Articles de revues sur le sujet « Star forming region »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Star forming region.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Star forming region ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Taniguchi, Kotomi, Masao Saito et Hiroyuki Ozeki. « 13C ISOTOPIC FRACTIONATION OF HC3N IN STAR-FORMING REGIONS : LOW-MASS STAR-FORMING REGION L1527 AND HIGH-MASS STAR-FORMING REGION G28.28-0.36 ». Astrophysical Journal 830, no 2 (17 octobre 2016) : 106. http://dx.doi.org/10.3847/0004-637x/830/2/106.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Hodapp, Klaus-Werner, et John Rayner. « The S106 star-forming region ». Astronomical Journal 102 (septembre 1991) : 1108. http://dx.doi.org/10.1086/115937.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Álvarez-Álvarez, Mar, Ángeles I. Díaz et Marcelo Castellanos. « Massive star population in circumnuclear star-forming regions ». Symposium - International Astronomical Union 212 (2003) : 537–38. http://dx.doi.org/10.1017/s0074180900212746.

Texte intégral
Résumé :
Due to their high luminosity, the importance of understanding the massive star formation and evolution of giant Hii regions has become more and more evident in the last few years. A mayor scenario where giant H ii regions form and develop are the very inner parts of some galaxies. These bursts frequently are arranged in a ring-like pattern. We present a study of the stellar populations and gas physical conditions in circumnuclear star-forming regions (CNSFR) based on broad- and narrow-band photometry and spectrophotometric data, which have been analyzed with the use of evolutionary population synthesis and photo-ionization models. It is found that most CNSFRs show composite stellar populations of slightly different ages. They seem to have the highest abundances found in H ii region-like objects, showing also N/O overabundances and S/O underabundaces by a factor of about three. Also, CNSFRs as a class segregate from the disk H ii region family, clustering around higher ionizing temperatures.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Dickel, H. R., W. M. Goss et A. H. Rots. « Characteristics of H2CO Towards Star-Forming Regions ». Symposium - International Astronomical Union 115 (1987) : 171. http://dx.doi.org/10.1017/s0074180900095309.

Texte intégral
Résumé :
Small clusters of recently-formed massive stars with their associated compact H II regions are often found embedded in the dense cores of molecular clouds. The H2CO opacity is correlated with the compactness of the H II region and is especially high for those with associated maser activity although additional factors are involved for the ultra-compact H II regions (UCH II). VLA observations of H2CO at 2 cm have been made towards the UCH II regions of W49-north. The highest H2CO opacity of 1.0 is found towards region A which does not have maser activity; yet one of the most compact region C, has an H2CO opacity of only 0.3, For these sources the integrated H2CO opacity (over the entire profile) may be more indicative of compactness. This may be due to the broader H2CO lines which can occur towards the maser regions. For example, large line widths of 10 to 12 km s−1 ate found towards W49-north G where the most intense water masers are located and towards W49-north B which has OH masers. The H2CO line with the highest 2 cm opacity of 2.5 and a narrow width of 2 km s−1 is found towards the UCH II region ON 3 which has only weak H2O maser emission.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Medina, N., J. Borissova, R. Kurtev, J. Alonso-García, Carlos G. Román-Zúñiga, A. Bayo, Marina Kounkel et al. « The G 305 Star-forming Region. II. Irregular Variable Stars ». Astrophysical Journal 914, no 1 (1 juin 2021) : 28. http://dx.doi.org/10.3847/1538-4357/abf639.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Borissova, Jura, Alexandre Roman-Lopes, Kevin Covey, Nicolas Medina, Radostin Kurtev, Carlos Roman-Zuniga, M. A. Kuhn et al. « The G305 Star-forming Region. I. Newly Classified Hot Stars ». Astronomical Journal 158, no 1 (8 juillet 2019) : 46. http://dx.doi.org/10.3847/1538-3881/ab276b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Daffern-Powell, Emma C., et Richard J. Parker. « Dynamical evolution of fractal structures in star-forming regions ». Monthly Notices of the Royal Astronomical Society 493, no 4 (28 février 2020) : 4925–35. http://dx.doi.org/10.1093/mnras/staa575.

