Articles de revues sur le sujet « Sr optical lattice clock »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Sr optical lattice clock.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Sr optical lattice clock ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Lin, Y., Q. Wang, Y. Li, F. Meng, B. Lin, E. Zang, Z. Sun, F. Fang, T. Li et Z. Fang. « The NIM Sr Optical Lattice Clock ». Journal of Physics : Conference Series 723 (juin 2016) : 012021. http://dx.doi.org/10.1088/1742-6596/723/1/012021.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Hill, I. R., R. Hobson, W. Bowden, E. M. Bridge, S. Donnellan, E. A. Curtis et P. Gill. « A low maintenance Sr optical lattice clock ». Journal of Physics : Conference Series 723 (juin 2016) : 012019. http://dx.doi.org/10.1088/1742-6596/723/1/012019.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Li, Ting, Tao Wang, Ye-Bing Wang, Ben-Quan Lu, Xiao-Tong Lu, Mo-Juan Yin et Hong Chang. « Experimental observation of quantum tunneling in shallow optical lattice ». Acta Physica Sinica 71, no 7 (2022) : 073701. http://dx.doi.org/10.7498/aps.71.20212038.

Texte intégral
Résumé :
For a one-dimensional optical lattice clock built in the horizontal direction, when the stability and uncertainty of the system reach the order of 10<sup>–18</sup> or more, the clock frequency shift caused by the quantum tunneling effect becomes not negligible. In the shallow optical lattice, the quantum tunneling effect will cause the clock transition spectrum to be significantly broadened. So, in this paper the quantum tunneling phenomenon in the shallow optical lattice is studied, laying a foundation for the evaluation of uncertainty of <sup>87</sup>Sr atomic optical lattice clock system. In this experiment, on the platform of one-dimensional <sup>87</sup>Sr atomic optical lattice clock, the narrow-linewidth <sup>1</sup>S<sub>0</sub>(<inline-formula><tex-math id="M4">\begin{document}$ \left|g \right\rangle $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20212038_M4.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20212038_M4.png"/></alternatives></inline-formula>)→<sup>3</sup>P<sub>0</sub>(<inline-formula><tex-math id="M5">\begin{document}$ \left|e \right\rangle $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20212038_M5.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20212038_M5.png"/></alternatives></inline-formula>) transition (that is, the clock transition) is excited by an ultra-stable and ultra-narrow linewidth 698 nm laser, and the distribution of strontium atoms in a specific quantum state is prepared. In the deep optical lattice, after the cold <sup>87</sup>Sr atoms in preparation reach a <inline-formula><tex-math id="M6">\begin{document}$ \left|e,{n}_{z}=1 \right\rangle $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20212038_M6.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20212038_M6.png"/></alternatives></inline-formula> state, the lattice depth of the optical lattice is adiabatically reduced. Then, the carrier-sideband resolved clock transition spectral line is detected in the shallow optical lattice. The obvious splitting of the carrier spectral line is observed from the clock transition spectral line, which indicates that the strontium atom has an obvious quantum tunneling phenomenon between the adjacent lattice sites of the optical lattice. In addition, when the lattice potential lattice depth is reduced, owing to the incommensurability of lattice light wavelength (813 nm) and clock laser wavelength (698 nm), the tunneling of atoms between adjacent lattice points will lead to spin-orbit coupling effect. Owing to the exceptionally long lifetime (120(3) s) of <sup>3</sup>P<sub>0</sub> state, it can not only suppress the decoherence, but also reduce the atomic loss rate caused by spontaneous emission. This has a natural advantage for studying the spin-orbit coupling of fermions. Therefore, the understanding of quantum tunneling mechanism in optical lattice is not only conducive to improving the uncertainty of the <sup>87</sup>Sr atomic optical lattice clock, but also lays the foundation for observing the spin-orbit coupling effect of fermions on this platform.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Wang, Qiang, Yi-Ge Lin, Ye Li, Bai-Ke Lin, Fei Meng, Er-Jun Zang, Tian-Chu Li et Zhan-Jun Fang. « Observation of Spin Polarized Clock Transition in 87 Sr Optical Lattice Clock ». Chinese Physics Letters 31, no 12 (décembre 2014) : 123201. http://dx.doi.org/10.1088/0256-307x/31/12/123201.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Fouche, M., R. Le Targat, X. Baillard, A. Brusch, O. Tcherbakoff, G. D. Rovera et P. Lemonde. « Accuracy Evaluation of a $^{87}\hbox{Sr}$ Optical Lattice Clock ». IEEE Transactions on Instrumentation and Measurement 56, no 2 (avril 2007) : 336–40. http://dx.doi.org/10.1109/tim.2007.891137.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Wang, Qiang, Yi-Ge Lin, Fei Meng, Ye Li, Bai-Ke Lin, Er-Jun Zang, Tian-Chu Li et Zhan-Jun Fang. « Magic Wavelength Measurement of the 87 Sr Optical Lattice Clock at NIM ». Chinese Physics Letters 33, no 10 (octobre 2016) : 103201. http://dx.doi.org/10.1088/0256-307x/33/10/103201.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

