Littérature scientifique sur le sujet « Storm prediction »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Storm prediction ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Storm prediction"
Siek, M., et D. P. Solomatine. « Nonlinear chaotic model for predicting storm surges ». Nonlinear Processes in Geophysics 17, no 5 (6 septembre 2010) : 405–20. http://dx.doi.org/10.5194/npg-17-405-2010.
Texte intégralGe, Zongyuan. « Description, Origination and Prediction of Geomagnetic Storm ». Highlights in Science, Engineering and Technology 72 (15 décembre 2023) : 217–30. http://dx.doi.org/10.54097/cpf07c70.
Texte intégralTausia, Javier, Camus Paula, Ana Rueda, Fernando Mendez, Sébastien Delaux, Karin Bryan, Antonio Cofino, Carine Costa, Jorge Perez et Remy Zingfogel. « SHORT TERM SPATIALLY DENSE PREDICTION OF STORM SURGE ALONG THE NEW ZEALAND COASTLINE ». Coastal Engineering Proceedings, no 37 (1 septembre 2023) : 119. http://dx.doi.org/10.9753/icce.v37.management.119.
Texte intégralTang, Rongxin, Fantao Zeng, Zhou Chen, Jing-Song Wang, Chun-Ming Huang et Zhiping Wu. « The Comparison of Predicting Storm-Time Ionospheric TEC by Three Methods : ARIMA, LSTM, and Seq2Seq ». Atmosphere 11, no 4 (25 mars 2020) : 316. http://dx.doi.org/10.3390/atmos11040316.
Texte intégralSalmun, H., A. Molod, K. Wisniewska et F. S. Buonaiuto. « Statistical Prediction of the Storm Surge Associated with Cool-Weather Storms at the Battery, New York ». Journal of Applied Meteorology and Climatology 50, no 2 (1 février 2011) : 273–82. http://dx.doi.org/10.1175/2010jamc2459.1.
Texte intégralChakraborty, Shibaji, et Steven Karl Morley. « Probabilistic prediction of geomagnetic storms and the Kp index ». Journal of Space Weather and Space Climate 10 (2020) : 36. http://dx.doi.org/10.1051/swsc/2020037.
Texte intégralŠaur, David, et Juan Carlos Beltrán-Prieto. « Algorithm of conversion of meteorological model parameters ». MATEC Web of Conferences 292 (2019) : 01032. http://dx.doi.org/10.1051/matecconf/201929201032.
Texte intégralBarks, C. Shane. « Adjustment of Regional Regression Equations for Urban Storm-Runoff Quality Using At-Site Data ». Transportation Research Record : Journal of the Transportation Research Board 1523, no 1 (janvier 1996) : 141–46. http://dx.doi.org/10.1177/0361198196152300117.
Texte intégralQiao, Yuezhong, Yaguang Zhuo et Wenming Zhang. « Informer Model based Wind Power Forecast with Tropical Storms Present ». Journal of Physics : Conference Series 2717, no 1 (1 mars 2024) : 012005. http://dx.doi.org/10.1088/1742-6596/2717/1/012005.
Texte intégralŁoś, Marcelina, Kamil Smolak, Guergana Guerova et Witold Rohm. « GNSS-Based Machine Learning Storm Nowcasting ». Remote Sensing 12, no 16 (6 août 2020) : 2536. http://dx.doi.org/10.3390/rs12162536.
Texte intégralThèses sur le sujet "Storm prediction"
Lee, Michael. « Rapid Prediction of Tsunamis and Storm Surges Using Machine Learning ». Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/103154.
