Littérature scientifique sur le sujet « Star cluster formation and evolution »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Star cluster formation and evolution ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Star cluster formation and evolution"

1

Kroupa, Pavel. « Star-cluster formation and evolution ». Proceedings of the International Astronomical Union 2, S237 (août 2006) : 230–37. http://dx.doi.org/10.1017/s1743921307001524.

Texte intégral
Résumé :
AbstractStar clusters are observed to form in a highly compact state and with low star-formation efficiencies, and only 10 per cent of all clusters appear to survive to middle- and old-dynamical age. If the residual gas is expelled on a dynamical time the clusters disrupt. Massive clusters may then feed a hot kinematical stellar component into their host-galaxy's field population thereby thickening galactic disks, a process that theories of galaxy formation and evolution need to accommodate. If the gas-evacuation time-scale depends on cluster mass, then a power-law embedded-cluster mass function may transform within a few dozen Myr to a mass function with a turnover near 105M, thereby possibly explaining this universal empirical feature. Discordant empirical evidence on the mass function of star clusters leads to the insight that the physical processes shaping early cluster evolution remain an issue of cutting-edge research.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Parmentier, Geneviève. « Early dynamical evolution of star cluster systems ». Proceedings of the International Astronomical Union 5, S266 (août 2009) : 87–94. http://dx.doi.org/10.1017/s1743921309990913.

Texte intégral
Résumé :
AbstractViolent relaxation, the protocluster dynamical response to the expulsion of its residual star-forming gas, is a short albeit crucial episode in the evolution of star clusters and star cluster systems. Because it is heavily driven by cluster-formation and environmental conditions, it is a potentially highly rewarding phase in terms of probing star formation and galaxy evolution. In this contribution, I review how cluster-formation and environmental conditions affect the shape of the young cluster mass function and the relation between the present star-formation rate of galaxies and the mass of their young, most massive cluster.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Vesperini, Enrico. « Star cluster dynamics ». Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences 368, no 1913 (28 février 2010) : 829–49. http://dx.doi.org/10.1098/rsta.2009.0260.

Texte intégral
Résumé :
Dynamical evolution plays a key role in shaping the current properties of star clusters and star cluster systems. A detailed understanding of the effects of evolutionary processes is essential to be able to disentangle the properties that result from dynamical evolution from those imprinted at the time of cluster formation. In this review, I focus my attention on globular clusters, and review the main physical ingredients driving their early and long-term evolution, describe the possible evolutionary routes and show how cluster structure and stellar content are affected by dynamical evolution.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Zepf, Stephen E. « The Formation and Evolution of Star Clusters and Galaxies ». Highlights of Astronomy 13 (2005) : 347–49. http://dx.doi.org/10.1017/s1539299600015938.

Texte intégral
Résumé :
AbstractThis paper addresses the questions of what we have learned about how and when dense star clusters form, and what studies of star clusters have revealed about galaxy formation and evolution. One important observation is that globular clusters are observed to form in galaxy mergers and starbursts in the local universe, which both provides constraints on models of globular cluster formation, and suggests that similar physical conditions existed when most early-type galaxies and their globular clusters formed in the past. A second important observation is that globular cluster systems typically have bimodal color distributions. This was predicted by merger models, and indicates an episodic formation history for elliptical galaxies. A third and very recent result is the discovery of large populations of intermediate age globular clusters in several elliptical galaxies through the use of optical to near-infrared colors. These provide an important link between young cluster systems observed in starbursts and mergers and old cluster systems. This continuum of ages of the metal-rich globular cluster systems also indicates that there is no special age or epoch for the formation of the metal-rich globular clusters, which comprise about half of the cluster population. The paper concludes with a brief discussion of recent results on the globular cluster – low-mass X-ray binary connection.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Gieles, Mark. « Star cluster disruption ». Proceedings of the International Astronomical Union 5, S266 (août 2009) : 69–80. http://dx.doi.org/10.1017/s1743921309990895.

Texte intégral
Résumé :
AbstractStar clusters are often used as tracers of major star-formation events in external galaxies as they can be studied out to much greater distances than individual stars. It is vital to understand their evolution if they are used to derive, for example, the star-formation history of their host galaxy. More specifically, we want to know how cluster lifetimes depend on their environment and on structural properties such as mass and radius. This review presents a theoretical overview of the early evolution of star clusters and the consequent long-term survival chances. It is suggested that clusters forming with initial densities of ≳104 M⊙ pc−3 survive the gas expulsion, or ‘infant mortality,’ phase. At ~10Myr, they are bound and have densities of ~103±1 M⊙ pc−3. After this time, they are stable against expansion through stellar evolution, encounters with giant molecular clouds and will most likely survive for another Hubble time if they are located in a moderate tidal field. Clusters with lower initial densities (≲100 M⊙ pc−3) will disperse into the field within a few 10s of Myrs. Some discussion is given on how extragalactic star cluster populations, and especially their age distributions, can be used to gain insight into disruption.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Clarke, C. J. « Star Formation in Large N Clusters ». Symposium - International Astronomical Union 207 (2002) : 489–98. http://dx.doi.org/10.1017/s0074180900224297.

Texte intégral
Résumé :
We focus here on the gas dynamics of cluster formation and the early stellar dynamical evolution of young clusters. We point out that the condition that a cloud can fragment into a large number of pieces places rather particular constraints on its initial state; we also review the processes that shape the stellar IMF in cluster formation simulations. We show how N-body calculations and observations can be combined to discover the properties of clusters at the point at which they first become stellar dynamical (as opposed to gas dynamical systems). Finally, we touch on the question of how proto-cluster clouds are assembled and reopen the issue of whether dark matter may play a role in globular cluster formation.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Fensch, Jérémy, Pierre-Alain Duc, Médéric Boquien, Debra M. Elmegreen, Bruce G. Elmegreen, Frédéric Bournaud, Elias Brinks et al. « Massive star cluster formation and evolution in tidal dwarf galaxies ». Astronomy & ; Astrophysics 628 (août 2019) : A60. http://dx.doi.org/10.1051/0004-6361/201834403.

