Littérature scientifique sur le sujet « Stochastic ground motion model »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Stochastic ground motion model ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Stochastic ground motion model"
JACOB, C., K. SEPAHVAND, V. A. MATSAGAR et S. MARBURG. « STOCHASTIC SEISMIC RESPONSE OF BASE-ISOLATED BUILDINGS ». International Journal of Applied Mechanics 05, no 01 (mars 2013) : 1350006. http://dx.doi.org/10.1142/s1758825113500063.
Texte intégralEdwards, Benjamin, et Donat Fäh. « A Stochastic Ground‐Motion Model for Switzerland ». Bulletin of the Seismological Society of America 103, no 1 (février 2013) : 78–98. http://dx.doi.org/10.1785/0120110331.
Texte intégralCui, Xi Zhong, Yong Xu Liu et Han Ping Hong. « A Stochastic Model for Simulating Vertical Pulseless Near-Fault Seismic Ground Motions ». Bulletin of the Seismological Society of America 112, no 2 (7 décembre 2021) : 961–77. http://dx.doi.org/10.1785/0120210114.
Texte intégralWang, Zhi Hua, et Chong Shi Gu. « A New Non-Stationary Stochastic Seismic Ground Motion Model and its Application ». Advanced Materials Research 243-249 (mai 2011) : 4627–33. http://dx.doi.org/10.4028/www.scientific.net/amr.243-249.4627.
Texte intégralLekshmy, P. R., et S. T. G. Raghukanth. « Stochastic earthquake source model for ground motion simulation ». Earthquake Engineering and Engineering Vibration 18, no 1 (janvier 2019) : 1–34. http://dx.doi.org/10.1007/s11803-019-0487-8.
Texte intégralPoulos, Alan, Eduardo Miranda et Jack W. Baker. « Evaluation of Earthquake Response Spectra Directionality Using Stochastic Simulations ». Bulletin of the Seismological Society of America 112, no 1 (26 octobre 2021) : 307–15. http://dx.doi.org/10.1785/0120210101.
Texte intégralAtkinson, Gail M. « A Comparison of Eastern North American ground Motion Observations with Theoretical Predictions ». Seismological Research Letters 61, no 3-4 (1 juillet 1990) : 171–80. http://dx.doi.org/10.1785/gssrl.61.3-4.171.
Texte intégralSabetta, Fabio, Antonio Pugliese, Gabriele Fiorentino, Giovanni Lanzano et Lucia Luzi. « Simulation of non-stationary stochastic ground motions based on recent Italian earthquakes ». Bulletin of Earthquake Engineering 19, no 9 (7 avril 2021) : 3287–315. http://dx.doi.org/10.1007/s10518-021-01077-1.
Texte intégralKiremidjian, Anne S., et Shigeru Suzuki. « A stochastic model for site ground motions from temporally dependent earthquakes ». Bulletin of the Seismological Society of America 77, no 4 (1 août 1987) : 1110–26. http://dx.doi.org/10.1785/bssa0770041110.
Texte intégralYamamoto, Y., et J. W. Baker. « Stochastic Model for Earthquake Ground Motion Using Wavelet Packets ». Bulletin of the Seismological Society of America 103, no 6 (22 octobre 2013) : 3044–56. http://dx.doi.org/10.1785/0120120312.
Texte intégralThèses sur le sujet "Stochastic ground motion model"
Yenier, Emrah. « Limitations On Point-source Stochastic Simulations In Terms Of Ground-motion Models ». Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12610308/index.pdf.
Texte intégral#8804
Mw &
#8804
7.5), source-to-site distance (less than 100 km), faulting style (shallow dipping and strike-slip) and site class (soft, stiff and rock) bins. The simulations are performed in two main stages: (1) the acceleration time series at outcropping very hard rock sites are simulated based on the stochastic method proposed by Boore (1983, 2003) and (2) they are modified through 1-D equivalent linear site response analysis to generate the free-field motions at soft, stiff and rock sites. Thus, as a part of this study, a probability-based soil profile model that considers the random variation of S-wave slowness as a function of depth is derived. The synthetic ground motions are assessed with several recent empirical ground-motion models to constitute the limitations of the simulation procedure. It is believed that the outcomes of this study will realistically describe the limitations of stochastic point-source simulation approach that can be employed further for the studies on improvements of this simulation technique.
SCOZZESE, FABRIZIO. « AN EFFICIENT PROBABILISTIC FRAMEWORK FOR SEISMIC RISK ANALYSIS OF STRUCTURAL SYSTEMS EQUIPPED WITH LINEAR AND NONLINEAR VISCOUS DAMPERS ». Doctoral thesis, Università degli Studi di Camerino, 2018. http://hdl.handle.net/11581/429547.
Texte intégralD'Amico, Laura. « Stochastic analysis and design of vibrating barriers under simulated ground motion processes ». Thesis, University of Brighton, 2017. https://research.brighton.ac.uk/en/studentTheses/91e41bc5-dbd6-4f79-a133-fcfd5a105f3e.
Texte intégralSiebrits, Eduard. « Three-dimensional elastodynamic shear fracture propagation and ground motion simulation model ». Master's thesis, University of Cape Town, 1986. http://hdl.handle.net/11427/26137.
Texte intégralKewlani, Gaurav. « Stochastic approaches to mobility prediction, path planning and motion control for ground vehicles in uncertain environments ». Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/55270.
Texte intégralCataloged from PDF version of thesis.
Includes bibliographical references (p. 107-111).
The ability of autonomous or semi-autonomous unmanned ground vehicles (UGVs) to rapidly and accurately predict terrain negotiability, generate efficient paths online and have effective motion control is a critical requirement for their safety and use in unstructured environments. Most techniques and algorithms for performing these functions, however, assume precise knowledge of vehicle and/or environmental (i.e. terrain) properties. In practical applications, significant uncertainties are associated with the estimation of the vehicle and/or terrain parameters, and these uncertainties must be considered while performing the above tasks. Here, computationally inexpensive methods based on the polynomial chaos approach are studied that consider imprecise knowledge of vehicle and/or terrain parameters while analyzing UGV dynamics and mobility, evaluating safe, traceable paths to be followed and controlling the vehicle motion. Conventional Monte Carlo methods, that are relatively more computationally expensive, are also briefly studied and used as a reference for evaluating the computational efficiency and accuracy of results from the polynomial chaos-based techniques.
by Gaurav Kewlani.
S.M.
Zadonina, Ekaterina. « Strong ground motion simulations and assessment of influence of model parameters on waveforms ». Master's thesis, Universidade de Évora, 2010. http://hdl.handle.net/10174/21222.
Texte intégralUgurhan, Beliz. « Stochastic Strong Ground Motion Simulations On North Anatolian Fault Zone And Central Italy : Validation, Limitation And Sensitivity Analyses ». Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612413/index.pdf.
Texte intégralzce, L&rsquo
Aquila and Erzincan regions. In Dü
zce study, regional seismic source, propagation and site parameters are determined through validation of the simulations against the records. In L&rsquo
Aquila case study, in addition to study of the regional parameters, the limitations of the method in terms of simulating the directivity effects are also investigated. In Erzincan case study, where there are very few records, the optimum model parameters are determined using a large set of simulations with an error-minimization scheme. Later, a parametric sensitivity study is performed to observe the variations in simulation results to small perturbations in input parameters. Results of this study confirm that stochastic finite-fault simulation method is an effective technique for generating realistic physics-based synthetic records of large earthquakes in near field regions.
Manko, N. N., et I. A. Lyashenko. « Stochastic Oscillations at Stick-Slip Motion in the Boundary Friction Regime ». Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35148.
Texte intégralKelekele, Liloo Didier Joel. « Mathematical model of performance measurement of defined contribution pension funds ». University of the Western Cape, 2015. http://hdl.handle.net/11394/4367.
Texte intégralThe industry of pension funds has become one of the drivers of today’s economic activity by its important volume of contribution in the financial market and by creating wealth. The increasing importance that pension funds have acquired in today’s economy and financial market, raises special attention from investors, financial actors and pundits in the sector. Regarding this economic weight of pension funds, a thorough analysis of the performance of different pension funds plans in order to optimise benefits need to be undertaken. The research explores criteria and invariants that make it possible to compare the performance of different pension fund products. Pension fund companies currently do measure their performances with those of others. Likewise, the individual investing in a pension plan compares different products available in the market. There exist different ways of measuring the performance of a pension fund according to their different schemes. Generally, there exist two main pension funds plans. The defined benefit (DB) pension funds plan which is mostly preferred by pension members due to his ability to hold the risk to the pension fund manager. The defined contributions (DC) pension fund plan on the other hand, is more popularly preferred by the pension fund managers due to its ability to transfer the risk to the pension fund members. One of the reasons that motivate pension fund members’ choices of entering into a certain programme is that their expectations of maintaining their living lifestyle after retirement are met by the pension fund strategies. This dissertation investigates the various properties and characteristics of the defined contribution pension fund plan with a minimum guarantee and benchmark in order to mitigate the risk that pension fund members are subject to. For the pension fund manager the aim is to find the optimal asset allocation strategy which optimises its retribution which is in fact a part of the surplus (the difference between the pension fund value and the guarantee) (2004) [19] and to analyse the effect of sharing between the contributor and the pension fund. From the pension fund members’ perspective it is to define a optimal guarantee as a solution to the contributor’s optimisation programme. In particular, we consider a case of a pension fund company which invests in a bond, stocks and a money market account. The uncertainty in the financial market is driven by Brownian motions. Numerical simulations were performed to compare the different models.
Händel, Annabel [Verfasser], Frank [Akademischer Betreuer] Scherbaum et Frank [Akademischer Betreuer] Krüger. « Ground-motion model selection and adjustment for seismic hazard analysis / Annabel Händel ; Frank Scherbaum, Frank Krüger ». Potsdam : Universität Potsdam, 2018. http://d-nb.info/121840406X/34.
Texte intégralLivres sur le sujet "Stochastic ground motion model"
S, Cakmak A., et International Conference on Soil Dynamics and Earthquake Engineering (3rd : 1987 : Princeton University), dir. Ground motion and engineering seismology. Amsterdam : Elsevier, 1987.
Trouver le texte intégralUnited States. National Aeronautics and Space Administration., dir. Stochastic model of the NASA/MSFC ground facility for large space structures with uncertain parameters, report. Tuscaloosa, Ala : Dept. of Mathematics, University of Alabama, 1988.
Trouver le texte intégralEvernden, J. F. Predictive model for important ground motion parameters associated with large and great earthquakes. [Washington] : U.S. G.P.O., 1988.
Trouver le texte intégralEvernden, J. F. Predictive model for important ground motion parameters associated with large and great earthquakes. Washington, DC : U.S. Geological Survey, 1988.
Trouver le texte intégralauthor, Sarich Marco 1985, dir. Metastability and Markov state models in molecular dynamics : Modeling, analysis, algorithmic approaches. Providence, Rhode Island : American Mathematical Society, 2013.
Trouver le texte intégralEcole d'été de probabilités de Saint-Flour (27th 1997). Lectures on probability theory and statistics : Ecole d'eté de probabilités de Saint-Flour XXVII, 1997. Sous la direction de Bertoin Jean, Martinelli F, Peres Y et Bernard P. 1944-. Berlin : Springer, 1999.
Trouver le texte intégralJean, Bertoin, Martinelli F, Peres Y, Bernard P. 1944-, Bertoin Jean, Martinelli F et Peres Y, dir. Lectures on probability theory and statistics : Ecole d'été de probabilités de Saint-Flour XXVII, 1997. Berlin : Springer, 2000.
Trouver le texte intégralS, Cakmak A., dir. Ground motion and engineering seismology. Amsterdam : Elsevier, co-published with Computational Mechanics, 1987.
Trouver le texte intégralStochastic model of the NASA/MSFC ground facility for large space structures with uncertain parameters : Part II, the maximum entropy approach. Tuscaloosa, Ala : Dept. of Mathematics, University of Alabama, 1989.
Trouver le texte intégralNational Aeronautics and Space Administration (NASA) Staff. Stochastic Model of the Nasa/Msfc Ground Facility for Large Space Structures with Uncertain Parameters : The Maximum Entropy Approach, Part 2. Independently Published, 2018.
Trouver le texte intégralChapitres de livres sur le sujet "Stochastic ground motion model"
Takada, Tsuyoshi, et Tetsuo Shimomura. « Stochastic Prediction of Seismic Ground Motions Using Macro-Spatial Correlation Model ». Dans Probabilistic Safety Assessment and Management, 2926–31. London : Springer London, 2004. http://dx.doi.org/10.1007/978-0-85729-410-4_468.
Texte intégralRezaeian, Sanaz, et Xiaodan Sun. « Stochastic Ground Motion Simulation ». Dans Encyclopedia of Earthquake Engineering, 1–15. Berlin, Heidelberg : Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36197-5_239-1.
Texte intégralRezaeian, Sanaz, et Xiaodan Sun. « Stochastic Ground Motion Simulation ». Dans Encyclopedia of Earthquake Engineering, 3483–96. Berlin, Heidelberg : Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-35344-4_239.
Texte intégralLi, Jie, et Wei Liu. « Seismic Ground Motion Model ». Dans Lifeline Engineering Systems, 25–44. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9101-3_3.
Texte intégralBoore, David M. « Simulation of Ground Motion Using the Stochastic Method ». Dans Seismic Motion, Lithospheric Structures, Earthquake and Volcanic Sources : The Keiiti Aki Volume, 635–76. Basel : Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-8010-7_10.
Texte intégralPapageorgiou, Apostolos S. « The Barrier Model and Strong Ground Motion ». Dans Seismic Motion, Lithospheric Structures, Earthquake and Volcanic Sources : The Keiiti Aki Volume, 603–34. Basel : Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-8010-7_9.
Texte intégralPetters, Arlie O., et Xiaoying Dong. « Stochastic Calculus and Geometric Brownian Motion Model ». Dans An Introduction to Mathematical Finance with Applications, 253–327. New York, NY : Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3783-7_6.
Texte intégralHolley, Richard. « The One Dimensional Stochastic X-Y Model ». Dans Random Walks, Brownian Motion, and Interacting Particle Systems, 295–307. Boston, MA : Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4612-0459-6_16.
Texte intégralShiryaev, Albert N. « Multi-stage Quickest Detection of Breakdown of a Stationary Regime. Model with Brownian Motion ». Dans Stochastic Disorder Problems, 217–37. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-01526-8_7.
Texte intégralPayyappilly, Leanda J., et Surendra Nadh Somala. « Risk Uncertainty Quantification for Various Occupancy Classes Using Stochastic Ground Motion ». Dans Lecture Notes in Civil Engineering, 751–58. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80312-4_64.
Texte intégralActes de conférences sur le sujet "Stochastic ground motion model"
Cacciola, P., et A. Tombari. « A Ground Motion Model in Proximity of Vibrating Buildings ». Dans Proceedings of the 8th International Conference on Computational Stochastic Mechanics (CSM 8). Singapore : Research Publishing Services, 2018. http://dx.doi.org/10.3850/978-981-11-2723-6_11-cd.
Texte intégralAi, X. Q., et J. Li. « Random Model of Earthquake Ground Motion for Engineering Site Basing on Stochastic Physical Process ». Dans Seventh China-Japan-US Trilateral Symposium on Lifeline Earthquake Engineering. Reston, VA : American Society of Civil Engineers, 2017. http://dx.doi.org/10.1061/9780784480342.053.
Texte intégralFnais, M. S. « Ground-motion simulation for the eastern province of Saudi Arabia using a stochastic model ». Dans ERES 2011. Southampton, UK : WIT Press, 2011. http://dx.doi.org/10.2495/eres110121.
Texte intégralTeng, Tsung-Jen, Pei-Ting Chen, Ting-Wei Chang, Yuan-Sen Yang, Chien-Kuo Chiu et Wen-I. Liao. « The Simulation of Strong Ground Motion Using Empirical Green Function and Stochastic Method for Southern Taiwan Area ». Dans ASME 2018 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/pvp2018-84670.
Texte intégralNardin, Chiara, Igor Lanese, Rocco di Filippo, Roberto Endrizzi, Oreste S. Bursi et Fabrizio Paolacci. « Ground Motion Model for Seismic Vulnerability Assessment of Prototype Industrial Plants ». Dans ASME 2020 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/pvp2020-21190.
Texte intégraldi Filippo, Rocco, Giuseppe Abbiati, Osman Sayginer, Patrick Covi, Oreste S. Bursi et Fabrizio Paolacci. « Numerical Surrogate Model of a Coupled Tank-Piping System for Seismic Fragility Analysis With Synthetic Ground Motions ». Dans ASME 2019 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/pvp2019-93685.
Texte intégralBrahimi, Malek. « A Stochastic Approach to Nonlinear Seismic Design Spectra ». Dans 18th International Conference on Nuclear Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/icone18-30146.
Texte intégralYokoyama, Haruka, Hajime Iwai et Masayuki Kohiyama. « Phase Similarity Model Between Element Waves of Adjacent Element Faults for Simulated Ground Motion Based on the Stochastic Green’s Function Method ». Dans Proceedings of the 29th European Safety and Reliability Conference (ESREL). Singapore : Research Publishing Services, 2019. http://dx.doi.org/10.3850/978-981-11-2724-3_0444-cd.
Texte intégralAbaid, Nicole, et Maurizio Porfiri. « Influence of Leaders on Mean Square Consentability in Biologically-Inspired Stochastic Networks ». Dans ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control. ASMEDC, 2011. http://dx.doi.org/10.1115/dscc2011-6051.
Texte intégralChoi, Byunghyun, Akemi Nishida, Ken Muramatsu, Tatsuya Itoi et Tsuyoshi Takada. « Uncertainty Quantification of Seismic Response of Reactor Building Considering Different Modeling Methods ». Dans 2020 International Conference on Nuclear Engineering collocated with the ASME 2020 Power Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/icone2020-16862.
Texte intégralRapports d'organisations sur le sujet "Stochastic ground motion model"
Seryi, Andrei. Ground Motion Model of the SLAC Site. Office of Scientific and Technical Information (OSTI), août 2000. http://dx.doi.org/10.2172/764992.
Texte intégralM. Gross. Sampling of Stochastic Input Parameters for Rockfall Calculations and for Structural Response Calculations Under Vibratory Ground Motion. Office of Scientific and Technical Information (OSTI), septembre 2004. http://dx.doi.org/10.2172/838659.
Texte intégralGregor, Nicholas, Kofi Addo, Linda Al Atik, Gail Atkinson, David Boore, Yousef Bozorgnia, Kenneth Campbell et al. Comparison of NGA-Sub Ground-Motion Models. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, novembre 2020. http://dx.doi.org/10.55461/ubdv7944.
Texte intégralEvenson, W. E., J. A. Gardner, Ruiping Wang, Han-Tzong Su et A. G. McKale. PAC (perturbed angular correlation) analysis of defect motion by Blume's stochastic model for I = 5/2 electric quadrupole interactions. Office of Scientific and Technical Information (OSTI), janvier 1990. http://dx.doi.org/10.2172/6135930.
Texte intégralRodgers, A., et N. Petersson. Evaluating Ground Motion Predictions of USGS 3D Seismic Model of the San Francisco Bay Area with Broadband Seismograms. Office of Scientific and Technical Information (OSTI), mai 2010. http://dx.doi.org/10.2172/1129987.
Texte intégralJAMES N. BRUNE AND ABDOLRASOOL ANOOSHEHPOOR. A PHYSICAL MODEL OF THE EFFECT OF A SHALLOW WEAK LAYER ON STRONG GROUND MOTION FOR STRIKE-SLIP RUPTURES. Office of Scientific and Technical Information (OSTI), février 1998. http://dx.doi.org/10.2172/776519.
Texte intégralPitarka, A. Performance of Irikura's Recipe Rupture Model Generator in Earthquake Ground Motion Simulations as Implemented in the Graves and Pitarka Hybrid Approach. Office of Scientific and Technical Information (OSTI), novembre 2016. http://dx.doi.org/10.2172/1335790.
Texte intégralSi, Hongjun, Saburoh Midorikawa et Tadahiro Kishida. Development of NGA-Sub Ground-Motion Model of 5%-Damped Pseudo-Spectral Acceleration Based on Database for Subduction Earthquakes in Japan. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, décembre 2020. http://dx.doi.org/10.55461/lien3652.
Texte intégralAnderson, David P., Brian W. Stump et Meredith Ness. Utilization of Near-Source Video and Ground Motion in the Assessment of Seismic Source Functions from Mining Explosions. Velocity Model and Depth Model of the Grefco Perlite Mine. Fort Belvoir, VA : Defense Technical Information Center, avril 1995. http://dx.doi.org/10.21236/ada286839.
Texte intégralMazzoni, Silvia, Nicholas Gregor, Linda Al Atik, Yousef Bozorgnia, David Welch et Gregory Deierlein. Probabilistic Seismic Hazard Analysis and Selecting and Scaling of Ground-Motion Records (PEER-CEA Project). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, novembre 2020. http://dx.doi.org/10.55461/zjdn7385.
Texte intégral