Texte intégral
Résumé :
ABSTRACT The $\mathcal {Q}$-parameter is used extensively to quantify the spatial distributions of stars and gas in star-forming regions as well as older clusters and associations. It quantifies the amount of structure using the ratio of the average length of the minimum spanning tree, $\bar{m}$, to the average length within the complete graph, $\bar{s}$. The interpretation of the $\mathcal {Q}$-parameter often relies on comparing observed values of $\mathcal {Q}$, $\bar{m}$, and $\bar{s}$ to idealized synthetic geometries, where there is little or no match between the observed star-forming regions and the synthetic regions. We measure $\mathcal {Q}$, $\bar{m}$, and $\bar{s}$ over 10 Myr in N-body simulations, which are compared to IC 348, NGC 1333, and the ONC. For each star-forming region, we set up simulations that approximate their initial conditions for a combination of different virial ratios and fractal dimensions. We find that the dynamical evolution of idealized fractal geometries can account for the observed $\mathcal {Q}$, $\bar{m}$, and $\bar{s}$ values in nearby star-forming regions. In general, an initially fractal star-forming region will tend to evolve to become more smooth and centrally concentrated. However, we show that different initial conditions, as well as where the edge of the region is defined, can cause significant differences in the path that a star-forming region takes across the $\bar{m}{-}\bar{s}$ plot as it evolves. We caution that the observed $\mathcal {Q}$-parameter should not be directly compared to idealized geometries. Instead, it should be used to determine the degree to which a star-forming region is either spatially substructured or smooth and centrally concentrated.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Yamamoto, Satoshi, Hitomi Mikami et Shuji Saito. « SiO in Star Forming Regions : Barnard 1 and Orion KL ». International Astronomical Union Colloquium 140 (1994) : 243–44. http://dx.doi.org/10.1017/s0252921100019618.

Texte intégral
Résumé :
AbstractInterferometric observations of the SiO (J = 2 − 1) line are carried out toward a low-mass-star forming region, Bl, and a massive star forming region, Ori KL. Production mechanisms of SiO in these regions are discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Bian, S. B., Y. Xu, J. J. Li, Y. W. Wu, B. Zhang, X. Chen, Y. J. Li, Z. H. Lin, C. J. Hao et D. J. Liu. « Parallax of Star-forming Region G027.22+0.14 ». Astronomical Journal 163, no 2 (11 janvier 2022) : 54. http://dx.doi.org/10.3847/1538-3881/ac3d90.

Texte intégral
Résumé :
Abstract Using the Very Long Baseline Array, we measured the trigonometric parallax and proper motions toward a 6.7 GHz methanol maser in the distant high-mass star-forming region G027.22+0.14. The distance of this source is determined to be 6.3 − 0.5 + 0.6 kpc. Combining its Galactic coordinates, radial velocity, and proper motion, we assign G027.22+0.14 to the far portion of the Norma arm. The low peculiar motion and lower luminosity of G027.22+0.14 support the conjecture by Immer et al. that low-luminosity sources tend to have low peculiar motions.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Walsh, A. J., J. K. Lee et M. G. Burton. « The massive star forming region G323.74−0.26 ». Monthly Notices of the Royal Astronomical Society 329, no 2 (janvier 2002) : 475–80. http://dx.doi.org/10.1046/j.1365-8711.2002.05006.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Matveyenko, L. I., K. M. Zakharin, P. J. Diamond et D. A. Graham. « The star-forming region in Orion KL ». Astronomy Letters 29, no 10 (octobre 2003) : 641–43. http://dx.doi.org/10.1134/1.1615331.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Wright, N. J., et J. J. Drake. « The massive star-forming region Cygnus OB2 ». Proceedings of the International Astronomical Union 5, S266 (août 2009) : 551–54. http://dx.doi.org/10.1017/s1743921309992055.

Texte intégral
Résumé :
AbstractWe present results from a catalogue of 1696 X-ray point sources detected in the massive star-forming region Cygnus OB2, the majority of which have optical or near-infrared associations. We derive ages of 3.5 and 5.25 Myr for the stellar populations in our two fields, in agreement with recent studies that suggest that the central 1–3 Myr-old OB association is surrounded and contaminated by an older population with an age of 5–10 Myr. The fraction of sources with protoplanetary disks, as traced by K-band excesses, is unusually low. Although this has previously been interpreted as due to the influence of the large number of OB stars in Cyg OB2, contamination from an older population of stars in the region could also be responsible. An initial mass function is derived and found to have a slope of Γ = −1.27, in agreement with the canonical value. Finally, we introduce the recently approved Chandra Cygnus OB2 Legacy Survey that will image a 1 square degree area of the Cygnus OB2 association to a depth of 120~ks, likely detecting ~ 10 000 stellar X-ray sources.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Itoh, M., H. Fukunaga, K. Koyama, Y. Tsuboi, S. Yamauchi, N. Kobayashi, M. Hayashi et S. Ueno. « ASCA Observation of NGC1333 Star Forming Region ». Symposium - International Astronomical Union 188 (1998) : 228–29. http://dx.doi.org/10.1017/s0074180900114883.

