Littérature scientifique sur le sujet « Stability of hybrid systems »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Stability of hybrid systems ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Stability of hybrid systems"
LI, ZHENGGUO, CHEONG BOON SOH et XINHE XU. « Stability of hybrid dynamic systems ». International Journal of Systems Science 28, no 8 (juillet 1997) : 837–46. http://dx.doi.org/10.1080/00207729708929444.
Texte intégralMartynyuk, A. A. « Practical stability of hybrid systems ». Soviet Applied Mechanics 25, no 2 (février 1989) : 194–200. http://dx.doi.org/10.1007/bf00888136.
Texte intégralBychkov, A. S., et M. G. Merkur’ev. « Stability of continuous hybrid systems ». Cybernetics and Systems Analysis 43, no 2 (mars 2007) : 261–65. http://dx.doi.org/10.1007/s10559-007-0045-7.
Texte intégralLirong Huang, Xuerong Mao et Feiqi Deng. « Stability of Hybrid Stochastic Retarded Systems ». IEEE Transactions on Circuits and Systems I : Regular Papers 55, no 11 (décembre 2008) : 3413–20. http://dx.doi.org/10.1109/tcsi.2008.2001825.
Texte intégralBiemond, J. J. Benjamin, Romain Postoyan, W. P. Maurice H. Heemels et Nathan van de Wouw. « Incremental Stability of Hybrid Dynamical Systems ». IEEE Transactions on Automatic Control 63, no 12 (décembre 2018) : 4094–109. http://dx.doi.org/10.1109/tac.2018.2830506.
Texte intégralMinh, Vu Trieu. « Stability for switched dynamic hybrid systems ». Mathematical and Computer Modelling 57, no 1-2 (janvier 2013) : 78–83. http://dx.doi.org/10.1016/j.mcm.2011.05.055.
Texte intégralMaria, G. A., C. Tang et J. Kim. « Hybrid transient stability analysis (power systems) ». IEEE Transactions on Power Systems 5, no 2 (mai 1990) : 384–93. http://dx.doi.org/10.1109/59.54544.
Texte intégralHui Ye, A. N. Michel et Ling Hou. « Stability theory for hybrid dynamical systems ». IEEE Transactions on Automatic Control 43, no 4 (avril 1998) : 461–74. http://dx.doi.org/10.1109/9.664149.
Texte intégralSisodiya, Priyanka, et Dr Anil Kumar Kori. « Review on Power Quality of Hybrid Renewable Energy System ». International Journal for Research in Applied Science and Engineering Technology 10, no 7 (31 juillet 2022) : 1439–43. http://dx.doi.org/10.22214/ijraset.2022.44874.
Texte intégralYang, Ying, et Guopei Chen. « Finite Time Stability of Stochastic Hybrid Systems ». Abstract and Applied Analysis 2014 (2014) : 1–7. http://dx.doi.org/10.1155/2014/867189.
Texte intégralThèses sur le sujet "Stability of hybrid systems"
Karalis, Paschalis. « Stability and stabilisation of switching and hybrid dissipative systems ». Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/stability-and-stabilisation-of-switching-and-hybrid-dissipative-systems(3e6ee880-e59a-49ed-a2f2-1612df85557f).html.
Texte intégralDella, rossa Matteo. « Non smooth Lyapunov functions for stability analysis of hybrid systems ». Thesis, Toulouse, INSA, 2020. http://www.theses.fr/2020ISAT0004.
Texte intégralModeling of many phenomena in nature escape the rather common frameworks of continuous-time and discrete-time models. In fact, for many systems encountered in practice, these two paradigms need to be intrinsically related and connected, in order to reach a satisfactory level of description in modeling the considered physical/engineering process.These systems are often referred to as hybrid systems, and various possible formalisms have appeared in the literature over the past years.The aim of this thesis is to analyze the stability of particular classes of hybrid systems, by providing Lyapunov-based sufficient conditions for (asymptotic) stability. In particular, we will focus on non-differentiable locally Lipschitz candidate Lyapunov functions. The first chapters of this manuscript can be considered as a general introduction of this topic and the related concepts from non-smooth analysis.This will allow us to study a class of piecewise smooth maps as candidate Lyapunov functions, with particular attention to the continuity properties of the constrained differential inclusion comprising the studied hybrid systems. We propose ``relaxed'' Lyapunov conditions which require to be checked only on a dense set and discuss connections to other classes of locally Lipschitz or piecewise regular functions.Relaxing the continuity assumptions, we then investigate the notion of generalized derivatives when considering functions obtained as emph{max-min} combinations of smooth functions. This structure turns out to be particularly fruitful when considering the stability problem for differential inclusions arising from regularization of emph{state-dependent switched systems}.When the studied switched systems are composed of emph{linear} sub-dynamics, we refine our results, in order to propose algorithmically verifiable conditions.We further explore the utility of set-valued derivatives in establishing input-to-state stability results, in the context of perturbed differential inclusions/switched systems, using locally Lipschitz candidate Lyapunov functions. These developments are then used in analyzing the stability problem for interconnections of differential inclusion, with an application in designing an observer-based controller for state-dependent switched systems
Alwan, Mohamad. « Stability of Hybrid Singularly Perturbed Systems with Time Delay ». Thesis, University of Waterloo, 2006. http://hdl.handle.net/10012/2934.
Texte intégralEzzine, Jelel. « On stabilization and control of hybrid systems ». Diss., Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/15626.
Texte intégralNersesov, Sergey G. « Nonlinear Impulsive and Hybrid Dynamical Systems ». Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7147.
Texte intégralAdimoolam, Santosh Arvind. « A Calculus of Complex Zonotopes for Invariance and Stability Verification of Hybrid Systems ». Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAM027/document.
Texte intégralComputing reachable sets is a de facto approach used in many formal verification methods for hybrid systems. But exact computation of the reachable set is an in- tractable problem for many kinds of hybrid systems, either due to undecidability or high computational complexity. Alternatively, quite a lot of research has been focused on using set representations that can be efficiently manipulated to com- pute sufficiently accurate over-approximation of the reachable set. Zonotopes are a useful set representation in reachability analysis because of their closure and low complexity for computing linear transformation and Minkowski sum operations. But for approximating the unbounded time reachable sets by positive invariants, zonotopes have the following drawback. The effectiveness of a set representation for computing a positive invariant depends on efficiently encoding the directions for convergence of the states to an equilibrium. In an affine hybrid system, some of the directions for convergence can be encoded by the complex valued eigen- vectors of the transformation matrices. But the zonotope representation can not exploit the complex eigenstructure of the transformation matrices because it only has real valued generators.Therefore, we extend real zonotopes to the complex valued domain in a way that can capture contraction along complex valued vectors. This yields a new set representation called complex zonotope. Geometrically, complex zonotopes repre- sent a wider class of sets that include some non-polytopic sets as well as polytopic zonotopes. They retain the merit of real zonotopes that we can efficiently perform linear transformation and Minkowski sum operations and compute the support function. Additionally, we show that they can capture contraction along complex valued eigenvectors. Furthermore, we develop computationally tractable approx- imations for inclusion-checking and intersection with half-spaces. Using these set operations on complex zonotopes, we develop convex programs to verify lin- ear invariance properties of discrete time affine hybrid systems and exponential stability of linear impulsive systems. Our experiments on some benchmark exam- ples demonstrate the efficiency of the verification techniques based on complex zonotopes
Xu, Honglei. « Stability and control of switched systems with impulsive effects ». Thesis, Curtin University, 2009. http://hdl.handle.net/20.500.11937/415.
Texte intégralSeyfried, Aaron W. « Stability of a Fuzzy Logic Based Piecewise Linear Hybrid System ». Wright State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=wright1370017300.
Texte intégralHui, Qing. « Nonlinear dynamical systems and control for large-scale, hybrid, and network systems ». Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24635.
Texte intégralCommittee Chair: Haddad, Wassim; Committee Member: Feron, Eric; Committee Member: JVR, Prasad; Committee Member: Taylor, David; Committee Member: Tsiotras, Panagiotis
Oehlerking, Jens [Verfasser], et Oliver [Akademischer Betreuer] Theel. « Decomposition of stability proofs for hybrid systems / Jens Oehlerking. Betreuer : Oliver Theel ». Oldenburg : IBIT - Universitätsbibliothek, 2012. http://d-nb.info/1025114434/34.
Texte intégralLivres sur le sujet "Stability of hybrid systems"
Goebel, Rafal. Hybrid dynamical systems : Modeling, stability, and robustness. Princeton, N.J : Princeton University Press, 2012.
Trouver le texte intégralSchuring, J. Frequency response analysis of hybrid systems. Amsterdam : National Aerospace Laboratory, 1987.
Trouver le texte intégralGrossman, Robert L., Anil Nerode, Anders P. Ravn et Hans Rischel, dir. Hybrid Systems. Berlin, Heidelberg : Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/3-540-57318-6.
Texte intégral1957-, Grossman Robert, dir. Hybrid systems. Berlin : Springer-Verlag, 1993.
Trouver le texte intégralA, Pnueli, et Sifakis J, dir. Hybrid systems. Amsterdam : Elsevier, 1995.
Trouver le texte intégralHolcombe, W. M. L. Hybrid machines for hybrid systems. Sheffield : University of Sheffield, Department of Computer Science, 1995.
Trouver le texte intégralMacDonald, Paul N. Two-Hybrid Systems. New Jersey : Humana Press, 2001. http://dx.doi.org/10.1385/1592592104.
Texte intégralAbraham, Ajith, Thomas Hanne, Oscar Castillo, Niketa Gandhi, Tatiane Nogueira Rios et Tzung-Pei Hong, dir. Hybrid Intelligent Systems. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73050-5.
Texte intégralLin, Hai, et Panos J. Antsaklis. Hybrid Dynamical Systems. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-78731-8.
Texte intégralHirayama, Yoshiro, Koji Ishibashi et Kae Nemoto, dir. Hybrid Quantum Systems. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6679-7.
Texte intégralChapitres de livres sur le sujet "Stability of hybrid systems"
Kourjanski, Mikhail, et Pravin Varaiya. « Stability of hybrid systems ». Dans Hybrid Systems III, 413–23. Berlin, Heidelberg : Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0020964.
Texte intégralTrenn, Stephan. « Stability of Switched DAEs ». Dans Hybrid Systems with Constraints, 57–83. Hoboken, NJ USA : John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118639856.ch3.
Texte intégralPark, Hong Seong, Young Sin Kim, Wook Hyun Kwon et Sang Jeong Lee. « Model and stability of hybrid linear system ». Dans Hybrid Systems III, 424–35. Berlin, Heidelberg : Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0020965.
Texte intégralDoğruel, Murat, et ümit özgüner. « Modeling and stability issues in hybrid systems ». Dans Hybrid Systems II, 148–65. Berlin, Heidelberg : Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/3-540-60472-3_8.
Texte intégralJi, Wang, et He Weidong. « Formal specification of stability in hybrid control systems ». Dans Hybrid Systems III, 294–303. Berlin, Heidelberg : Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0020954.
Texte intégralYin, G., et Q. Zhang. « Stability of Nonlinear Hybrid Systems ». Dans New Trends in Nonlinear Dynamics and Control and their Applications, 251–64. Berlin, Heidelberg : Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-45056-6_16.
Texte intégralFiacchini, Mirko, Sophie Tarbouriech et Christophe Prieur. « Exponential Stability for Hybrid Systems with Saturations ». Dans Hybrid Systems with Constraints, 179–212. Hoboken, NJ USA : John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118639856.ch7.
Texte intégralBokes, Pavol, et Abhyudai Singh. « Controlling Noisy Expression Through Auto Regulation of Burst Frequency and Protein Stability ». Dans Hybrid Systems Biology, 80–97. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28042-0_6.
Texte intégralAmes, Aaron D., Paulo Tabuada et Shankar Sastry. « On the Stability of Zeno Equilibria ». Dans Hybrid Systems : Computation and Control, 34–48. Berlin, Heidelberg : Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11730637_6.
Texte intégralTeel, Andrew R. « Stability Theory for Hybrid Dynamical Systems ». Dans Encyclopedia of Systems and Control, 1301–7. London : Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-5058-9_99.
Texte intégralActes de conférences sur le sujet "Stability of hybrid systems"
Zheng, Huannan, Wei Zhu et Ya Deng. « Stability of Nonlinear Systems via Hybrid Delayed Impulses ». Dans 2024 43rd Chinese Control Conference (CCC), 329–34. IEEE, 2024. http://dx.doi.org/10.23919/ccc63176.2024.10662032.
Texte intégralLiu, Bin, et David J. Hill. « Stability for hybrid event systems ». Dans 2012 IEEE 51st Annual Conference on Decision and Control (CDC). IEEE, 2012. http://dx.doi.org/10.1109/cdc.2012.6426599.
Texte intégralMohrenschildt, M. V. « Hybrid systems : solutions, stability, control ». Dans Proceedings of 2000 American Control Conference (ACC 2000). IEEE, 2000. http://dx.doi.org/10.1109/acc.2000.878990.
Texte intégralHassan, Omran,. « Local Stability of Bilinear Systems with Asynchronous Sampling ». Dans Analysis and Design of Hybrid Systems, sous la direction de Heemels, Maurice, chair Giua, Alessandro et Heemels, Maurice. IFAC, Elsevier, 2012. http://dx.doi.org/10.3182/20120606-3-nl-3011.00004.
Texte intégralChristian, Stoecker,. « Stability Analysis of Interconnected Event-Based Control Loops ». Dans Analysis and Design of Hybrid Systems, sous la direction de Heemels, Maurice, chair Giua, Alessandro et Heemels, Maurice. IFAC, Elsevier, 2012. http://dx.doi.org/10.3182/20120606-3-nl-3011.00010.
Texte intégralDashkovskiy, Sergey, et Ratthaprom Promkam. « Alternative stability conditions for hybrid systems ». Dans 2013 IEEE 52nd Annual Conference on Decision and Control (CDC). IEEE, 2013. http://dx.doi.org/10.1109/cdc.2013.6760392.
Texte intégralZhu, Liying, et Yuzhen Wang. « Stability of Hybrid Dissipative Hamiltonian Systems ». Dans 2006 Chinese Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/chicc.2006.280550.
Texte intégralLoon,, van. « Stability Analysis of Networked Control Systems with Periodic Protocols and Uniform Quantizers ». Dans Analysis and Design of Hybrid Systems, sous la direction de Heemels, Maurice, chair Giua, Alessandro et Heemels, Maurice. IFAC, Elsevier, 2012. http://dx.doi.org/10.3182/20120606-3-nl-3011.00030.
Texte intégralYong-Yan Fan, Jin-Hua Wang, Jing Zhang et Chong Wang. « Relative stability analysis of two hybrid systems ». Dans 2012 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2012. http://dx.doi.org/10.1109/icmlc.2012.6359472.
Texte intégralDashkovskiy, Sergey, et Michael Kosmykov. « Stability of networks of hybrid ISS systems ». Dans 2009 Joint 48th IEEE Conference on Decision and Control (CDC) and 28th Chinese Control Conference (CCC). IEEE, 2009. http://dx.doi.org/10.1109/cdc.2009.5400628.
Texte intégralRapports d'organisations sur le sujet "Stability of hybrid systems"
Gao, Sicum, Soonho Kong et Edmund M. Clarke. Revisiting the Complexity of Stability of Continuous and Hybrid Systems. Fort Belvoir, VA : Defense Technical Information Center, juillet 2014. http://dx.doi.org/10.21236/ada611548.
Texte intégralTeel, Andrew R., et Joao P. Hespanha. A Robust Stability and Control Theory for Hybrid Dynamical Systems. Fort Belvoir, VA : Defense Technical Information Center, septembre 2006. http://dx.doi.org/10.21236/ada470821.
Texte intégralGreenwood, Michael Scott, Sacit M. Cetiner et David W. Fugate. Nuclear Hybrid Energy System Model Stability Testing. Office of Scientific and Technical Information (OSTI), avril 2017. http://dx.doi.org/10.2172/1354665.
Texte intégralHassan, Saeed, AbdulKhaliq Alshadid, Ravinder Saini et Lujain Aldosari. Assessment of Mechanical Properties of Hybrid PVES Elastomeric Material in Comparison to its Parent Materials - A Systemic Review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, mars 2023. http://dx.doi.org/10.37766/inplasy2023.3.0043.
Texte intégralGoel, Dr Divanshu, et Dr Manjeet Singh. HYBRID EXTERNAL FIXATION FOR PROXIMAL TIBIAL FRACTURES. World Wide Journals, février 2023. http://dx.doi.org/10.36106/ijar/1505336.
Texte intégralKerber, Steve, Daniel Madrzykowski, James Dalton et Robert Backstrom. Improving Fire Safety by Understanding the Fire Performance of Engineered Floor Systems and Providing the Fire Service with Information for Tactical Decision Making. UL Firefighter Safety Research Institute, mars 2012. http://dx.doi.org/10.54206/102376/zcoq6988.
Texte intégralHenzinger, Thomas A., et Shankar Sastry. Hybrid Systems : Computation and Control. Fort Belvoir, VA : Defense Technical Information Center, février 1999. http://dx.doi.org/10.21236/ada361329.
Texte intégralLafferriere, G., G. Pappas et S. Sastry. Hybrid Systems with Finite Bisimulations. Fort Belvoir, VA : Defense Technical Information Center, avril 1998. http://dx.doi.org/10.21236/ada358308.
Texte intégralHeitmeyer, Constance. Requirements Specifications for Hybrid Systems. Fort Belvoir, VA : Defense Technical Information Center, janvier 1996. http://dx.doi.org/10.21236/ada463944.
Texte intégralDahleh, Munther A., et Alexandre Megretski. New Tools for Hybrid Systems. Fort Belvoir, VA : Defense Technical Information Center, mai 2007. http://dx.doi.org/10.21236/ada467021.
Texte intégral