IDO, Tetsuya, Atsushi YAMAGUCHI et Michi KOIDE. « A Sr Lattice Clock at NICT and A Design of An Optical Cavity to Stabilize Clock Lasers ». Review of Laser Engineering 38, no 7 (2010) : 493–99. http://dx.doi.org/10.2184/lsj.38.493.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

MUSHA, Mitsuru. « Frequency Measurement of A Sr Optical Lattice Clock Using A 120-km Precision Optical Fiber Link ». Review of Laser Engineering 38, no 7 (2010) : 505–11. http://dx.doi.org/10.2184/lsj.38.505.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

De-Huan, Kong, Guo Feng, Li Ting, Lu Xiao-Tong, Wang Ye-Bing et Chang Hong. « Evaluation of systematic uncertainty for transportable 87Sr optical lattice clock ». Acta Physica Sinica 70, no 3 (2021) : 030601. http://dx.doi.org/10.7498/aps.70.20201204.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Hong, F. L., M. Musha, M. Takamoto, H. Inaba, S. Yanagimachi, A. Takamizawa, K. Watabe et al. « Measuring the frequency of a Sr optical lattice clock using a 120 km coherent optical transfer ». Optics Letters 34, no 5 (27 février 2009) : 692. http://dx.doi.org/10.1364/ol.34.000692.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Ludlow, A. D., T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin et al. « Sr Lattice Clock at 1 x 10-16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock ». Science 319, no 5871 (14 février 2008) : 1805–8. http://dx.doi.org/10.1126/science.1153341.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

YE, JUN, SEBASTIAN BLATT, MARTIN M. BOYD, SETH M. FOREMAN, ERIC R. HUDSON, TETSUYA IDO, BENJAMIN LEV et al. « PRECISION MEASUREMENT BASED ON ULTRACOLD ATOMS AND COLD MOLECULES ». International Journal of Modern Physics D 16, no 12b (décembre 2007) : 2481–94. http://dx.doi.org/10.1142/s0218271807011826.