Texte intégralDoctor of Philosophy
Tsunami and storm surge can cause extensive damage to coastal communities; to reduce this damage, accurate and fast computer models are needed that can predict the water level change caused by these coastal hazards. The problem is that existing physics-based computer models are either accurate but slow or less accurate but fast. In this dissertation, three new computer models are developed using statistical and machine learning techniques that can rapidly predict a tsunami and storm surge without substantial loss of accuracy compared to the accurate physics-based computer models. Three computer models are as follows: (1) A computer model that can rapidly predict the maximum ground elevation wetted by the tsunami along the coastline from earthquake information, (2) A computer model that can reversely predict a tsunami source and its impact from the observations of the maximum ground elevation wetted by the tsunami, (3) A computer model that can rapidly predict peak storm surges across a wide range of coastal areas from the tropical cyclone's track position over time. These new computer models have the potential to improve forecasting capabilities, advance understanding of historical tsunami and storm surge events, and lead to better preparedness plans for possible future tsunamis and storm surges.
Suyanto, Adhi. « Estimating the exceedance probabilities of extreme floods using stochastic storm transportation and rainfall - runoff modelling ». Thesis, University of Newcastle Upon Tyne, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386794.
Texte intégralHanson, Clair Elizabeth. « A cyclone climatology of the North Atlantic and its implications for the insurance market ». Thesis, University of East Anglia, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365137.
Texte intégralJafari, Alireza. « Analysis and Prediction of Wave Transformation from Offshore into the Surfzone under Storm Condition ». Thesis, Griffith University, 2013. http://hdl.handle.net/10072/366745.
Texte intégralThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Griffith School of Engineering
Science, Environment, Engineering and Technology
Full Text
Anderson, Ian. « Improving Detection And Prediction Of Bridge Scour Damage And Vulnerability Under Extreme Flood Events Using Geomorphic And Watershed Data ». ScholarWorks @ UVM, 2018. https://scholarworks.uvm.edu/graddis/823.
Texte intégralAnderson, John W. « An analysis of a dust storm impacting Operation Iraqi Freedom, 25-27 March 2003 ». Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Dec%5FAnderson.pdf.
Texte intégralZhu, Dan. « Electric Distribution Reliability Analysis Considering Time-varying Load, Weather Conditions and Reconfiguration with Distributed Generation ». Diss., Virginia Tech, 2007. http://hdl.handle.net/10919/26557.
Texte intégralPh. D.
Geggis, Lorna M. « Do you see what I mean ? : Measuring consensus of agreement and understanding of a National Weather Service informational graphic ». [Tampa, Fla.] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0002119.
Texte intégralFrifra, Ayyoub. « Assessing and predicting extreme events in Western France ». Electronic Thesis or Diss., Nantes Université, 2024. http://www.theses.fr/2024NANU2012.
Texte intégralCoastal regions are increasingly exposed to extreme events due to the combined impacts of climate change and urbanization. This thesis examines coastal hazards along France’s western coast, emphasizing storm prediction and the simulation of future vulnerability to coastal urban floodind. The research employs machine learning (ML) and deep learning (DL) approaches to improve hazard prediction and assess potential future risks. It introduces a novel methodology that combines Long Short-Term Memory (LSTM) and Extreme Gradient Boosting (XGBoost) to forecast storm features and occurrences along the western coast of France. Additionally, an urban development modeling system was applied to predict future expansion scenarios in the Vendée region, analyzing potential flood susceptibility under each scenario. An Artificial Neural Network combined with a Markov Chain was utilized to simulate three future urban growth scenarios; business-as-usual, environmental protection, and strategic urban planning. High-risk flood zones and future sea level rise estimates were then used to assess future flood risk under each growth scenario. The research findings demonstrate the efficiency of LSTM and XGBoost in predicting storm characteristics and occurrences. Moreover, the urban growth modeling approach forecasts future development sites and specific urban areas vulnerable to flooding, allowing for the evaluation of the impact of various development trajectories on future flood risk. This thesis contributes to coastal hazard prediction, urban planning, and risk management, providing useful tools for improving resilience and sustainability in coastal zones
Kimock, Joseph. « Predicting commissary store success ». Thesis, Monterey, California : Naval Postgraduate School, 2014. http://hdl.handle.net/10945/44595.
Texte intégralWhat external factors affect a commissary store’s success? This thesis analyzes the impact of demographics, local prices and competitors on commissary stores sales per square foot. These three factors were found to account for approximately 60 percent of the variation in sales per square foot between different store locations. The only influential groups for commissary success were active duty members, retirees, and their dependents-Reservists and National Guard members had no impact. Equally important was the price differential between commercial grocery stores and commissary stores in the local area. The number of competitors did not matter in sales predictions.
Livres sur le sujet "Storm prediction"
Fine, Gary Alan. Authors of the storm : Meteorologists and the culture of prediction. Chicago, IL : University of Chicago Press, 2007.
Trouver le texte intégralTalukder, Jyotirmoy. Living with cyclone : Study on storm surge prediction and disaster preparedness. Dhaka, Bangladesh : Community Development Library, 1992.
Trouver le texte intégralFunakoshi, Yuji. Coupling a finite element storm surge model of the North Carolina sounds with operational ocean and weather prediction models. Silver Spring, Md.] : U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service, Office of Coast Survey, Coast Survey Development Laboratory, 2010.
Trouver le texte intégralJohn D. Cox - undifferentiated. Storm watchers : The turbulent history of weather prediction from Franklin's kite to El Niño. New York : John Wiley, 2002.
Trouver le texte intégralYum, Sang Guk. Extreme Storm Surge Return Period Prediction Using Tidal Gauge Data and Estimation of Damage to Structures from Storm-Induced Wind Speed in South Korea. [New York, N.Y.?] : [publisher not identified], 2019.
Trouver le texte intégralGuo, Lei. Semi-empirical prediction of pesticide loading in the Sacramento and San Joaquin Rivers during winter storm seasons. Sacramento : California Environmental Protection Agency, Dept. of Pesticide Regulation, Environmental Monitoring Branch, 2003.
Trouver le texte intégralK, Prasad. Environmental and synoptic conditions associated with nor'westers and tornadoes in Bangladesh : An appraisal based on numerical weather prediction (NWP) guidance products. Dhaka : SAARC Meteorological Research Centre, 2006.
Trouver le texte intégralP, Kauahikaua James, Tilling Robert I et Geological Survey (U.S.), dir. The story of the Hawaiian Volcano Observatory : A remarkable first 100 years of tracking eruptions and earthquakes. Reston, Va : U.S. Dept. of the Interior, U.S. Geological Survey, 2011.
Trouver le texte intégralColin, Wilson. Serial killer investigations : The story of forensics and profiling through the hunt for the world's worst murderers. Irvington, NY : Hylas Pub., 2006.
Trouver le texte intégralUnited States. Dept. of Agriculture., United States. Federal Emergency Management Agency. et United States. Dept. of Commerce., dir. Saving lives with an all-hazard warning network. [Washington, D.C.?] : U.S. Dept. of Agriculture, 1999.
Trouver le texte intégralChapitres de livres sur le sujet "Storm prediction"
Sagalyn, Rita C., et Sidney A. Bowhill. « Progress in Geomagnetic Storm Prediction ». Dans Environmental Effects on Spacecraft Positioning and Trajectories, 157–73. Washington, D. C. : American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm073p0157.
Texte intégralJames, A., et D. J. Elliott. « The Modelling of Storm Water Pollution ». Dans Water Pollution : Modelling, Measuring and Prediction, 155–65. Dordrecht : Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3694-5_11.
Texte intégralBurrows, R., et W. Wang. « Determination of Spill Characteristics of Combined Sewer Overflows and Coastal Storm Outfalls ». Dans Water Pollution : Modelling, Measuring and Prediction, 265–78. Dordrecht : Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3694-5_19.
Texte intégralCiavola, Paolo, Oscar Ferreira, Ap Van Dongeren, Jaap Van Thiel de Vries, Clara Armaroli et Mitchell Harley. « Prediction of Storm Impacts on Beach and Dune Systems ». Dans Hydrometeorological Hazards, 227–52. Chichester, UK : John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118629567.ch3d.
Texte intégralWang, Qian, Jianhua Chen et Kelin Hu. « Storm Surge Prediction for Louisiana Coast Using Artificial Neural Networks ». Dans Neural Information Processing, 396–405. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46675-0_43.
Texte intégralLin, Fudong, Xu Yuan, Yihe Zhang, Purushottam Sigdel, Li Chen, Lu Peng et Nian-Feng Tzeng. « Comprehensive Transformer-Based Model Architecture for Real-World Storm Prediction ». Dans Lecture Notes in Computer Science, 54–71. Cham : Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-43430-3_4.
Texte intégralAlbasri, Mohamed Abdulrasool Juma, Sini Raj Pulari, Shaima Shawqi Almeer et Shriram K. Vasudevan. « AI-Powered Dust Storm Movement Prediction System Using Satellite Imagery ». Dans Lecture Notes in Networks and Systems, 319–29. Singapore : Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-4149-6_23.
Texte intégralMannan, Abdul, et Arjumand Habib. « Understanding the Properties of Cyclonic Storm ‘Aila’Using NWP Technique ». Dans Monitoring and Prediction of Tropical Cyclones in the Indian Ocean and Climate Change, 374–84. Dordrecht : Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-7720-0_32.
Texte intégralDube, S. K., A. D. Rao, Jismy Poulose, M. Mohapatra et T. S. Murty. « Storm Surge Inundation in South Asia under Climate Change Scenarios ». Dans Monitoring and Prediction of Tropical Cyclones in the Indian Ocean and Climate Change, 355–63. Dordrecht : Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-7720-0_30.
Texte intégralFroude, Lizzie S. R., et Robert J. Gurney. « Storm Prediction Research and its Application to the Oil/Gas Industry ». Dans NATO Science for Peace and Security Series C : Environmental Security, 241–52. Dordrecht : Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3692-6_16.
Texte intégralActes de conférences sur le sujet "Storm prediction"
Nunavath, Vimala, et Sindre Kristoffersen Olsen. « Prediction of Storm Water Overflow in Municipality Using Machine Learning* ». Dans 2024 Sixth International Conference on Intelligent Computing in Data Sciences (ICDS), 1–7. IEEE, 2024. http://dx.doi.org/10.1109/icds62089.2024.10756334.
Texte intégralKamagata, Abubakar Hamisu, Dharm Singh Jat, Saravanakumar Paramasivam, Attlee M. Gamundani et Muhammad Zahir Ramli. « Simulation and Prediction of Machine Learning-Based Storm Surge Forecasting Model ». Dans 2024 International Conference on Emerging Trends in Networks and Computer Communications (ETNCC), 1–7. IEEE, 2024. https://doi.org/10.1109/etncc63262.2024.10767516.
Texte intégralDavis, Ian, Hadi Hemmati, Richard C. Holt, Michael W. Godfrey, Douglas Neuse et Serge Mankovskii. « Storm prediction in a cloud ». Dans 2013 5th International Workshop on Principles of Engineering Service-Oriented Systems (PESOS). IEEE, 2013. http://dx.doi.org/10.1109/pesos.2013.6635975.
Texte intégralPrime, Thomas. « Relocatable Tide Prediction and Storm Surge Forecasting ». Dans ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/omae2018-77926.
Texte intégralWolfson, Marilyn M., William J. Dupree, Roy M. Rasmussen, Matthias Steiner, Stanley G. Benjamin et Steven S. Weygandt. « Consolidated storm prediction for aviation (CoSPA) ». Dans 2008 Integrated Communications, Navigation and Surveillance Conference (ICNS). IEEE, 2008. http://dx.doi.org/10.1109/icnsurv.2008.4559190.
Texte intégralWarnock, April M., Christopher S. Ruf et Mary Morris. « Storm surge prediction with cygnss winds ». Dans 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 2017. http://dx.doi.org/10.1109/igarss.2017.8127624.
Texte intégralPirklbauer, Kevin, et Rainhard Dieter Findling. « Storm Operation Prediction : Modeling the Occurrence of Storm Operations for Fire Stations ». Dans 2021 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). IEEE, 2021. http://dx.doi.org/10.1109/percomworkshops51409.2021.9430944.
Texte intégralRussell, Carl. « Predicting Airspace Capacity Impacts Using the Consolidated Storm Prediction for Aviation ». Dans 10th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-9163.
Texte intégralQahwaji, Rami, et Tufan Colak. « Prediction of halloween storm with automated solar activity prediction tool (ASAP) ». Dans 2009 4th International Conference on Recent Advances in Space Technologies (RAST). IEEE, 2009. http://dx.doi.org/10.1109/rast.2009.5158277.
Texte intégralZhang, Yuhang, Weimin Zhen, Liang Chen, Ming Ou, Xiao Yu, Yan Wang et Longjiang Chen. « Ionospheric TEC Storm Prediction Based on AdaBoost-BP ». Dans 2022 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC). IEEE, 2022. http://dx.doi.org/10.1109/csrswtc56224.2022.10098394.
Texte intégralRapports d'organisations sur le sujet "Storm prediction"
Torres, Marissa, Norberto Nadal-Caraballo et Alexandros Taflanidis. Rapid tidal reconstruction for the Coastal Hazards System and StormSim part II : Puerto Rico and U.S. Virgin Islands. Engineer Research and Development Center (U.S.), août 2021. http://dx.doi.org/10.21079/11681/41482.
Texte intégralTorres, Marissa, et Norberto Nadal-Caraballo. Rapid tidal reconstruction with UTide and the ADCIRC tidal database. Engineer Research and Development Center (U.S.), août 2021. http://dx.doi.org/10.21079/11681/41503.
Texte intégralCialone, Mary, Jessamin Straub, Britt Raubenheimer, Jenna Brown, Katherine Brodie, Nicole Elko, Patrick Dickhudt et al. A large-scale community storm processes field experiment : the During Nearshore Event Experiment (DUNEX) overview reference report. Engineer Research and Development Center (U.S.), mars 2023. http://dx.doi.org/10.21079/11681/46548.
Texte intégralO'Neill, Clare, Andy Saulter, Christopher Stokes et Breogán Gómez. Application of bias correction to the Met Office operational storm surge forecast. Met Office, janvier 2025. https://doi.org/10.62998/tymo5223.
Texte intégralChang, Edmund Kar-Man. Final Scientific/Technical Report for Subseasonal to Seasonal Prediction of Extratropical Storm Track Activity over the U.S. using NMME data. Office of Scientific and Technical Information (OSTI), octobre 2017. http://dx.doi.org/10.2172/1405606.
Texte intégralKimock, Joseph. Predicting Commissary Store Success. Fort Belvoir, VA : Defense Technical Information Center, décembre 2014. http://dx.doi.org/10.21236/ada621046.
Texte intégralWissink, Andrew, Jude Dylan, Buvana Jayaraman, Beatrice Roget, Vinod Lakshminarayan, Jayanarayanan Sitaraman, Andrew Bauer, James Forsythe, Robert Trigg et Nicholas Peters. New capabilities in CREATE™-AV Helios Version 11. Engineer Research and Development Center (U.S.), juin 2021. http://dx.doi.org/10.21079/11681/40883.
Texte intégralGinis, Isaac, Deborah Crowley, Peter Stempel et Amanda Babson. The impact of sea level rise during nor?easters in New England : Acadia National Park, Boston Harbor Islands, Boston National Historical Park, and Cape Cod National Seashore. National Park Service, 2024. http://dx.doi.org/10.36967/2304306.
Texte intégralMendillo, Michael, et Jules Aarons. A Plan to Develop Predictive Capability for Equatorial Scintillation Storms. Fort Belvoir, VA : Defense Technical Information Center, janvier 1997. http://dx.doi.org/10.21236/ada323511.
Texte intégralMendillo, Michael, et Jules Aarons. A Plan to Develop Predictive Capability for Equatorial Scintillation Storms. Fort Belvoir, VA : Defense Technical Information Center, juin 1997. http://dx.doi.org/10.21236/ada328537.
Texte intégral