Texte intégral
Résumé :
Context. The formation of globular clusters remains an open debate. Dwarf starburst galaxies are efficient at forming young massive clusters with similar masses as globular clusters and may hold the key to understanding their formation. Aims. We study star cluster formation in a tidal debris, including the vicinity of three tidal dwarf galaxies, in a massive gas-dominated collisional ring around NGC 5291. These dwarfs have physical parameters that differ significantly from local starbursting dwarfs. They are gas rich, highly turbulent, their gas metallicity is already enriched up to half solar values, and they are expected to be free of dark matter. The aim is to study massive star cluster formation in this as yet unexplored type of environment. Methods. We used imaging from the Hubble Space Telescope using broadband filters that cover the wavelength range from the near-ultraviolet to the near-infrared. We determined the masses and ages of the cluster candidates by using the spectral energy distribution-fitting code CIGALE. We considered age-extinction degeneracy effects on the estimation of the physical parameters. Results. We find that the tidal dwarf galaxies in the ring of NGC 5291 are forming star clusters with an average efficiency of ∼40%, which is similar to blue compact dwarf galaxies. We also find massive star clusters for which the photometry suggests that they were formed at the very birth of the tidal dwarf galaxies. These clusters have survived for several hundred million years. Therefore our study shows that extended tidal dwarf galaxies and compact clusters may be formed simultaneously. In the specific case observed here, the young star clusters are not massive enough to survive for a Hubble time. However, it may be speculated that similar objects at higher redshift, with a higher star formation rate, might form some of the long-lived globular clusters.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Lada, Charles J. « The physics and modes of star cluster formation : observations ». Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences 368, no 1913 (28 février 2010) : 713–31. http://dx.doi.org/10.1098/rsta.2009.0264.

Texte intégral
Résumé :
Stellar clusters are born in cold and dusty molecular clouds and the youngest clusters are embedded to various degrees in a dusty dark molecular material. Such embedded clusters can be considered protocluster systems. The most deeply buried examples are so heavily obscured by dust that they are only visible at infrared wavelengths. These embedded protoclusters constitute the nearest laboratories for a direct astronomical investigation of the physical processes of cluster formation and early evolution. I review the present state of empirical knowledge concerning embedded-cluster systems and discuss the implications for understanding their formation and subsequent evolution to produce bound stellar clusters.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Anders, Peter, Uta Fritze –. v. Alvensleben et Richard de Grijs. « Young Star Clusters : Progenitors of Globular Clusters! ? » Highlights of Astronomy 13 (2005) : 366–68. http://dx.doi.org/10.1017/s1539299600015987.

Texte intégral
Résumé :
AbstractStar cluster formation is a major mode of star formation in the extreme conditions of interacting galaxies and violent starbursts. Young clusters are observed to form in a variety of such galaxies, a substantial number resembling the progenitors of globular clusters in mass and size, but with significantly enhanced metallicity. From studies of the metal-poor and metal-rich star cluster populations of galaxies, we can therefore learn about the violent star formation history of these galaxies, and eventually about galaxy formation and evolution. We present a new set of evolutionary synthesis models of our GALEV code, with special emphasis on the gaseous emission of presently forming star clusters, and a new tool to compare extensive model grids with multi-color broad-band observations to determine individual cluster masses, metallicities, ages and extinction values independently. First results for young star clusters in the dwarf starburst galaxy NGC 1569 are presented. The mass distributions determined for the young clusters give valuable input to dynamical star cluster system evolution models, regarding survival and destruction of clusters. We plan to investigate an age sequence of galaxy mergers to see dynamical destruction effects in process.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Randriamanakoto, Zara, et Petri Väisänen. « Young massive clusters in Arp 299 ». Proceedings of the International Astronomical Union 14, S351 (mai 2019) : 143–46. http://dx.doi.org/10.1017/s1743921319007701.

Texte intégral
Résumé :
AbstractBecause of their young ages and compact densities, young massive star clusters (YMCs) are widely considered as potential proto-globular clusters. They are ubiquitous in environments with ongoing star formation activity such as interacting luminous infrared galaxies. To determine the galactic environmental effects on the star cluster formation and evolution, we study the YMC population of Arp 299 (NGC 3690E/NGC 3690W) using data taken with the HST WFC3/UVIS camera. By fitting the multiband photometry with the Yggdrasil models, we derive the star cluster masses, ages and extinction. While the cluster mass-galactocentric radius relation of NGC 3690E indicates that there could be an influence of the gas density distribution on the cluster formation, the age distribution of the western component suggests that YMCs in that galaxy endure stronger disruption mechanisms. With a cluster formation efficiency of 19 percent, star formation happening in bound clusters in Arp 299 is 3–5 times higher than that of a typical normal spiral.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Star cluster formation and evolution"

1

Adamo, A., J. E. Ryon, M. Messa, H. Kim, K. Grasha, D. O. Cook, D. Calzetti et al. « Legacy ExtraGalactic UV Survey with The Hubble Space Telescope : Stellar Cluster Catalogs and First Insights Into Cluster Formation and Evolution in NGC 628 ». IOP PUBLISHING LTD, 2017. http://hdl.handle.net/10150/624449.

Texte intégral
Résumé :
We report the large effort that is producing comprehensive high-level young star cluster (YSC) catalogs for a significant fraction of galaxies observed with the Legacy ExtraGalactic UV Survey (LEGUS) Hubble treasury program. We present the methodology developed to extract cluster positions, verify their genuine nature, produce multiband photometry (from NUV to NIR), and derive their physical properties via spectral energy distribution fitting analyses. We use the nearby spiral galaxy NGC 628 as a test case for demonstrating the impact that LEGUS will have on our understanding of the formation and evolution of YSCs and compact stellar associations within their host galaxy. Our analysis of the cluster luminosity function from the UV to the NIR finds a steepening at the bright end and at all wavelengths suggesting a dearth of luminous clusters. The cluster mass function of NGC 628 is consistent with a power-law distribution of slopes similar to-2 and a truncation of a few times 10(5) M-circle dot. After their formation, YSCs and compact associations follow different evolutionary paths. YSCs survive for a longer time frame, confirming their being potentially bound systems. Associations disappear on timescales comparable to hierarchically organized star-forming regions, suggesting that they are expanding systems. We find massindependent cluster disruption in the inner region of NGC 628, while in the outer part of the galaxy there is little or no disruption. We observe faster disruption rates for low mass (<= 10(4) M-circle dot) clusters, suggesting that a massdependent component is necessary to fully describe the YSC disruption process in NGC 628.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Messa, M., A. Adamo, G. Östlin, D. Calzetti, K. Grasha, E. K. Grebel, F. Shabani et al. « The young star cluster population of M51 with LEGUS – I. A comprehensive study of cluster formation and evolution ». OXFORD UNIV PRESS, 2018. http://hdl.handle.net/10150/626277.

Texte intégral
Résumé :
Recently acquired WFC3 UV (F275W and F336W) imaging mosaics under the Legacy Extragalactic UV Survey (LEGUS), combined with archival ACS data of M51, are used to study the young star cluster (YSC) population of this interacting system. Our newly extracted source catalogue contains 2834 cluster candidates, morphologically classified to be compact and uniform in colour, for which ages, masses and extinction are derived. In this first work we study the main properties of the YSC population of the whole galaxy, considering a mass-limited sample. Both luminosity and mass functions follow a power-law shape with slope -2, but at high luminosities and masses a dearth of sources is observed. The analysis of the mass function suggests that it is best fitted by a Schechter function with slope -2 and a truncation mass at 1.00 +/- 0.12 x 10(5) M-circle dot . Through Monte Carlo simulations, we confirm this result and link the shape of the luminosity function to the presence of a truncation in the mass function. A mass limited age function analysis, between 10 and 200 Myr, suggests that the cluster population is undergoing only moderate disruption. We observe little variation in the shape of the mass function at masses above 1 x 10(4) M-circle dot over this age range. The fraction of star formation happening in the form of bound clusters in M51 is similar to 20 per cent in the age range 10-100 Myr and little variation is observed over the whole range from 1 to 200 Myr.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Simanton, Lesley Ann. « Star Cluster Populations in the Spiral Galaxy M101 ». University of Toledo / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1437587267.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Anders, Peter. « Formation and evolution of star clusters in interacting galaxies ». Doctoral thesis, [S.l.] : [s.n.], 2006. http://webdoc.sub.gwdg.de/diss/2006/anders.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Goodwin, S. P. « The early dynamical evolution of globular clusters ». Thesis, University of Sussex, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.360496.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Lyo, A.-Ran Physical Environmental &amp Mathematical Sciences Australian Defence Force Academy UNSW. « The nearby young [special character] Chamaeleontis cluster as a laboratory for star formation and evolution ». Awarded by:University of New South Wales - Australian Defence Force Academy. School of Physical, Environmental and Mathematical Sciences, 2004. http://handle.unsw.edu.au/1959.4/38707.

Texte intégral
Résumé :
[Special characters cannot be displayed. Please see the pdf version of the Abstract for an accurate reproduction.] We studied the circumstellar discs, the initial mass function (IMF), mass distribution, binarity and the fundamental properties of the [special character] 9 Myr-old pre-main sequence (PMS) [special character] Chamaeleontis cluster. Using JHKL colour-colour and colour-excess diagrams, we found the circumstellar disc fraction to be [special character] 0.60 among the late-type members. Four stars with [special character] (K - L) > 0.4 were identified as experiencing ongoing accretion which was later confirmed by high-resolution spectroscopic study. Quantitative analysis of the H[special character] profiles found accretion in these four stars at rates comparable to that of two members of the similarly-aged TW Hydrae Association (TWA); rates 1 - 3 orders of magnitude lower than in younger classical T Tauri stars. Together these results suggest that, while the mass accretion rate decreases with age, PMS stars can retain their inner discs for [special character] 10 Myr. An optical photometric survey spanning 1.3 ?? 1.3 pc added two low-mass stars to the cluster inventory. Together with other recent surveys the population is likely to be significantly complete for primaries with masses M > 0.15M[special character]. The cluster now consists of 18 primaries and 9 confirmed and candidate secondaries, with [special character] 2-4 times higher multiplicity than seen in field dwarfs. The cluster IMF is consistent with that of rich young clusters and field stars. By extending the IMF to lower masses, we predict 20-29 low-mass stars and brown dwarfs may remain undiscovered. From study of the cluster???s spatial and mass distribution, we find the [special character] Cha cluster has significant mass segregation, with > 50 per cent of the stellar mass residing within the central 0.17 pc. Lastly we classified members of the cluster with low-resolution spectra, providing information about the fundamental properties of the PMS stars by comparison to standard dwarfs. Broadband VRI colours and pseudocontinuum indices derived for the cluster stars are indistinguishable from dwarfs at visual and red wavelengths. This suggests the temperature sequence for the PMS [special character] Cha cluster is similar to that of the dwarf sequence. Narrow-band spectral indices for the [special character] Cha cluster possibly indicate higher metallicity and strongly indicate lower surface gravity than the dwarf indices.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Dorval, Julien. « Multi-scale approach of the formation and evolution of star clusters ». Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAE021/document.

Texte intégral
Résumé :
Les jeunes amas d'étoiles sont sous-structurés et évoluent dynamiquement pour former des amas sphériques à l'équilibre. Je présente une nouvelle méthode pour générer des conditions initiales réalistes pour simuler ce processus: la fragmentation de Hubble-Lemaitre. Je laisse le système développer spontanément des surdensités au cours d'une expansion du système. Le modèle résultant se compare bien aux simulations hydrodynamiques de formation stellaire et aux observations des jeunes amas. Le modèle fragmenté s'effondre de manière plus douce qu'un modèle uniforme. L'injection d'une population d'étoile binaire avant l'effondrement a montré qu'un système sous-structuré détruisait bien plus de binaires qu'un système à l'équilibre. Des binaires particulièrement larges ou serrées, jusqu’à 0.01 AU, ont également été détectées dans ces modèles. Cette méthode est très prometteuse, un exemple d'application est la génération d'observations synthétiques de régions de formation stellaire
Young star clusters are substructured and undergo a dynamical evolution erasing this substructure to form relaxed spherical clusters. I present a new method to generate realistic initial conditions to perform N-body simulations of this process: the Hubble-Lemaitre fragmentation. By expanding an initially uniform sphere, I allow spontaneous overdensities to grow, creating a realistic model for young clumpy stellar systems. This method is validated by analysing the distribution and content of the clumps and comparing them to hydrodynamical simulations of star formation as well as observations of star forming regions. These systems undergo a softer collapse than uniform ones. I injected binary stars in the fragmented models and found they were heavily processed when substructure was present. I also found extreme short and tight binaries, down to 0.01 AU, to formin the models. The method has a lot of potential, such as the generation of mock observations of star-forming regions
Styles APA, Harvard, Vancouver, ISO, etc.
8

Rudnick, Gregory, Jacqueline Hodge, Fabian Walter, Ivelina Momcheva, Kim-Vy Tran, Casey Papovich, Cunha Elisabete da et al. « Deep CO(1–0) Observations of z = 1.62 Cluster Galaxies with Substantial Molecular Gas Reservoirs and Normal Star Formation Efficiencies ». IOP PUBLISHING LTD, 2017. http://hdl.handle.net/10150/627107.

Texte intégral
Résumé :
We present an extremely deep CO(1-0) observation of a confirmed z = 1.62 galaxy cluster. We detect two spectroscopically confirmed cluster members in CO(1-0) with signal-to-noise ratio >5. Both galaxies have log (M-star/M-circle dot) > 11 and are gas rich, with M-mol/(M-star + M-mol) similar to 0.17-0.45. One of these galaxies lies on the star formation rate (SFR)-M-star sequence, while the other lies an order of magnitude below. We compare the cluster galaxies to other SFR-selected galaxies with CO measurements and find that they have CO luminosities consistent with expectations given their infrared luminosities. We also find that they have gas fractions and star formation efficiencies (SFE) comparable to what is expected from published field galaxy scaling relations. The galaxies are compact in their stellar light distribution, at the extreme end for all high-redshift star-forming galaxies. However, their SFE is consistent with other field galaxies at comparable compactness. This is similar to two other sources selected in a blind CO survey of the HDF-N. Despite living in a highly quenched protocluster core, the molecular gas properties of these two galaxies, one of which may be in the process of quenching, appear entirely consistent with field scaling relations between the molecular gas content, stellar mass, star formation rate, and redshift. We speculate that these cluster galaxies cannot have any further substantive gas accretion if they are to become members of the dominant passive population in z < 1 clusters.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Tyler, Krystal D. « Star Formation and Galaxy Evolution in Different Environments, from the Field to Massive Clusters ». Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/265395.

Texte intégral
Résumé :
This thesis focuses on how a galaxy's environment affects its star formation, from the galactic environment of the most luminous IR galaxies in the universe to groups and massive clusters of galaxies. Initially, we studied a class of high-redshift galaxies with extremely red optical-to-mid-IR colors. We used Spitzer spectra and photometry to identify whether the IR outputs of these objects are dominated by AGNs or star formation. In accordance with the expectation that the AGN contribution should increase with IR luminosity, we find most of our very red IR-luminous galaxies to be dominated by an AGN, though a few appear to be star-formation dominated. We then observed how the density of the extraglactic environment plays a role in galaxy evolution. We begin with Spitzer and HST observations of intermediate-redshift groups. Although the environment has clearly changed some properties of its members, group galaxies at a given mass and morphology have comparable amounts of star formation as field galaxies. We conclude the main difference between the two environments is the higher fraction of massive early-type galaxies in groups. Clusters show even more distinct trends. Using three different star-formation indicators, we found the mass--SFR relation for cluster galaxies can look similar to the field (A2029) or have a population of low-star-forming galaxies in addition to the field-like galaxies (Coma). We contribute this to differing merger histories: recently-accreted galaxies would not have time for their star formation to be quenched by the cluster environment (A2029), while an accretion event in the past few Gyr would give galaxies enough time to have their star formation suppressed by the cluster environment. Since these two main quenching mechanisms depend on the density of the intracluster gas, we turn to a group of X-ray under luminous clusters to study how star-forming galaxies have been affected in clusters with lower than expected X-ray emission. We find the distribution of star-forming galaxies with respect to stellar mass varies from cluster to cluster, echoing what we found for Coma and A2029. In other words, while some preprocessing occurs in groups, the cluster environment still contributes to the quenching of star formation.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Ziosi, Brunetto Marco. « The impact of stellar evolution and dynamics on the formation of compact-object binaries ». Doctoral thesis, Università degli studi di Padova, 2015. http://hdl.handle.net/11577/3424212.

Texte intégral
Résumé :
The aim of this work is to study the formation and evolution of double compact-object binaries (DCOBs, i.e. black hole-black hole, black hole-neutron star and neutron star-neutron star binaries) in young (< 100 Myr) dense (>~ 10^3 star/pc^3) star clusters (YSCs). DCOBs, when merging, are expected to be powerful sources of gravitational waves (GWs) observable by Virgo and LIGO detectors. Best merger candidates (BMCs), i.e. those sources with a chance to be observed, have a coalescence timescale shorter than one Hubble time (t_H) and produce a signal strong enough (strain >~ 10^-21) to be visible from Earth. This project is particularly timely because the second generation Virgo and LIGO detectors are expected to start operating in 2016. The importance of choosing YSCs as environment for this study has two motivations.First, YSCs are the place where >~ 80% of the stars form, in particular the most massive ones. The remnants of these massive stars will dominate the dynamics of the cluster and will form the kind of binaries we are looking for. This makes YSCs the best environment where to look for DCOBs. Second, YSCs are collisional environments (2-body relaxation timescale t_relax ~ 10 Myr (M_tot / 3500 Msun)^1/2 (r_hm / 1 pc)^3/2,where M_tot and r_hm are the total mass and the half mass radius of the YSC, respectively). Close encounters between single stars and binaries may result in the binary getting closer or even in an exchange, i.e. the single star taking the place of one of the binary members. In the field (i.e. the galactic disk), instead, a binary exists only if the two stars were born already bound, can shrink only because of stellar and binary evolution (GW emission, common envelope, ...) and does not undergo exchanges. Thus, dynamical processes have a fundamental role in shaping the DCOB population in YSCs. Moreover, YSCs have a short lifetime: they are thought to dissolve into the galactic disk in O(10^2) Myr, releasing their DCOB content into the disk. Thus, the estimate of the population of GW source candidates in the field has to take into account the population of DCOBs in YSCs. In order to study the population of DCOBs in YSCs, I performed and analyzed >~ 10^3 direct N-body simulations coupled with stellar evolution recipes of YSCs. The simulations were run with the software environment Starlab (Portegies Zwart et al., 2001) modified to include up-to-date metallicity dependent stellar evolution recipes (Mapelli and Bressan 2013). These recipes take into account metallicity dependent stellar winds and the possibility that a massive star collapses directly to a black hole (BH), without supernova (SN) explosion. This BH formation process, called "direct collapse" or "failed SN", allows the formation of more massive BHs. In addition, I developed sltools, a suite of programs to help the production and management of simulations. They provide tools to automate most of the steps needed to obtain clean datasets ready for the analysis, including an automated quality control and error management. In my analysis, I traced the life of compact-object binaries and I investigated the impact of dynamical interactions, metallicity and structural properties of the host YSCs on the population of BMCs. I focused on how many DCOBs per YSC are produced (~4 stable BH-BH binaries, ~1 unstable BH-BH binaries, ~0.1 NS-NS and ~0.1 BH-NS per YSC along the entire simulation) and how this quantity changes with time: hard BH-BH binaries grows monotonically in time from 0 to _SC(t=100 Myr) ~ 0.2-0.4 while soft BH-BH binaries show a peak (after the core collapse, which occurs at different times for different densities) and then decrease to ~0.05. I found that >~90% of BH-BH binaries form from exchanges. This result indicates that BHs are extremely efficient in finding companions through dynamical exchanges. Moreover, low metallicity, thanks to the higher masses allowed for the remnants, favors the early formation of these heavy and stable BH-BH binaries. I also found that NS-NS binaries are, at least, ten times less numerous than BH-BH ones, despite the initial mass function. My analysis showed that BH-BH formation is favored also by high density (3x10^3 Msun pc^-3) and high concentration (dimensionless central potential W_0 >~ 3), while it is not very sensitive to primordial binary fraction. However, it is worth noting that only 23% of BH-BH BMCs come from exchanges, while the rest are primordial binaries. On the other hand, dynamical encounters are important also in primordial binaries, because they are responsible for the shrinking of BH-BH binary semi-major axis (SMA) a. Then, BH-BH binaries are able to reach values of the SMA short enough that the binary evolution is dominated by GW emission. Without dynamics, this process would have taken much more time. As to NS-NS binaries, I found that only 6% of NS-NS BMCs come from exchanges. The fact that the vast majority of NS-NS binaries are primordial is consistent with our expectations, because it is unlikely for a NS to acquire a NS companion if the dynamical interactions are dominated by BHs. Thus, it is interesting that we found even also some NS-NS binaries (6%) formed through exchanges. I also analyzed DCOB properties, i.e. masses and chirp masses (m_chirp = (m_1m_2)^3/5 / (m_1+m_2)^1/5, where m_1 and m_2 are the masses of the two members of the binary), SMAs, and eccentricities. In my simulations, BHs are heavier at low metallicity (maximum BH mass ~80 Msun at Z=0.01 Zsun) because of the stellar evolution and failed SN recipes I adopted. In addition, even more massive BHs can form because of mergers with stellar companion. Thus, the maximum BH mass I find in BH-BH binaries is ~125 Msun. This trend is reflected by the chirp mass values which are up to ~80 Msun. However, the maximum chirp mass for a BMC binary is quite lower (40 Msun) and the rest of BMCs chirp masses are below 20 Msun. Semi-major axis distributions show that, while NS-NS binaries are much less numerous than BH-BH, their SMA are much shorter (minimum SMA for NS-NS a_min_NS-NS ~ 10^-3 AU compared to a_min_BH-BH ~ 10^-1 AU). This is a selection effect: the NS-NS binaries I found come from binaries close enough to survive two SN explosions and dynamical encounters. This result is reflected by the coalescence timescale (time a binary needs to merge only because GWs emission, t_GW \propto (a^4(1-e^2)^7/2) / (m_1m_2m_tot)), where G is the gravitational constant, m_1 are m_2 the masses of the two members of the binary, a is the semi-major axis and e is the eccentricity): NS-NS binaries have shorter coalescence timescales (t_GW_min_NS-NS ~ 10^-5 Gyr compared to t_GW_min_BH-BH ~ 10^-1 Gyr for BH-BH). In fact, I found that 76% of NS-NS BMC binaries merge during the simulations (36% of all the NS-NS binaries), while none of BH-BH binaries does. While there is not observational evidence of BH-BH binaries in our Galaxy, we observe 10 NS-NS binaries (Lorimer, 2008). I compared the observed NS-NS binaries properties (period, eccentricity and coalescence timescale) to the ones from my simulations. The agreement is very good. The only differences can be found at the shortest and longest periods. The differences are due to selection effects: at very short periods (<~2 hours) NS-NS binaries merge very fast and it is hard to observe them in this state, while the longest periods (>~10^3 days) are too long to be observed since now. Finally, I derived the expected merger rate from my simulations, and I investigated whether it depends on YSC properties (mass, density, concentration primordial binary fractions, metallicity). I found no significant dependence of BH-BH merger rates on the structural properties of YSCs, within the considered ranges. However, uncertainties are still quite large. The global merger rate for BH-BH binaries derived from my simulations is R_merger_BH-BH = 0.0019+/-0.0007 Mpc^-3 Myr^-1. The final BH-BH detection rate shows a dependence (though not very significant because of the large uncertainties) on the density and concentration of the host YSC: they are higher for more dense and concentrated clusters, in agreement with the average number of BH-BH binaries produced during the cluster life. Moreover, the BH-BH detection rate anti-correlates with the primordial binary fraction. This result needs further investigations. The global detection rate for BH-BH binaries is R_detection_BH-BH= 0.8+/-0.2 yr^-1. Merger and detection rates for NS-NS and BH-NS are R_merger_NS-NS} = 0.258+/-0.005 Mpc^-3 Myr^-1, R_merger_BH-NS} = 0.0009+/-0.0002 Mpc^-3 Myr^-1, R_detection_NS-NS} = 0.65+/-0.01 yr^-1, R_detection_BH-NS} = 0.0107+/-0.0006 yr^-1 for NS-NS and BH-NS, respectively. The merger and detection rates of BH-BH and NS-NS binaries are consistent with the pessimistic rates provided by Virgo and LIGO collaboration (Abadie et al., 2010). The BH-NS merger and detection rate are even lower than the most pessimistic prediction in literature because BH-NS mergers are disfavored by dynamical processes that favor BH-BH production at the expense of BH-NS ones.
L'obiettivo di questo lavoro e` studiare la fomazione ed evoluzione di binarie di oggetti compatti (DCOBs, ovvero buchi neri binari, stelle di neutroni binarie e binarie buco nero-stella di neutroni) in ammassi stellari (YSCs) giovani ( < 100 Myr) e densi ( >~ 10^3 stelle/pc ^3} ). La teoria prevede che i DCOBs, coalescendo, diventino potenti sorgenti di onde gravitazionali (GWs) osservabili dai rivelatori Virgo and LIGO. I migliori candidati per l'osservazione (BMCs), hanno un tempo scala di coalescenza minore di un tempo di Hubble ( t_H} ) e producono un segnale sufficientemente forte (strain h>~10^-21} ) da essere osservabile da Terra. Questo è proprio il momento giusto per svolgere un progetto del genere in quanto la seconda generazione dei rivelatori Virgo e LIGO inizierà le osservazioni nel 2016. La scelta degli YSCs come ambiente per lo studio dei DCOBs è particolarmente importante per due motivazioni. Innanzitutto, gli YSCs sono il luogo in cui >~ 80% delle stelle si forma, in particolare le più massive. Gli oggetti compatti che si formano alla morte di queste stelle massive dominano la dinamica del cluster e formano il tipo di binarie che vogliamo studiare. Questo rende gli YSC il migliore ambiente dove cercare DCOBs. Secondo, gli YSCs sono collisionali (tempo scala di rilassamento a due corpi t_relax ~ 10 Myr (M_tot / 3500 Msun)^1/2 (r_hm / 1 pc)^3/2, dove M_tot e r_hm sono la massa totale e il raggio di metà massa dello YSC, rispettivamente). Incontri ravvicinati tra singole stelle e binarie possono rendere la binaria più stretta o perfino portare la stella singola a prendere il posto di uno dei componenti della binaria. Nel campo (disco galattico), invece, una binaria esiste solo se le due stelle che la compongono si sono formate già legate, può stringersi solo a causa di effetti legati all'evoluzione stellare o in binaria (emissione di GW, common envelope, ...) e non può essere oggetto di scambi dinamici. Per queste ragioni, i processi dinamici hanno un ruolo fondamentale nel dare forma alla popolazione di DCOBs negli YSCs. Inoltre, gli YSCs hanno un tempo di vita breve: essi tendono a dissolversi nel disco galattico in O(10^2) Myr, rilasciando il loro contenuto di DCOBs nel disco. Questo implica che le stime sulla popolazione di DCOBs nel disco galattico devono tenere conto della popolazione di DCOBs negli YSCs. Allo scopo di studiare la popolazione di DCOBs negli YSCs, ho effettuato e analizzato >~ 10^3 simulazioni dirette a N-corpi di YSCs accoppiate ad un programma di evoluzione stellare, Le simulazioni sono state prodotte con l'ambiente software Starlab (Portegies Zwart et al., 2001), modificato per includere algoritmi aggiornati di evoluzione stellare in funzione della metallicità (Mapelli and Bressan, 2013). Questi algoritmi comprendono venti stellari in funzione della metallicità e la possibilità che una stella massiva collassi direttamente in un buco nero (BH), senza esplosione di supernova (SN). Questo processo di formazione dei BH, chiamato "collasso diretto" o "SN fallita", permette la formazione di BHs più massivi. In aggiunta, ho sviluppato sltools, una suite di programmi che facilitano la produzione e gestione delle simulazioni. Questi provvedono strumenti per automatizzare la maggior parte dei passaggi necessari per ottenere dati puliti e pronti per essere analizzati, inclusi un controllo della qualità automatico e la gestione degli errori. Nella mia analisi ho seguito la vita delle binarie di oggetti compatti e ho investigato l'impatto delle interazioni dinamiche, della metallicità e delle proprietà strutturali degli YSCs ospiti sulla popolazione di BMCs. Mi sono focalizzato su quanti DCOBs vengono prodotti in media per YSCs ( ~ 4 binarie BH-BH stabili, ~ 1 binarie BH-BH instabili, ~ 0.1 NS-NS e ~ 0.1 BH-NS per YSC durante tutta la simulazione) e su come questa quantità cambia nel tempo: se considero solo le binarie BH-BH stabili, trovo che il loro numero cresce monotonicamente nel tempo da 0 a ~ 0.4 , mentre le binarie BH-BH instabili mostrano un picco dopo il collasso del core e poi una decrescita fino a ~ 0.05 . Ho trovato che >~ 90% delle binarie BH-BH si formano da scambi. I risultati indicano che i BHs sono estremamente efficienti nell'acquisire compagni attraverso scambi dinamici. Inoltre, una metallicità bassa, grazie al fatto che i BH possono avere masse maggiori, favorisce la formazione di binarie BH-BH massicce e stabili in tempi più brevi. Ho anche trovato che le binarie NS-NS sono, almeno, dieci volte meno numerose delle binarie BH-BH, nonostante la funzione di massa iniziale. La mia analisi ha mostrato che la formazione di BH-BH è anche favorita da alta densità ( ~ 3 x 10^3 Msun pc^-3) e alta concentrazione (potenziale centrale adimensionale W_0 >~ 3 ), mentre non è molto sensibile alla frazione di binarie primordiali. Vale comunque la pena notare che solo il 23% dei BMCs tra le binarie BH-BH viene da scambi, mentre il resto e` costituito da binarie primordiali. D'altra parte, gli incontri dinamici sono importanti anche per le binarie primordiali, in quanti sono responsabili per la diminuzione del semiasse maggiore a della binarie BH-BH (SMA). Le binarie BH-BH sono in grado di raggiungere valori dello SMA sufficientemente bassi che l'evoluzione della binaria è dominata dall'emissione di GWs. Senza la dinamica, questo processo avrebbe impiegato un tempo molto maggiore. Ho trovato che solo 6% dei BMCs NS-NS si sono formati attraverso scambi. Il fatto che la maggior parte delle binarie NS-NS sia primordiale è consistente con le nostre aspettative percheé è poco probabile che una NS acquisisca una compagna NS se le interazioni dinamiche sono dominate dai BHs. Per questa ragione è interessante che io abbia trovato alcune binarie NS-NS (6%) formate attraverso scambi. Ho anche analizzato le proprietà dei DCOBs: masse, masse chirp ( m_chirp = (m_1m_2)^3/5 / (m_1+m_2)^1/5, dove m_1 e m_2 sono le masse dei due membri della binaria), SMAs e eccentricità. Nelle mie simulazioni i BHs sono più massivi a metallicità minori (massa massima di un BH ~ 80 Msun a Z=0.01 Zsun ) grazie agli algoritmi di evoluzione stellare e di collasso diretto adottati. In aggiunta, BHs ancora più massivi si possono formare grazie a coalescenza con compagni stellari. Di conseguenza, la massa massima che trovo per i BH è ~ 125 Msun . Questo andamento si riflette nelle masse chirp, che raggiungono valori di ~ 80 Msun . Tuttavia, la massa chirp per una binaria BMC è più bassa ( ~ 40 Msun ) e il resto delle masse dei BMCs sono inferiori a 20 Msun . La distribuzione dei SMA mostra che, sebbene le binarie NS-NS siano molto meno numerose delle binarie BH-BH, i loro SMA sono molto minori (SMA minimo per le binarie NS-NS a_min_NS-NS ~ 10^-3 AU in confronto a a_min_BH-BH ~ 10^-1 AU). Questo è un effetto di selezione: le binarie NS-NS che trovo provengono da binarie sufficientemente strette da sopravvivere a due esplosioni di SN e agli incontri dinamici. Questo risultato si ritrova nei tempi scala di coalescenza (tempo necessario perch\'e una binaria coalesca solo per effetto dell'emissione di GWs, t_GW \propto (a^4(1-e^2)^7/2) / (m_1m_2m_tot)), dove G è la costante gravitazionale, m_1 e m_2 sono le masse dei due membri della binaria, a è il semiasse maggiore e e è l'eccentricità): le binarie NS-NS hanno tempi scala più corti ( t_GW_min_NS-NS ~ 10^-5 Gyr in confronto a t_GW_min_BH-BH ~ 10^-1 Gyr per i BH-BH). Infatti, trovo che il 76% delle binarie NS-NS coalesce durante le simulazioni (36% di tutte le binarie NS-NS), mentre nessuna delle binarie BH-BH coalesce. Mentre non esistono evidenze osservative delle binarie BH-BH, nella nostra galassia sono state osservate 10 binarie NS-NS (Lorimer, 2008). Ho confrontato le proprietà delle binarie NS-NS osservate (periodo, eccentricità e tempo scala di coalescenza) con quelle delle binarie NS-NS nelle mie simulazioni e ho trovato un accordo molto buono. Le uniche differenze si possono trovare ai periodi più corti e più lunghi. Queste differenze sono dovute a effetti di selezione: per periodi molto corti ( <~ 2 hours) le binarie NS-NS coalescono in tempi molto brevi ed è difficile osservarle in questo stato. Periodi molto lunghi ( >~ 10^3 days) sono troppo lunghi per essere osservati fino ad ora. Infine, ho derivato il tasso di coalescenza atteso nelle mie simulazioni e ho investigato se questo tasso dipende dalle proprietà dello YSC (massa, densità, concentrazione, frazione di binarie primordiali e metallicità). Non ho trovato alcuna dipendenza significativa del rate di coalescenza delle binarie BH-BH dalle proprietà strutturali degli YSCs all'interno dei valori considerati. Le incertezze, comunque, sono abbastanza grandi. Il tasso di coalescenza globale per le binarie BH-BH derivato dalle mie simulazioni è R_merger_BH-BH = 0.0019+/-0.0007 Mpc^-3 Myr^-1 . Il tasso di detezioni mostra una dipendenza (sebbene non molto significativa, a causa delle incertezze) dalla densità e dalla concentrazione dello YSC ospite: il tasso di detezioni è più alto tanto più l'ammasso è denso e concentrato, in accordo con quanto trovato per il numero medio di binarie BH-BH prodotto durante la vita dell'ammasso. Inoltre, il tasso di detezioni per le binarie BH-BH anticorrela con la frazione di binarie primordiali. Questo risultato necessita di maggiori approfondimenti. Il tasso globale di osservazione per le binarie BH-BH è R_detection_BH-BH = 0.8+/-0.2 yr^-1. I tassi di coalescenza e osservazioni attesi per le binarie NS-NS and BH-NS sono R_merger_NS-NS} = 0.258+/-0.005 Mpc^-3 Myr^-1 , R_merger_BH-NS = 0.0009+/-0.0002 Mpc^-3 Myr^-1 , R_detection_NS-NS = 0.65+/-0.01 yr ^-1 , R_detection_BH-NS = 0.0107+/-0.0006 yr ^-1 per binarie NS-NS e BH-NS, rispettivamente. I tassi di coalescenza e osservazione di binarie BH-BH e NS-NS sono consistenti con le previsioni pessimistiche fornite dalla collaborazione Virgo/LIGO (Abadie et al., 2010). I tassi di coalescenza e osservazione di binarie BH-NS sono minori della previsione più pessimistica in letteratura dal momento che la formazione di binarie BH-NS è sfavorita dai processi dinamici che favoriscono la produzione di binarie BH-BH a discapito delle binarie BH-NS.
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Star cluster formation and evolution"

1

Lamers, Henny J. G. L. M., 1941-, Smith Linda J et Nota Antonella, dir. The formation and evolution of massive young star clusters : Proceedings of a meeting held in Cancun, Mexico, 17-21 November 2003. San Francisco, Calif : Astronomical Society of the Pacific, 2004.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

San Roman, Izaskun. The Formation and Evolution of M33 as Revealed by Its Star Clusters. New York, NY : Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7327-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

1968-, Alves João F., Elmegreen Bruce G, Girart Josep Miquel et Trimble Virginia, dir. Computational star formation : Proceedings of the 270th Symposium of the International Astronomical Union held in Barcelona, Catalonia, Spain, May 31-June 4, 2010. Cambridge, UK : Cambridge University Press, 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Bodenheimer, Peter. Principles of star formation. Berlin : Springer, 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Accretion processes in star formation. Cambridge, UK : Cambridge University Press, 2000.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Hartmann, Lee. Accretion processes in star formation. 2e éd. New York : Cambridge University Press, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Accretion processes in star formation. Cambridge, UK : Cambridge University Press, 1998.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Lada, Charles J., et Nikolaos D. Kylafis, dir. The Physics of Star Formation and Early Stellar Evolution. Dordrecht : Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3642-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

NATO, Advanced Study Institute on the Physics of Star Formation and Early Stellar Evolution (1990 Hagia Pelagia Greece). The physics of star formation and early stellar evolution. Dordrecht : Kluwer Academic, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Gnedin, Nickolay Y., Simon C. O. Glover, Ralf S. Klessen et Volker Springel. Star Formation in Galaxy Evolution : Connecting Numerical Models to Reality. Sous la direction de Yves Revaz, Pascale Jablonka, Romain Teyssier et Lucio Mayer. Berlin, Heidelberg : Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-47890-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Star cluster formation and evolution"

1

Fritze, Uta, et V. Alvensleben. « Star and Globular Cluster Formation in Mergers ». Dans New Light on Galaxy Evolution, 376. Dordrecht : Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0229-9_88.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kodama, T., et R. G. Bower. « Global Star Formation History in Rich Cluster Cores ». Dans The Evolution of Galaxies, 597. Dordrecht : Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-017-3313-7_156.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Theis, Christian. « On a Formation Scenario of Star Clusters ». Dans The Evolution of Galaxies, 97–100. Dordrecht : Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-3311-3_11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

De Marchi, Guido. « The Stellar Mass Function of Galactic Clusters and Its Evolution ». Dans Open Issues in Local Star Formation, 25–32. Dordrecht : Springer Netherlands, 2003. http://dx.doi.org/10.1007/1-4020-2600-5_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Palla, F. « Isolated and Clustered Star Formation : Observations and Theoretical Models ». Dans Starbursts Triggers, Nature, and Evolution, 101–32. Berlin, Heidelberg : Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-29742-1_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Parmentier, Geneviève. « What cluster gas expulsion can tell us about star formation, cluster environment and galaxy evolution ». Dans Reviews in Modern Astronomy, 183–97. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527629190.ch10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Li, Chengyuan. « The Formation and Evolution of Blue Straggler Stars in Globular Cluster ». Dans Springer Theses, 55–63. Singapore : Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5681-9_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

San Roman, Izaskun. « Erratum to : The Formation and Evolution of M33 as Revealed by Its Star Clusters ». Dans Springer Theses, E1—E2. New York, NY : Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7327-5_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Colpi, Monica, et Bernadetta Devecchi. « Dynamical Formation and Evolution of Neutron Star and Black Hole Binaries in Globular Clusters ». Dans Physics of Relativistic Objects in Compact Binaries : From Birth to Coalescence, 199–243. Dordrecht : Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9264-0_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Fritze-v. Alvensleben, Uta. « Star Formation Efficiencies and Star Cluster Formation ». Dans Starbursts, 209–14. Dordrecht : Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3539-x_36.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Star cluster formation and evolution"

1

Mastrobuono-Battisti, Alessandra, et Hagai B. Perets. « The formation and evolution of nuclear star clusters ». Dans Proceedings of the MG14 Meeting on General Relativity. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813226609_0295.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Palouš, Jan, Richard Wünsch, Vasile Mioc, Cristiana Dumitrache et Nedelia A. Popescu. « Star Formation and Evolution of Galaxies ». Dans EXPLORING THE SOLAR SYSTEM AND THE UNIVERSE. AIP, 2008. http://dx.doi.org/10.1063/1.2993679.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Charlton, Jane C., Robert Minchin et Emmanuel Momjian. « Star Formation in Tidal Debris ». Dans THE EVOLUTION OF GALAXIES THROUGH THE NEUTRAL HYDROGEN WINDOW. AIP, 2008. http://dx.doi.org/10.1063/1.2973574.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Skillman, Evan D., Robert Minchin et Emmanuel Momjian. « The HI∕Star Formation Connection ». Dans THE EVOLUTION OF GALAXIES THROUGH THE NEUTRAL HYDROGEN WINDOW. AIP, 2008. http://dx.doi.org/10.1063/1.2973621.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Smith, Randall K., Meg H. Abraham, Ryan Allured, Marshall Bautz, Jay Bookbinder, Joel Bregman, Laura Brenneman et al. « Arcus : exploring the formation and evolution of clusters, galaxies, and stars ». Dans UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XX, sous la direction de Oswald H. Siegmund. SPIE, 2017. http://dx.doi.org/10.1117/12.2272818.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Smith, Randall K., Marshall Bautz, Joel Bregman, Laura Brenneman, Nancy Brickhouse, Esra Bulbul, Vadim Burwitz et al. « Arcus : exploring the formation and evolution of clusters, galaxies, and stars ». Dans Space Telescopes and Instrumentation 2022 : Ultraviolet to Gamma Ray, sous la direction de Jan-Willem A. den Herder, Kazuhiro Nakazawa et Shouleh Nikzad. SPIE, 2022. http://dx.doi.org/10.1117/12.2628628.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

D'Antona, Francesca, Paolo Ventura, Roald Guandalini, Sara Palmerini et Maurizio Busso. « Lithium, AGB and the Formation of Globular Clusters ». Dans IXTH TORINO WORKSHOP ON EVOLUTION AND NUCLEOSYNTHESIS IN AGB STARS AND THE IIND PERUGIA WORKSHOP ON NUCLEAR ASTROPHYSICS. AIP, 2008. http://dx.doi.org/10.1063/1.2916988.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Kobulnicky, Chip. « Star Formation At High Redshift ». Dans THE EVOLUTION OF STARBURSTS : The 331st Wilhelm and Else Heraeus Seminar. AIP, 2005. http://dx.doi.org/10.1063/1.2035009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Donahue, Megan, Sebastian Heinz et Eric Wilcots. « Signatures of Star Formation in Brightest Cluster Galaxies ». Dans THE MONSTER’S FIERY BREATH : FEEDBACK IN GALAXIES, GROUPS, AND CLUSTERS. AIP, 2009. http://dx.doi.org/10.1063/1.3293027.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Fuller, Gary, Jan Forbrich, Jill Rathborne, Steven Longmore et Sergio Molinari. « Star and Stellar Cluster Formation : ALMA-SKA Synergies ». Dans Advancing Astrophysics with the Square Kilometre Array. Trieste, Italy : Sissa Medialab, 2015. http://dx.doi.org/10.22323/1.215.0152.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Star cluster formation and evolution"

1

Weaver, J. H. Cluster Formation and Evolution on Semiconductor Surface. Fort Belvoir, VA : Defense Technical Information Center, décembre 1992. http://dx.doi.org/10.21236/ada259190.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie