Littérature scientifique sur le sujet « Stationary scanner »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Stationary scanner ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Stationary scanner"
Rabah, Chaima Ben, Gouenou Coatrieux et Riadh Abdelfattah. « Boosting up Source Scanner Identification Using Wavelets and Convolutional Neural Networks ». Traitement du Signal 37, no 6 (31 décembre 2020) : 881–88. http://dx.doi.org/10.18280/ts.370601.
Texte intégralDlesk, A., K. Vach, J. Šedina et K. Pavelka. « COMPARISON OF LEICA BLK360 AND LEICA BLK2GO ON CHOSEN TEST OBJECTS ». International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLVI-5/W1-2022 (3 février 2022) : 77–82. http://dx.doi.org/10.5194/isprs-archives-xlvi-5-w1-2022-77-2022.
Texte intégralWerner, Christoph S., Jannis Gangelhoff, Simon Frey, Daniel Steiger et Alexander Reiterer. « Development of a compact pulsed time-of-flight LiDAR platform for underwater measurements ». International Hydrographic Review 29, no 2 (1 novembre 2023) : 200–207. http://dx.doi.org/10.58440/ihr-29-2-n09.
Texte intégralJafri, Syed Riaz un Nabi, Muhammad Owais Ali Siddiqui, Faraz Akbar, Abdul Basit, Sheraz Shamim et Saad Ahmed. « Development of a Low-Cost Stationary Laser Scanning System for Generation of Building Information Models ». Elektronika ir Elektrotechnika 28, no 6 (21 décembre 2022) : 12–20. http://dx.doi.org/10.5755/j02.eie.31374.
Texte intégralVoges, R., C. S. Wieghardt et B. Wagner. « TIMESTAMP OFFSET DETERMINATION BETWEEN AN ACTUATED LASER SCANNER AND ITS CORRESPONDING MOTOR ». ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences IV-1/W1 (30 mai 2017) : 99–106. http://dx.doi.org/10.5194/isprs-annals-iv-1-w1-99-2017.
Texte intégralXia, Sibei, Siming Guo, Jiayin Li et Cynthia Istook. « Comparison of different body measurement techniques : 3D stationary scanner, 3D handheld scanner, and tape measurement ». Journal of The Textile Institute 110, no 8 (26 décembre 2018) : 1103–13. http://dx.doi.org/10.1080/00405000.2018.1541437.
Texte intégralDixon, Robert L., et John M. Boone. « Stationary table CT dosimetry and anomalous scanner-reported values of CTDIvol ». Medical Physics 41, no 1 (18 décembre 2013) : 011907. http://dx.doi.org/10.1118/1.4845075.
Texte intégralO, Gavrylenko, Zhdanova O, Nazirov R, Parkhomenko D, Shumeyko O et Khalus O. « DETERMINATION OF STATIONARY TANK CAPACITY ACCORDING TO LASER SCAN RESULTS ». National Transport University Bulletin 1, no 51 (2022) : 84–94. http://dx.doi.org/10.33744/2308-6645-2022-1-51-084-094.
Texte intégralMoon, Seunghwan, Jaekwon Lee, Joho Yun, Juhun Lim, Min-Joo Gwak, Kyung-Su Kim et Jong-Hyun Lee. « Two-Axis Electrostatic Gimbaled Mirror Scanner With Self-Aligned Tilted Stationary Combs ». IEEE Photonics Technology Letters 28, no 5 (1 mars 2016) : 557–60. http://dx.doi.org/10.1109/lpt.2015.2513483.
Texte intégralAlekseev, N. Yu, et P. V. Zyuzin. « Assessment of Applicability of Wi-Fi Analytics in Studies of Urban Public Transport Passenger Flow (Moscow Case Study) ». World of Transport and Transportation 19, no 3 (2 décembre 2021) : 54–66. http://dx.doi.org/10.30932/1992-3252-2021-19-3-6.
Texte intégralThèses sur le sujet "Stationary scanner"
Laurendeau, Matthieu. « Tomographic incompleteness maps and application to image reconstruction and stationary scanner design ». Electronic Thesis or Diss., Lyon, INSA, 2024. http://www.theses.fr/2024ISAL0130.
Texte intégralComputed tomography (CT) is one of the most commonly used modality for three-dimensional (3D) imaging in the medical and industrial fields. In the past few years, new X-ray sources have been developed based on carbon nanotube (CNT) cathodes. Their compact size enables the design of a new generation of multi-source CT scanners. In contrast to traditional systems with a single moving source, these scanners often adopt stationary architectures where multiple sources are static. It would benefit both industry with cheaper and motionless systems and medical applications with light-weight and mobile scanners which could be brought to emergency sites. However, this type of scanner uses a fewer number of measurements, known as projections, and may acquire data with a limited range of angles, leading to well-known image reconstruction challenges. This thesis focuses on the design of such stationary CT scanners. Three axes of study were investigated. The first contribution is the development of an object-independent metric to assess the reconstruction capability of a given scanning geometry. Based on Tuy's condition, the metric evaluates local tomographic incompleteness and is visualized through 3D vector field maps. It is further extended to handle truncated projections, improving its applicability to real-world configurations. The metric enables ranking different geometries, predicting image quality reconstruction, and identifying the origin of geometric artifacts. It is applied to a variety of geometries, including existing scanners. The second is a novel local regularization method to address limited-angle reconstruction challenges. The method employs a directional total variation (DTV) regularizer whose strength and directional weights are adaptively selected at each voxel. The weights are determined based on the previously introduced metric. Two approaches for directional weights were explored: ratio-based weighting relative to image axes and ellipse-based weighting. The reconstruction algorithm is evaluated in both 2D and 3D simulations, considering noiseless and noisy data, as well as real data. The third is a tool for optimizing the geometry of CT scanners. Given a fixed number of sources and the surface area available for their positions, the tool optimizes the placement of sources based on the proposed metric. Several state-of-the-art optimization algorithms were implemented and tested on simple 2D and 3D scenarios
Yang, Guang Zhou Otto. « Carbon nanotube based stationary X-ray tomosynthesis scanner for detection of breast cancer ». Chapel Hill, N.C. : University of North Carolina at Chapel Hill, 2008. http://dc.lib.unc.edu/u?/etd,1874.
Texte intégralTitle from electronic title page (viewed Dec. 11, 2008). "... in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics and Astronomy." Discipline: Physics and Astronomy; Department/School: Physics and Astronomy.
Mulè, Leonardo. « Low-cost survey solutions to support HBIM - Two case studies : the Azurém Canteen and Paço dos Duques in Portugal ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022.
Trouver le texte intégralLivres sur le sujet "Stationary scanner"
Wang, Sigen, Otto Zhou et Sha Chang. Carbon-nanotube field emission electron and X-ray technology for medical research and clinical applications. Sous la direction de A. V. Narlikar et Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.19.
Texte intégralChapitres de livres sur le sujet "Stationary scanner"
Dixon, Robert L. « Stationary Table CT Dosimetry and Anomalous Scanner-Reported Values of CTDI vol ». Dans The Physics of CT Dosimetry, 191–204. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2019] | Series : Series in medical physics and biomedical engineering : CRC Press, 2019. http://dx.doi.org/10.1201/9780429023330-9.
Texte intégralAllegra, Dario, Giovanni Gallo, Laura Inzerillo, Marcella Lombardo, Filippo L. M. Milotta, Cettina Santagati et Filippo Stanco. « Hand Held 3D Scanning for Cultural Heritage ». Dans Advances in Religious and Cultural Studies, 475–99. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-0675-1.ch016.
Texte intégralSamoilenko, Oleksandr, et Volodymyr Zaets. « Calibration of Tanks and Ships’ Tanks for Storage and Transportation of Liquids by Laser Scanning ». Dans Applied Aspects of Modern Metrology [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.100565.
Texte intégralActes de conférences sur le sujet "Stationary scanner"
Schermer, Mack J. « Stationary platen 2-axis scanner ». Dans SPIE Proceedings, sous la direction de Leo Beiser et Gerald F. Marshall. SPIE, 1991. http://dx.doi.org/10.1117/12.28038.
Texte intégralQian, Xin, Andrew Tucker, Emily Gidcumb, Jianping Lu, Otto Zhou, Derrek Spronk, Frank Sprenger et al. « A stationary digital breast tomosynthesis scanner ». Dans SPIE Medical Imaging, sous la direction de Norbert J. Pelc, Robert M. Nishikawa et Bruce R. Whiting. SPIE, 2012. http://dx.doi.org/10.1117/12.911540.
Texte intégralSpronk, Derrek, Yueting Luo, Christina R. Inscoe, Otto Zhou, Jianping Lu et Yueh Z. Lee. « Stationary head CT scanner using CNT x-ray source arrays ». Dans Physics of Medical Imaging, sous la direction de Hilde Bosmans, Wei Zhao et Lifeng Yu. SPIE, 2021. http://dx.doi.org/10.1117/12.2581093.
Texte intégralKatsevich, Alexander, Seongjin Yoon, Michael Frenkel, Ed Morton et Will Thompson. « Reduction of irregular view-sampling artifacts in a stationary gantry CT scanner ». Dans The Fifteenth International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, sous la direction de Samuel Matej et Scott D. Metzler. SPIE, 2019. http://dx.doi.org/10.1117/12.2534878.
Texte intégralSpronk, Derrek, Yueting Lu, Christy Inscoe, Alex Billingsley, Yueh Z. Lee, Jianping Lu et Otto Zhou. « Feasibility of a stationary head CT scanner using a CNT x-ray source array ». Dans Physics of Medical Imaging, sous la direction de Hilde Bosmans et Guang-Hong Chen. SPIE, 2020. http://dx.doi.org/10.1117/12.2549335.
Texte intégralLiu, Hui, Jing Wu, Si Chen, Shi Wang, Yaqiang Liu et Tianyu Ma. « Development of stationary dedicated cardiac SPECT with multi-pinhole collimators on a clinical scanner ». Dans 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). IEEE, 2015. http://dx.doi.org/10.1109/nssmic.2015.7582154.
Texte intégralDion, Scott, et Akin Tatoglu. « ROS Based Adjustable Resolution Compact 3D Scanner ». Dans ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11892.
Texte intégralDraelos, Mark, Pablo Ortiz, Ruobing Qian, Brenton Keller, Kris Hauser, Anthony Kuo et Joseph Izatt. « Automatic Optical Coherence Tomography Imaging of Stationary and Moving Eyes with a Robotically-Aligned Scanner ». Dans 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019. http://dx.doi.org/10.1109/icra.2019.8793524.
Texte intégralPeng, R., J. Zhang, X. Calderon-Colon, S. Wang, S. Sultana, S. Chang, J. P. Lu et O. Zhou. « Stationary micro-CT scanner using a distributed multi-beam field emission x-ray source : a feasibility study ». Dans SPIE Medical Imaging, sous la direction de Ehsan Samei et Jiang Hsieh. SPIE, 2009. http://dx.doi.org/10.1117/12.811467.
Texte intégralYan Xia, Tianyu Ma, Xiao Deng, Yaqiang Liu, Yongjie Jin, S. Murali et Rutao Yao. « A hybrid rotation-translation (HRT) scan scheme for in vivo animal SPECT imaging on a stationary scanner ». Dans 2009 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2009). IEEE, 2009. http://dx.doi.org/10.1109/nssmic.2009.5401986.
Texte intégral