Texte intégral
Résumé :
Ultracold atoms and molecules provide ideal stages for precision tests of fundamental physics. With microkelvin neutral strontium atoms confined in an optical lattice, we have achieved a fractional resolution of 4 × 10-15 on the 1S0–3P0 doubly forbidden 87 Sr clock transition at 698 nm. Measurements of the clock line shifts as a function of experimental parameters indicate systematic errors below the 10-15 level. The ultrahigh spectral resolution permits resolving the nuclear spin states of the clock transition at small magnetic fields, leading to measurements of the 3P0 magnetic moment and metastable lifetime. In addition, photoassociation spectroscopy performed on the narrow 1S0–3P1 transition of 88 Sr shows promise for efficient optical tuning of the ground state scattering length and production of ultracold ground state molecules. Lattice-confined Sr 2 molecules are suitable for constraining the time variation of the proton–electron mass ratio. In a separate experiment, cold, stable, ground state polar molecules are produced from Stark decelerators. These cold samples have enabled an order-of-magnitude improvement in the measurement precision of ground state, Λ doublet microwave transitions in the OH molecule. Comparing the laboratory results to those from OH megamasers in interstellar space will allow a sensitivity of 10-6 for measuring the potential time variation of the fundamental fine structure constant Δα/α over 1010 years. These results have also led to improved understandings of the molecular structure. The study of the low magnetic field behavior of OH in its 2Π3/2 ro-vibronic ground state precisely determines a differential Landé g factor between opposite parity components of the Λ doublet.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Guo, Kai, Guangfu Wang et Anpei Ye. « Dipole polarizabilities and magic wavelengths for a Sr and Yb atomic optical lattice clock ». Journal of Physics B : Atomic, Molecular and Optical Physics 43, no 13 (22 juin 2010) : 135004. http://dx.doi.org/10.1088/0953-4075/43/13/135004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Guo, Feng, Wei Tan, Chi-hua Zhou, Jian Xia, Ying-xin Chen, Ting Liang, Qiang Liu et al. « A proof-of-concept model of compact and high-performance 87Sr optical lattice clock for space ». AIP Advances 11, no 12 (1 décembre 2021) : 125116. http://dx.doi.org/10.1063/5.0064087.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Hisai, Yusuke, Daisuke Akamatsu, Takumi Kobayashi, Sho Okubo, Hajime Inaba, Kazumoto Hosaka, Masami Yasuda et Feng-Lei Hong. « Development of 8-branch Er:fiber frequency comb for Sr and Yb optical lattice clocks ». Optics Express 27, no 5 (20 février 2019) : 6404. http://dx.doi.org/10.1364/oe.27.006404.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Takamoto, Masao, Ichiro Ushijima, Manoj Das, Nils Nemitz, Takuya Ohkubo, Kazuhiro Yamanaka, Noriaki Ohmae et al. « Frequency ratios of Sr, Yb, and Hg based optical lattice clocks and their applications ». Comptes Rendus Physique 16, no 5 (juin 2015) : 489–98. http://dx.doi.org/10.1016/j.crhy.2015.04.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Hong, Feng-Lei, Masao Takamoto, Ryoichi Higashi, Yasuhiro Fukuyama, Jie Jiang et Hidetoshi Katori. « Frequency measurement of a Sr lattice clock using an SI-second-referenced optical frequency comb linked by a global positioning system (GPS) ». Optics Express 13, no 14 (2005) : 5253. http://dx.doi.org/10.1364/opex.13.005253.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Ohmae, Noriaki, Filippo Bregolin, Nils Nemitz et Hidetoshi Katori. « Direct measurement of the frequency ratio for Hg and Yb optical lattice clocks and closure of the Hg/Yb/Sr loop ». Optics Express 28, no 10 (4 mai 2020) : 15112. http://dx.doi.org/10.1364/oe.391602.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Ido, Tetsuya. « Optical Lattice Clock ». MAPAN 27, no 1 (mars 2012) : 9–12. http://dx.doi.org/10.1007/s12647-012-0008-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Lin Yi-Ge et Fang Zhan-Jun. « Strontium optical lattice clock ». Acta Physica Sinica 67, no 16 (2018) : 160604. http://dx.doi.org/10.7498/aps.67.20181097.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Takamoto, Masao, Feng-Lei Hong, Ryoichi Higashi et Hidetoshi Katori. « An optical lattice clock ». Nature 435, no 7040 (mai 2005) : 321–24. http://dx.doi.org/10.1038/nature03541.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Vogt, Stefan, Sebastian Häfner, Jacopo Grotti, Silvio Koller, Ali Al-Masoudi, Uwe Sterr et Christian Lisdat. « A transportable optical lattice clock ». Journal of Physics : Conference Series 723 (juin 2016) : 012020. http://dx.doi.org/10.1088/1742-6596/723/1/012020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Poli, N., M. G. Tarallo, M. Schioppo, C. W. Oates et G. M. Tino. « A simplified optical lattice clock ». Applied Physics B 97, no 1 (2 avril 2009) : 27–33. http://dx.doi.org/10.1007/s00340-009-3488-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Zheng, Xin, Jonathan Dolde, Varun Lochab, Brett N. Merriman, Haoran Li et Shimon Kolkowitz. « Differential clock comparisons with a multiplexed optical lattice clock ». Nature 602, no 7897 (16 février 2022) : 425–30. http://dx.doi.org/10.1038/s41586-021-04344-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Stajic, Jelena. « Making a denser optical lattice clock ». Science 358, no 6359 (5 octobre 2017) : 76.1–76. http://dx.doi.org/10.1126/science.358.6359.76-a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Poli, N., M. Schioppo, S. Vogt, St Falke, U. Sterr, Ch Lisdat et G. M. Tino. « A transportable strontium optical lattice clock ». Applied Physics B 117, no 4 (8 octobre 2014) : 1107–16. http://dx.doi.org/10.1007/s00340-014-5932-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Ludlow, Andrew D., et Jun Ye. « Progress on the optical lattice clock ». Comptes Rendus Physique 16, no 5 (juin 2015) : 499–505. http://dx.doi.org/10.1016/j.crhy.2015.03.008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Meng Fei, 孟飞, 曹士英 Cao Shiying, 赵光贞 Zhao Guangzhen, 赵阳 Zhao Yang et 方占军 Fang Zhanjun. « Application of an Er:Doped Fiber Comb for Sr Lattice Clock ». Chinese Journal of Lasers 42, no 7 (2015) : 0702012. http://dx.doi.org/10.3788/cjl201542.0702012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Zhao Fang-Jing, Gao Feng, Han Jian-Xin, Zhou Chi-Hua, Meng Jun-Wei, Wang Ye-Bing, Guo Yang, Zhang Shou-Gang et Chang Hong. « Miniaturization of physics system in Sr optical clock ». Acta Physica Sinica 67, no 5 (2018) : 050601. http://dx.doi.org/10.7498/aps.67.20172584.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Takamoto, Masao, Feng-Lei Hong, Ryoichi Higashi et Hidetoshi Katori. « Absolute frequency measurement of optical lattice clock ». Review of Laser Engineering 34, Supplement (2006) : 5–6. http://dx.doi.org/10.2184/lsj.34.5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