Texte intégral
Résumé :
The region south of the reflection nebula NGC1333 in Perseus is an active star forming region including numerous Herbig-Haro objects and at least 5 protostar candidates with molecular outflows and far-infrared emission. It has been actively studied in various wave bands (e.g. Aspin et al 1994 and references therein). We observed this region with ASCA with the primary objective to detect X-rays from the protostars embedded deep in the molecular cloud.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Gyulbudahgian, A. L., et J. May. « Star-forming region BBW 36 in puppis ». Astrophysics 51, no 3 (juillet 2008) : 394–402. http://dx.doi.org/10.1007/s10511-008-9025-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Hasegawa, Tetsuo. « The Orion Star-Forming Complex ». Symposium - International Astronomical Union 115 (1987) : 123–37. http://dx.doi.org/10.1017/s0074180900095115.

Texte intégral
Résumé :
High resolution images of the Orion Nebula in the millimeter wave emission lines of CS and CO taken with the 45-m telescope at Nobeyama are presented. They cover a field approximately 400″ square with a 15″ – 34″ resolution and reveal a wealth of information on kinematic and density structures. The images of the J=1-0 (49 GHz) and J=2-1 (98 GHz) lines of CS show a long (>1 pc) and narrow (∼0.1 pc) N-S ridge of dense molecular gas. On the ridge, two major clumps are recognized; one is associated with the KL object and the other is 100″ south of it. The images of the J=1-0 (115 GHz) CO line indicate interaction between the molecular cloud and the H II region formed by the Trapezium stars. Bright CO emission is found towards the edges of the denser part of the H II region delineated by radio continuum emission. The CO emission coincides with the emission of vibrationally excited H2 and the 3.3 μm dust emission feature. The CO images reveal filamentary structures (“streamers”) stretching radially from the KL region. On the streamers there are Herbig-Haro objects moving away from the KL region. They may be tracers of weak interaction between the ambient molecular gas and mostly unseen, highly collimated, high-velocity (>200 km/s) jets.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Blaylock-Squibbs, George A., Richard J. Parker, Anne S. M. Buckner et Manuel Güdel. « Investigating the structure of star-forming regions using INDICATE ». Monthly Notices of the Royal Astronomical Society 510, no 2 (29 novembre 2021) : 2864–82. http://dx.doi.org/10.1093/mnras/stab3447.

Texte intégral
Résumé :
ABSTRACT The ability to make meaningful comparisons between theoretical and observational data of star-forming regions is key to understanding the star formation process. In this paper, we test the performance of INDICATE, a new method to quantify the clustering tendencies of individual stars in a region, on synthetic star-forming regions with substructured, and smooth, centrally concentrated distributions. INDICATE quantifies the amount of stellar affiliation of each individual star, and also determines whether this affiliation is above random expectation for the star-forming region in question. We show that INDICATE cannot be used to quantify the overall structure of a region due to a degeneracy when applied to regions with different geometries. We test the ability of INDICATE to detect differences in the local stellar surface density and its ability to detect and quantify mass segregation. We then compare it to other methods such as the mass segregation ratio ΛMSR, the local stellar surface density ratio ΣLDR, and the cumulative distribution of stellar positions. INDICATE detects significant differences in the clustering tendencies of the most massive stars when they are at the centre of a smooth, centrally concentrated distribution, corresponding to areas of greater stellar surface density. When applied to a subset of the 50 most massive stars, we show INDICATE can detect signals of mass segregation. We apply INDICATE to the following nearby star-forming regions: Taurus, ONC, NGC 1333, IC 348, and ρ Ophiuchi and find a diverse range of clustering tendencies in these regions.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Hunter, Deidre A. « Properties of nearby giant star-forming regions ». Symposium - International Astronomical Union 193 (1999) : 418–28. http://dx.doi.org/10.1017/s0074180900205974.

Texte intégral
Résumé :
I review the properties of two nearby giant H II regions — 30 Doradus and NGC 604, and of two nearby young star complexes now past the H II region phase — Constellation III and NGC 206. I discuss the stellar populations, mode of star formation, gas content, and kinematics as clues to what conditions may be like in more distant starburst environments.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Kogure, Tomokazu. « The Star Forming Regions of Orion ». International Astronomical Union Colloquium 148 (1995) : 357–64. http://dx.doi.org/10.1017/s0252921100022181.

Texte intégral
Résumé :
AbstractThe distribution of emission line stars in Orion is presented, based on our recent surveys and other previous ones. Particular attention is given for the central 10 × 10 square degrees to compare some properties of emission line stars and OB association stars. As a result, a possibility of bimodal star formation is suggested in this region.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Großschedl, Josefa E., João Alves, Stefan Meingast et Birgit Hasenberger. « 3D shape of Orion A with Gaia DR2 An informed view on Star Formation Rates and Efficiencies ». Proceedings of the International Astronomical Union 14, S345 (août 2018) : 27–33. http://dx.doi.org/10.1017/s1743921319001492.

Texte intégral
Résumé :
AbstractThe giant molecular cloud Orion A is the closest massive star-forming region to earth (d ∼ 400 pc). It contains the rich Orion Nebula Cluster (ONC) in the North, and low-mass star-forming regions (L1641, L1647) to the South. To get a better understanding of the differences in star formation activity, we perform an analysis of the gas mass distribution and star formation rate across the cloud. We find that the gas is roughly uniformly distributed, while, oddly, the ONC region produced about a factor of ten more stars compared to the rest of the cloud. For a better interpretation of this phenomenon, we use Gaia DR2 parallaxes, to analyse distances of young stellar objects, using them as proxy for cloud distances. We find that the ONC region indeed lies at about 400 pc while the low-mass star-forming parts are inclined about 70∘ from the plane of the sky reaching until ∼470 pc. With this we estimate that Orion A is an about 90 pc long filamentary cloud (about twice as long as previously assumed), with its “Head” (the ONC region) being “bent” and oriented towards the galactic mid-plane. This striking new view allows us to perform a more robust analysis of this important star-forming region in the future.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Giardino, G., F. Favata et G. Micela. « Chandraobservations of the massive star-forming region S106 ». Astronomy & ; Astrophysics 424, no 3 (septembre 2004) : 965–78. http://dx.doi.org/10.1051/0004-6361:20040363.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Magakian, T. Yu, T. A. Movsessian et J. Bally. « A new star-forming region in Canis Major ». Monthly Notices of the Royal Astronomical Society 460, no 1 (22 avril 2016) : 489–96. http://dx.doi.org/10.1093/mnras/stw940.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Schneider, N., M. Röllig, R. Simon, H. Wiesemeyer, A. Gusdorf, J. Stutzki, R. Güsten et al. « Anatomy of the massive star-forming region S106 ». Astronomy & ; Astrophysics 617 (septembre 2018) : A45. http://dx.doi.org/10.1051/0004-6361/201732508.

Texte intégral
Résumé :
The central area (40″ × 40″) of the bipolar nebula S106 was mapped in the [O I] line at 63.2 μm (4.74 THz) with high angular (6″) and spectral (0.24 MHz) resolution, using the GREAT heterodyne receiver on board SOFIA. The spatial and spectral emission distribution of [O I] is compared to emission in the CO 16 →15, [C II] 158 μm, and CO 11 →10 lines, mm-molecular lines, and continuum. The [O I] emission is composed of several velocity components in the range from –30 to 25 km s−1. The high-velocity blue- and red-shifted emission (v = −30 to –9 km s−1 and 8 to 25 km s−1) can be explained as arising from accelerated photodissociated gas associated with a dark lane close to the massive binary system S106 IR, and from shocks caused by the stellar wind and/or a disk–envelope interaction. At velocities from –9 to –4 km s−1 and from 0.5 to 8 km s−1 line wings are observed in most of the lines that we attribute to cooling in photodissociation regions (PDRs) created by the ionizing radiation impinging on the cavity walls. The velocity range from –4 to 0.5 km s−1 is dominated by emission from the clumpy molecular cloud, and the [O I], [C II], and high-J CO lines are excited in PDRs on clump surfaces that are illuminated by the central stars. Modelling the line emission in the different velocity ranges with the KOSMA-τ code constrains a radiation field χ of a few times 104 and densities n of a few times 104 cm−3. Considering self-absorption of the [O I] line results in higher densities (up to 106 cm−3) only for the gas component seen at high blue- and red velocities. We thus confirm the scenario found in other studies that the emission of these lines can be explained by a two-phase PDR, but attribute the high-density gas to the high-velocity component only. The dark lane has a mass of ~275 M⊙ and shows a velocity difference of ~1.4 km s−1 along its projected length of ~1 pc, determined from H13CO+ 1 →0 mapping. Its nature depends on the geometry and can be interpreted as a massive accretion flow (infall rate of ~2.5 × 10−4 M⊙ yr−1), or the remains of it, linked to S106 IR/FIR. The most likely explanation is that the binary system is at a stage of its evolution where gas accretion is counteracted by the stellar winds and radiation, leading to the very complex observed spatial and kinematic emission distribution of the various tracers.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Joncour, Isabelle, Gaspard Duchêne, Estelle Moraux et Frédérique Motte. « Multiplicity and clustering in Taurus star forming region ». Astronomy & ; Astrophysics 620 (26 novembre 2018) : A27. http://dx.doi.org/10.1051/0004-6361/201833042.

Texte intégral
Résumé :
Context. Multiplicity and clustering of young pre-main sequence stars appear as critical clues to understand and constrain the star formation process. Taurus is the archetypical example of the most quiescent star forming regions that may still retain primeval signatures of star formation. Aims. This work identifies local overdense stellar structures as a critical scale between wide pairs and loose groups in Taurus. Methods. Using the density-based spatial clustering of applications with noise (dbscan) algorithm, and setting its free parameters based on the one-point correlation function and the k-nearest neighbor statistics, we have extracted reliably overdense structures from the sky-projected spatial distribution of stars. Results. Nearly half of the entire stellar population in Taurus is found to be concentrated in 20 very dense, tiny and prolate regions called NESTs (for Nested Elementary STructures). They are regularly spaced (≈2 pc) and mainly oriented along the principal gas filaments axes. Each NEST contains between four and 23 stars. Inside NESTs, the surface density of stars may be as high as 2500 pc−2 and the mean value is 340 pc−2. Nearly half (11) of these NESTs contain about 75% of the class 0 and I objects. The balance between Class I, II, and, III fraction within the NESTs suggests that they may be ordered as an evolutionary temporal scheme, some of them getting infertile with time, while other still giving birth to young stars. We have inferred that only 20% of stars in Taurus do not belong to any kind of stellar groups (either multiple system, ultra wide pairs or NESTs). The mass-size relation for stellar NESTs is very close to the Bonnor–Ebert expectation. The range in mass is about the same as that of dense molecular cores. The distribution in size is bimodal peaking at 12.5 and 50 kAU and the distribution of the number of YSOs in NESTs as a function of size exhibits two regimes. Conclusions. We propose that the NESTs in their two size regimes represent the spatial imprints of stellar distribution at birth as they may have emerged within few millions years from their natal cloud either from a single core or from a chain of cores. We have identified them as the preferred sites of star formation in Taurus. These NESTs are the regions of highest stellar density and intermediate spatial scale structures between ultra-wide pairs and loose groups.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Chromey, Frederick R., Bruce G. Elmegreen et Debra Meloy Elmegreen. « Atomic hydrogen in the Orion star-forming region ». Astronomical Journal 98 (décembre 1989) : 2203. http://dx.doi.org/10.1086/115289.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Genzel, Reinhard, et Jürgen Stutzki. « The Orion Molecular Cloud and Star-Forming Region ». Annual Review of Astronomy and Astrophysics 27, no 1 (septembre 1989) : 41–85. http://dx.doi.org/10.1146/annurev.aa.27.090189.000353.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Odenwald, Sten, Jacqueline Fischer, Felix J. Lockman et Sally Stemwedel. « The unusual cometary star-forming region G110-13 ». Astrophysical Journal 397 (septembre 1992) : 174. http://dx.doi.org/10.1086/171777.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Preibisch, T. « XMM-Newtonstudy of the Serpens star-forming region ». Astronomy & ; Astrophysics 410, no 3 (novembre 2003) : 951–59. http://dx.doi.org/10.1051/0004-6361:20031322.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Lee, Chin‐Fei, et Paul T. P. Ho. « Outflow and Infall in Star‐forming Region L1221 ». Astrophysical Journal 632, no 2 (20 octobre 2005) : 964–72. http://dx.doi.org/10.1086/432657.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Rudolph, Alexander, William J. Welch, Patrick Palmer et Berengere Dubrulle. « Dynamical collapse of the W51 star-forming region ». Astrophysical Journal 363 (novembre 1990) : 528. http://dx.doi.org/10.1086/169363.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Joncour, Isabelle, Gaspard Duchêne et Estelle Moraux. « Multiplicity and clustering in Taurus star-forming region ». Astronomy & ; Astrophysics 599 (20 février 2017) : A14. http://dx.doi.org/10.1051/0004-6361/201629398.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Kun, M. « Objective Prism Study of Star Forming Regions ». Symposium - International Astronomical Union 161 (1994) : 470–72. http://dx.doi.org/10.1017/s0074180900047884.

Texte intégral
Résumé :
Radio molecular observations in the millimeter wavelength region in the last decade have revealed a number of giant molecular cloud complexes at relatively high galactic latitudes. Examples for such cloud complexes are Cepheus Flare (Lebrun 1986), and Ursa Major and Camelopardalis clouds (Heithausen et al. 1993). Because of their high galactic latitudes, these cloud complexes probably belong to the nearest molecular clouds and among them we may find some nearby regions of low-mass star formation.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Petersen, Michael S., Robert A. Gutermuth, Erick Nagel, Grant W. Wilson et James Lane. « Early science with the Large Millimetre Telescope : new mm-wave detections of circumstellar discs in IC 348 from LMT/AzTEC ». Monthly Notices of the Royal Astronomical Society 488, no 1 (3 juillet 2019) : 1462–80. http://dx.doi.org/10.1093/mnras/stz1739.

Texte intégral
Résumé :
Abstract We present the most complete sample of mm measurements of protoplanetary discs in the star-forming region IC 348 to date. New observations from the Large Millimetre Telescope and the 1.1 mm camera AzTEC are combined with literature results in order to characterize the disc population as relating to both stellar properties within the IC 348 region and across other star-forming regions. In addition to detecting 28 of 116 observed known infrared-excess sources, we detected emission from two previously unknown candidate transition discs in the region. When combined with literature results, we find evidence for a steeper-than-expected slope, on average, in disc spectral energy distributions at millimetre wavelengths in the IC 348 region. We show that the presence or absence of high-mass discs is a sensitive indicator of regional evolution, both among star-forming regions and within IC 348. In contrast, low-mass discs exhibit almost no apparent evolution within the first ∼5 Myr when compared among regions.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Anderson, C. N., D. S. Meier, J. Ott, A. Hughes et T. Wong. « From Gas to Stars in Energetic Environments : Dense Gas Clumps in the 30 Doradus Region ». Proceedings of the International Astronomical Union 8, S292 (août 2012) : 95. http://dx.doi.org/10.1017/s1743921313000550.

Texte intégral
Résumé :
AbstractWe present parsec-scale interferometric maps of HCN(1-0) and HCO+(1-0) emission from dense gas in the star-forming region 30Dor10, obtained using the Australia Telescope Compact Array. This extreme star-forming region, located in the Large Magellanic Cloud, is characterized by a very intense ionizing radiation field and sub-solar metallicity, both of which are expected to affect molecular cloud structure. We detect 13 clumps of dense molecular gas, some of which are aligned in a filamentary structure. Our analysis of the clump properties shows that they have similar mass but slightly wider linewidths than clumps detected in other LMC star-forming regions.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Baugh, C. M., Cedric G. Lacey, Violeta Gonzalez-Perez et Giorgio Manzoni. « Modelling emission lines in star-forming galaxies ». Monthly Notices of the Royal Astronomical Society 510, no 2 (3 décembre 2021) : 1880–93. http://dx.doi.org/10.1093/mnras/stab3506.

Texte intégral
Résumé :
ABSTRACT We present a new model to compute the luminosity of emission lines in star-forming galaxies and apply this in the semi-analytical galaxy formation code galform. The model combines a pre-computed grid of H II region models with an empirical determination of how the properties of H II regions depend on the macroscopic properties of galaxies based on observations of local galaxies. The new model gives a very good reproduction of the locus of star-forming galaxies on standard line ratio diagnostic diagrams. The new model shows evolution in the locus of star-forming galaxies with redshift on this line ratio diagram, with a good match to the observed line ratios at z = 1.6. The model galaxies at high redshift have gas densities and ionisation parameters that are predicted to be ≈2–3 times higher than in local star-forming galaxies, which is partly driven by the changing selection with redshift to mimic the observational selection. Our results suggest that the observed evolution in emission line ratios requires other H II region properties to evolve with redshift, such as the gas density, and cannot be reproduced by H II model grids that only allow the gas metallicity and ionisation parameter to vary.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Kimeswenger, S., et R. Weinberger. « IRAS 18456-0223 -a flare star in a new star forming region ». Astronomy & ; Astrophysics 370, no 3 (mai 2001) : 991–95. http://dx.doi.org/10.1051/0004-6361:20010287.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Scaife, Anna M. M. « Anomalous Microwave Emission from Star Forming Regions ». Advances in Astronomy 2013 (2013) : 1–25. http://dx.doi.org/10.1155/2013/390287.

Texte intégral
Résumé :
The evidence for microwave emission from spinning dust grains has been strengthened considerably by its detection in a number of discrete astrophysical objects associated with star formation. These detections, in combination with statistical constraints on its presence on large angular scales in the diffuse ISM, have provided strong observational confirmation of an emission mechanism still referred to as anomalous. This emission has a peaked spectrum with a maximum in the microwave band; the present review discusses the continuum radio emission mechanisms which can contribute to this region of the electromagnetic spectrum, collects published results on the prevalence of anomalous microwave emission in a variety of star formation regions, presents the overall conclusions that may be drawn from the detections so far, and discusses the prospects for future research on the anomalous microwave emission attributed to spinning dust within star forming regions.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Immer, K., M. J. Reid et K. M. Menten. « Relative parallaxes in the massive star forming region W33 ». Proceedings of the International Astronomical Union 8, S287 (janvier 2012) : 413–14. http://dx.doi.org/10.1017/s1743921312007405.

Texte intégral
Résumé :
AbstractThe massive star forming complex W33 contains several molecular clouds at different stages of star formation activity, ranging from quiescent to highly active clouds. Our trigonometric parallax observations of water masers in this complex, conducted with the VLBA at 22.2 GHz, show that all water masers have the same distance of 2.4 kpc, locating the W33 complex in the Sagittarius spiral arm.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Mooley, Kunal, Lynne Hillenbrand, Luisa Rebull, Deborah Padgett et Gillian Knapp. « B- AND A-TYPE STARS IN THE TAURUS-AURIGA STAR-FORMING REGION ». Astrophysical Journal 771, no 2 (24 juin 2013) : 110. http://dx.doi.org/10.1088/0004-637x/771/2/110.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Wiramihardja, Suhardja D., Makoto Nakano et Tomokazu Kogure. « A Survey of Emission-line Stars in the Outer Part of the Orion Star-forming Region ». International Astronomical Union Colloquium 148 (1995) : 374–75. http://dx.doi.org/10.1017/s0252921100022211.

Texte intégral
Résumé :
AbstractWe report the result of our survey observations in the outer part of the Orion star-forming region which consists of six Kiso sky areas (150 square degrees). In total, we detected only 48 emission line stars. The low surface density suggests that the Orion star-forming region probably terminates around these areas.
Styles APA, Harvard, Vancouver, ISO, etc.
40

Gonidakis, I., E. Livanou, E. Kontizas, U. Klein, M. Kontizas, D. Kester, Y. Fukui, N. Mizuno et P. Tsalmantza. « Star-Forming Regions in the SMC ». Proceedings of the International Astronomical Union 2, S235 (août 2006) : 311. http://dx.doi.org/10.1017/s1743921306006764.

Texte intégral
Résumé :
AbstractSMC has been going through an active star formation epoch, especially during the last 0.2 Gyr when the close encounter with the LMC occured. Our goal is to detect regions dominated by early-type stars and gas and examine their behaviour at different wavelengths. Spectral energy distributions, a colour-magnitude diagram and a two-colour diagram from IRAS data (Bontekoe, Koperet & Kester (1994); Bontekoe, Kester, Stanimirović, et al. (1999)) for these regions were used in order to compare their properties with those of starburst galaxies (Helou (1986); Lehnert & Heckman (1995)). We have selected 50 stellar complexes with increased 100-μm IRAS flux, with detetected emission in all IRAS bands and/or high concentration of young stars. Ranking them by size (Maragoudaki, Kontizas, Kontizas, et al. (1998)), a total of what we call 24 aggregates, 23 complexes and 3 super-complexes were found. Radio continuum maps at 8.6-GHz (Haynes, Murray, Klein, et al. (1986)) and the CO (1→0) line (Mizuno, Rubio, Mizuno, et al. (2001)) were also correlated with the map of the complexes. Only 8 of them show enhanced star formation activity according to their IR properties and 8.6-GHz map, however, none of them resembles the IR behaviour of starburst regions found in the LMC and starburst galaxies (Livanou, Kontizas, Gonidakis, et al. (2006)). The south-west part of the “bar” has the most diverse intensity of star formation, with CO emission coincident with the largest structure. In the north-eastern end of the “bar”, star formation is likely to have commenced in the recent past, with molecular gas being abundant in this region. Ongoing and future star formation are revealed in the wing, while it appears to have ceased in the central “bar”.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Komugi, S., K. Tateuchi, K. Motohara, T. Takagi, D. Iono, H. Kaneko, J. Ueda et T. R. Saitoh. « The Schmidt-Kennicutt Law of Matched-Age Star Forming Regions ». Proceedings of the International Astronomical Union 8, S292 (août 2012) : 331. http://dx.doi.org/10.1017/s1743921313001579.

Texte intégral
Résumé :
AbstractWe show that the dispersion in the Schmidt-Kennicutt (SK) law in galaxies is affected significantly by the evolutionary stage of star forming molecular gas, using narrow band Paα imaging of Taffy I, an interacting pair of galaxies. Star forming regions in the system show very uniform ages except for the bridge region, and the SK law of regions at the same age show a exceptionally tight SK law.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Kim, Jeong-Sook, et Soon-Wook Kim. « New water maser source near HW3d in the massive star-forming region Cepheus A ». Proceedings of the International Astronomical Union 13, S336 (septembre 2017) : 297–98. http://dx.doi.org/10.1017/s1743921317010067.

Texte intégral
Résumé :
AbstractCepheus A is the second nearest high mass star-forming region after Orion. It is characterized by the presence of several phenomena, such as a complex molecular outflow, and multiple radio continuum sources, known as HW sources. The radio continuum and water maser emission have been detected toward HW2, HW3b and HW3d regions, and all of them are considered harboring young stellar objects. In 2014, we performed KaVA observations and detected a new bright maser feature, ~700 mas apart from HW3d, which has not been detected with previous VLBI observations. The relative proper motion of the new maser feature is faster than other regions. It can be a clue for a newly forming star. Alternatively, it may be caused by outflow shock from the star-forming regions such as HW3d or HW3c.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Kalari, Venu M., Monica Rubio, Hugo P. Saldaño et Alberto D. Bolatto. « Resolved star formation in the metal-poor star-forming region Magellanic Bridge C ». Monthly Notices of the Royal Astronomical Society 499, no 2 (26 septembre 2020) : 2534–53. http://dx.doi.org/10.1093/mnras/staa2963.

Texte intégral
Résumé :
ABSTRACT Magellanic Bridge C (MB-C) is a metal-poor (∼1/5 Z⊙) low-density star-forming region located 59 kpc away in the Magellanic Bridge, offering a resolved view of the star formation process in conditions different to the Galaxy. From Atacama Large Millimetre Array CO (1–0) observations, we detect molecular clumps associated with candidate young stellar objects (YSOs), pre-main sequence (PMS) stars, and filamentary structure identified in far-infrared imaging. YSOs and PMS stars form in molecular gas having densities between 17 and 200 M⊙ pc−2, and have ages between ≲0.1 and 3 Myr. YSO candidates in MB -C have lower extinction than their Galactic counterparts. Otherwise, our results suggest that the properties and morphologies of molecular clumps, YSOs, and PMS stars in MB -C present no patent differences with respect to their Galactic counterparts, tentatively alluding that the bottleneck to forming stars in regions similar to MB-C is the conversion of atomic gas to molecular.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Wiramihardja, Suhardja D., Makoto Nakano et Tomokazu Kogure. « Emission-Line Stars in the Outer Part of the Orion Star-Forming Region ». Symposium - International Astronomical Union 164 (1995) : 380–81. http://dx.doi.org/10.1017/s0074180900108988.

Texte intégral
Résumé :
In a series of emission-line star survey programs we have conducted wide and deep survey observations for Hα emission stars in the Orion star-forming region. The first result for the Kiso area A-0904 (5°x5°, centered at α = 5h40m and δ = +0°) was presented in Paper I (Wiramihardja et al., 1989), followed by Paper II (Kogure et al., 1989) for the area A-0903 (α = 5h20m, δ = −5° and A-0976 (α = 5h40m, δ = −5°). In Paper IV the results for the areas A-1047 (α = 5h20m, δ = −10° and A-1048 (α = 5h40m, δ = −10°) are given.
Styles APA, Harvard, Vancouver, ISO, etc.
45

Bodifee, G. « Oscillating Star Formation ». Symposium - International Astronomical Union 116 (1986) : 397–98. http://dx.doi.org/10.1017/s0074180900149253.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Abel, N. P., et G. J. Ferland. « Determining the H+Region / PDR Equation of State in Star‐forming Regions ». Astrophysical Journal 647, no 1 (10 août 2006) : 367–73. http://dx.doi.org/10.1086/505175.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Oasa, Yumiko. « Photometric and spectroscopic studies of very low mass YSOs and young Brown Dwarfs in S106 ». Proceedings of the International Astronomical Union 2, S237 (août 2006) : 457. http://dx.doi.org/10.1017/s1743921307002451.

Texte intégral
Résumé :
Young brown dwarfs have been identified in a significant population in various star forming regions. Some deep surveys have yielded less massive objects with planetary-mass (e.g., Oasa et al. 1999; Lucas & Roche 2000). Nevertheless, it is not yet clear how abundant these very low-mass objects are formed. S106 is one of the nearest massive star-forming regions associated with prominent bipolar nebulae and an HII region. We have conducted near-infrared photometric and spectroscopic observations of very low-mass young stellar objects (YSOs) in the S106 region.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Luhman, K. L. « The Stellar Membership of the Taurus Star-forming Region ». Astronomical Journal 156, no 6 (16 novembre 2018) : 271. http://dx.doi.org/10.3847/1538-3881/aae831.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Felli, M., F. Massi, A. Navarrini, R. Neri, R. Cesaroni et T. Jenness. « New light on the S235A-B star forming region ». Astronomy & ; Astrophysics 420, no 2 (28 mai 2004) : 553–69. http://dx.doi.org/10.1051/0004-6361:20035905.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Kumar, M. S. N., M. Tafalla et R. Bachiller. « The structure of the Onsala 1 star forming region ». Astronomy & ; Astrophysics 426, no 1 (octobre 2004) : 195–200. http://dx.doi.org/10.1051/0004-6361:20041234.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie