIT, 2000.
Trouver le texte intégralOrganisation for Economic Co-operation and Development., dir. Industrial structure statistics = : Statistiques des structures industrielles. Paris : O.E.C.D., 1987.
Trouver le texte intégralSchodek, Daniel L. Structures. 2e éd. Englewood Cliffs, N.J : Prentice-Hall, 1991.
Trouver le texte intégralChapitres de livres sur le sujet "Structures"
Kahle, Reinhard. « Structure and Structures ». Dans Boston Studies in the Philosophy and History of Science, 109–20. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93342-9_7.
Texte intégralHu, Hong-Song. « Peak Superstructure Responses of Single-Story Sliding Base Structures Under Earthquake Excitation ». Dans Sliding Base Structures, 45–65. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-5107-9_4.
Texte intégralStimpfle, Bernd. « Structural Air — Pneumatic Structures ». Dans Textile Composites and Inflatable Structures II, 233–52. Dordrecht : Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6856-0_13.
Texte intégralWilliams, M. S., et J. D. Todd. « Introducing structures ». Dans Structures, 1–30. London : Macmillan Education UK, 2000. http://dx.doi.org/10.1007/978-1-349-90789-2_1.
Texte intégralWilliams, M. S., et J. D. Todd. « The finite element method ». Dans Structures, 286–314. London : Macmillan Education UK, 2000. http://dx.doi.org/10.1007/978-1-349-90789-2_10.
Texte intégralWilliams, M. S., et J. D. Todd. « Buckling and instability ». Dans Structures, 315–43. London : Macmillan Education UK, 2000. http://dx.doi.org/10.1007/978-1-349-90789-2_11.
Texte intégralWilliams, M. S., et J. D. Todd. « Plastic analysis of structures ». Dans Structures, 344–73. London : Macmillan Education UK, 2000. http://dx.doi.org/10.1007/978-1-349-90789-2_12.
Texte intégralWilliams, M. S., et J. D. Todd. « Structural dynamics ». Dans Structures, 374–409. London : Macmillan Education UK, 2000. http://dx.doi.org/10.1007/978-1-349-90789-2_13.
Texte intégralWilliams, M. S., et J. D. Todd. « Plane statics ». Dans Structures, 31–61. London : Macmillan Education UK, 2000. http://dx.doi.org/10.1007/978-1-349-90789-2_2.
Texte intégralWilliams, M. S., et J. D. Todd. « Statically determinate structures ». Dans Structures, 62–96. London : Macmillan Education UK, 2000. http://dx.doi.org/10.1007/978-1-349-90789-2_3.
Texte intégralActes de conférences sur le sujet "Structures"
Downen, Paul, Philip Johnson-Freyd et Zena M. Ariola. « Structures for structural recursion ». Dans ICFP'15 : 20th ACM SIGPLAN International Conference on Functional Programming. New York, NY, USA : ACM, 2015. http://dx.doi.org/10.1145/2784731.2784762.
Texte intégralLee, Yong Kyu, Seong-Joon Yoo, Kyoungro Yoon et P. Bruce Berra. « Index structures for structured documents ». Dans the first ACM international conference. New York, New York, USA : ACM Press, 1996. http://dx.doi.org/10.1145/226931.226950.
Texte intégralWADA, BEN. « Adaptive structures ». Dans 30th Structures, Structural Dynamics and Materials Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-1160.
Texte intégralBruck, Hugh A. « Processing-Structure-Property Relationships in Hierarchically-Structured Polymer Composites for Multifunctional Structures ». Dans ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2008. http://dx.doi.org/10.1115/esda2008-59088.
Texte intégralLeutenegger, Tobias, Dirk H. Schlums et Jurg Dual. « Structural testing of fatigued structures ». Dans 1999 Symposium on Smart Structures and Materials, sous la direction de Norman M. Wereley. SPIE, 1999. http://dx.doi.org/10.1117/12.350775.
Texte intégralWADA, BEN, et SENOL UTKU. « Adaptive structures for deployment/construction of structures in space ». Dans 33rd Structures, Structural Dynamics and Materials Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-2339.
Texte intégralTaron, Joshua. « Speculative Structures : Reanimating Latent Structural Intelligence in Agent-based Continuum Structures ». Dans eCAADe 2012 : Digital Physicality. eCAADe, 2012. http://dx.doi.org/10.52842/conf.ecaade.2012.1.365.
Texte intégralTaron, Joshua. « Speculative Structures : Reanimating Latent Structural Intelligence in Agent-based Continuum Structures ». Dans eCAADe 2012 : Digital Physicality. eCAADe, 2012. http://dx.doi.org/10.52842/conf.ecaade.2012.1.365.
Texte intégralNOOR, AHMED. « Computational structures technology ». Dans 33rd Structures, Structural Dynamics and Materials Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-2442.
Texte intégral« Structure/Flow Interaction in Inflatable Structures ». Dans 55th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Reston, Virigina : American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.iac-04-u.3.a.06.
Texte intégralRapports d'organisations sur le sujet "Structures"
Ebeling, Robert, et Barry White. Load and resistance factors for earth retaining, reinforced concrete hydraulic structures based on a reliability index (β) derived from the Probability of Unsatisfactory Performance (PUP) : phase 2 study. Engineer Research and Development Center (U.S.), mars 2021. http://dx.doi.org/10.21079/11681/39881.
Texte intégralWeinstein Agrawal, Asha, Samuel Speroni, Michael Manville et Brian D. Taylor. Pay-As-You-Go Driving : Examining Possible Road-User Charge Rate Structures for California. Mineta Transporation Institute, octobre 2023. http://dx.doi.org/10.31979/mti.2023.2149.
Texte intégralSullivan, Brian J., et Kent W. Buesking. Structural Integrity of Intelligent Materials and Structures. Fort Belvoir, VA : Defense Technical Information Center, février 1994. http://dx.doi.org/10.21236/ada280941.
Texte intégralFuller, Chris R. Active Structural Acoustic Control and Smart Structures. Fort Belvoir, VA : Defense Technical Information Center, septembre 1991. http://dx.doi.org/10.21236/ada248341.
Texte intégralInman, Daniel J., Armaghan Salhian et Pablo Tarazaga. Structural Dynamics of Cable Harnessed Spacecraft Structures. Fort Belvoir, VA : Defense Technical Information Center, juillet 2013. http://dx.doi.org/10.21236/ada588127.
Texte intégralFernandez, Jasmine, Michaela Bonnett, Teri Garstka et Meaghan Kennedy. Exploring Social Care Network Structures. Orange Sparkle Ball, juin 2024. http://dx.doi.org/10.61152/hdnz4028https://www.orangesparkleball.com/innovation-library-blog/2024/5/30/sunbelt2024-exploring-social-care-network-structures.
Texte intégralFernandez, Jasmine, Michaela Bonnett, Teri Garstka et Meaghan Kennedy. Exploring Social Care Network Structures. Orange Sparkle Ball, juin 2024. http://dx.doi.org/10.61152/hdnz4028.
Texte intégralIssa, Mohsen A. Structural Evaluation Procedures for Heavy Wood Truss Structures. Fort Belvoir, VA : Defense Technical Information Center, juillet 1998. http://dx.doi.org/10.21236/ada362404.
Texte intégralAllen, J., et J. Lauffer. Integrated structural control design of large space structures. Office of Scientific and Technical Information (OSTI), janvier 1995. http://dx.doi.org/10.2172/10115453.
Texte intégralHadjipanayis, George, et Alexander Gabay. Electronic Structure and Spin Correlations in Novel Magnetic Structures. Office of Scientific and Technical Information (OSTI), juin 2021. http://dx.doi.org/10.2172/1797990.
Texte intégral