YASUDA, Masami, Takuya KOHNO, Kazumoto HOSAKA, Hajime INABA et Feng-Lei HONG. « Development of An 171Yb Optical Lattice Clock ». Review of Laser Engineering 38, no 7 (2010) : 500–504. http://dx.doi.org/10.2184/lsj.38.500.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Belotelov, G. S., V. D. Ovsiannikov, D. V. Sutyrin, A. Yu Gribov, O. I. Berdasov, V. G. Pal’chikov, S. N. Slyusarev et I. Yu Blinov. « Lattice light shift in strontium optical clock ». Laser Physics 30, no 4 (25 mars 2020) : 045501. http://dx.doi.org/10.1088/1555-6611/ab7be1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Guo Yang, Yin Mo-Juan, Xu Qin-Fang, Wang Ye-Bing, Lu Ben-Quan, Ren Jie, Zhao Fang-Jing et Chang Hong. « Interrogation of spin polarized clock transition in strontium optical lattice clock ». Acta Physica Sinica 67, no 7 (2018) : 070601. http://dx.doi.org/10.7498/aps.67.20172759.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Lodewyck, Jérôme, Sławomir Bilicki, Eva Bookjans, Jean-Luc Robyr, Chunyan Shi, Grégoire Vallet, Rodolphe Le Targat et al. « Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock ». Metrologia 53, no 4 (8 juillet 2016) : 1123–30. http://dx.doi.org/10.1088/0026-1394/53/4/1123.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Wang, Yebing, Xiaotong Lu, Benquan Lu, Dehuan Kong et Hong Chang. « Recent Advances Concerning the 87Sr Optical Lattice Clock at the National Time Service Center ». Applied Sciences 8, no 11 (8 novembre 2018) : 2194. http://dx.doi.org/10.3390/app8112194.

Texte intégral
Résumé :
We review recent experimental progress concerning the 87Sr optical lattice clock at the National Time Service Center in China. Hertz-level spectroscopy of the 87Sr clock transition for the optical lattice clock was performed, and closed-loop operation of the optical lattice clock was realized. A fractional frequency instability of 2.8 × 10−17 was attained for an averaging time of 2000 s. The Allan deviation is found to be 1.6 × 10−15/τ1/2 and is limited mainly by white-frequency-noise. The Landé g-factors of the (5s2)1S0 and (5s5p)3P0 states in 87Sr were measured experimentally; they are important for evaluating the clock’s Zeeman shifts. We also present recent work on the miniaturization of the strontium optical lattice clock for space applications.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Campbell, S. L., R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse et al. « A Fermi-degenerate three-dimensional optical lattice clock ». Science 358, no 6359 (5 octobre 2017) : 90–94. http://dx.doi.org/10.1126/science.aam5538.

Texte intégral
Résumé :
Strontium optical lattice clocks have the potential to simultaneously interrogate millions of atoms with a high spectroscopic quality factor of 4 × 1017. Previously, atomic interactions have forced a compromise between clock stability, which benefits from a large number of atoms, and accuracy, which suffers from density-dependent frequency shifts. Here we demonstrate a scalable solution that takes advantage of the high, correlated density of a degenerate Fermi gas in a three-dimensional (3D) optical lattice to guard against on-site interaction shifts. We show that contact interactions are resolved so that their contribution to clock shifts is orders of magnitude lower than in previous experiments. A synchronous clock comparison between two regions of the 3D lattice yields a measurement precision of 5 × 10–19 in 1 hour of averaging time.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Band, Y. B., et A. Vardi. « Collisional shifts in an optical-lattice atomic clock ». Laser Physics 18, no 3 (mars 2008) : 308–13. http://dx.doi.org/10.1134/s1054660x08030195.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Smart, Ashley G. « Optical-lattice clock sets new standard for timekeeping ». Physics Today 67, no 3 (mars 2014) : 12–14. http://dx.doi.org/10.1063/pt.3.2294.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

De Sarlo, L., M. Favier, R. Tyumenev et S. Bize. « A mercury optical lattice clock at LNE-SYRTE ». Journal of Physics : Conference Series 723 (juin 2016) : 012017. http://dx.doi.org/10.1088/1742-6596/723/1/012017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Ovsyannikov, V. D., S. I. Marmo, S. N. Mokhnenko et V. G. Pal'chikov. « Nonlinear optical higher-order effects in an optical lattice clock ». Quantum Electronics 47, no 5 (30 mai 2017) : 412–20. http://dx.doi.org/10.1070/qel16347.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Ohtsubo, Nozomi, Ying Li, Nils Nemitz, Hidekazu Hachisu, Kensuke Matsubara, Tetsuya Ido et Kazuhiro Hayasaka. « Frequency ratio of an 115In+ ion clock and a 87Sr optical lattice clock ». Optics Letters 45, no 21 (26 octobre 2020) : 5950. http://dx.doi.org/10.1364/ol.404940.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Yu, Dai-Hyuk, Chang Yong Park, Won-Kyu Lee, Sangkyung Lee, Sang Eon Park, Jongchul Mun, Sang-Bum Lee et Taeg Yong Kwon. « An Yb optical lattice clock : Current status at KRISS ». Journal of the Korean Physical Society 63, no 4 (août 2013) : 883–89. http://dx.doi.org/10.3938/jkps.63.883.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Mishin, Denis, Daniil Provorchenko, Dmitry Tregubov, Nikolai Kolachevsky et Artem Golovizin. « Continuous operation of a bicolor thulium optical lattice clock ». Applied Physics Express 14, no 11 (1 novembre 2021) : 112006. http://dx.doi.org/10.35848/1882-0786/ac3186.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Kolkowitz, S., S. L. Bromley, T. Bothwell, M. L. Wall, G. E. Marti, A. P. Koller, X. Zhang, A. M. Rey et J. Ye. « Spin–orbit-coupled fermions in an optical lattice clock ». Nature 542, no 7639 (21 décembre 2016) : 66–70. http://dx.doi.org/10.1038/nature20811.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Kohno, Takuya, Masami Yasuda, Kazumoto Hosaka, Hajime Inaba, Yoshiaki Nakajima et Feng-Lei Hong. « One-Dimensional Optical Lattice Clock with a Fermionic171Yb Isotope ». Applied Physics Express 2 (19 juin 2009) : 072501. http://dx.doi.org/10.1143/apex.2.072501.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Westergaard, P., J. Lodewyck et P. Lemonde. « Minimizing the dick effect in an optical lattice clock ». IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 57, no 3 (mars 2010) : 623–28. http://dx.doi.org/10.1109/tuffc.2010.1457.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Baillard, X., M. Fouché, R. Le Targat, P. G. Westergaard, A. Lecallier, F. Chapelet, M. Abgrall et al. « An optical lattice clock with spin-polarized 87Sr atoms ». European Physical Journal D 48, no 1 (7 décembre 2007) : 11–17. http://dx.doi.org/10.1140/epjd/e2007-00330-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Rey, A. M., A. V. Gorshkov, C. V. Kraus, M. J. Martin, M. Bishof, M. D. Swallows, X. Zhang et al. « Probing many-body interactions in an optical lattice clock ». Annals of Physics 340, no 1 (janvier 2014) : 311–51. http://dx.doi.org/10.1016/j.aop.2013.11.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Matsubara, Kensuke, Hidekazu Hachisu, Ying Li, Shigeo Nagano, Clayton Locke, Asahiko Nogami, Masatoshi Kajita, Kazuhiro Hayasaka, Tetsuya Ido et Mizuhiko Hosokawa. « Direct comparison of a Ca^+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement ». Optics Express 20, no 20 (11 septembre 2012) : 22034. http://dx.doi.org/10.1364/oe.20.022034.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Dörscher, S., N. Huntemann, R. Schwarz, R. Lange, E. Benkler, B. Lipphardt, U. Sterr, E. Peik et C. Lisdat. « Optical frequency ratio of a 171Yb+ single-ion clock and a 87Sr lattice clock ». Metrologia 58, no 1 (8 janvier 2021) : 015005. http://dx.doi.org/10.1088/1681-7575/abc86f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie