Articles de revues sur le sujet « Squeezed light »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Squeezed light.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Squeezed light ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Slusher, Richart E., et Bernard Yurke. « Squeezed Light ». Scientific American 258, no 5 (mai 1988) : 50–56. http://dx.doi.org/10.1038/scientificamerican0588-50.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Loudon, R., et P. L. Knight. « Squeezed Light ». Journal of Modern Optics 34, no 6-7 (juin 1987) : 709–59. http://dx.doi.org/10.1080/09500348714550721.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Yurke, B., et R. E. Slusher. « Squeezed light ». Optics News 13, no 6 (1 juin 1987) : 6. http://dx.doi.org/10.1364/on.13.6.000006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Yang, Wenhai, Wenting Diao, Chunxiao Cai, Tao Wu, Ke Wu, Yu Li, Cong Li et al. « A Bright Squeezed Light Source for Quantum Sensing ». Chemosensors 11, no 1 (25 décembre 2022) : 18. http://dx.doi.org/10.3390/chemosensors11010018.

Texte intégral
Résumé :
The use of optical sensing for in vivo applications is compelling, since it offers the advantages of non-invasiveness, non-ionizing radiation, and real-time monitoring. However, the signal-to-noise ratio (SNR) of the optical signal deteriorates dramatically as the biological tissue increases. Although increasing laser power can improve the SNR, intense lasers can severely disturb biological processes and viability. Quantum sensing with bright squeezed light can make the measurement sensitivity break through the quantum noise limit under weak laser conditions. A bright squeezed light source is demonstrated to avoid the deterioration of SNR and biological damage, which integrates an external cavity frequency-doubled laser, a semi-monolithic standing cavity with periodically poled titanyl phosphate (PPKTP), and a balanced homodyne detector (BHD) assembled on a dedicated breadboard. With the rational design of the mechanical elements, the optical layout, and the feedback control equipment, a maximum non-classical noise reduction of −10.7 ± 0.2 dB is observed. The average squeeze of −10 ± 0.2 dB in continuous operation for 60 min is demonstrated. Finally, the intracavity loss of degenerate optical parametric amplifier (DOPA) and the initial bright squeezed light can be calculated to be 0.0021 and −15.5 ± 0.2 dB, respectively. Through the above experimental and theoretical analysis, the direction of improving bright squeeze level is pointed out.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Slusher, R. E., P. Grangier, A. LaPorta, B. Yurke et M. J. Potasek. « Pulsed Squeezed Light ». Physical Review Letters 59, no 22 (30 novembre 1987) : 2566–69. http://dx.doi.org/10.1103/physrevlett.59.2566.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Wheeler, James T. « Gravitationally squeezed light ». General Relativity and Gravitation 21, no 3 (mars 1989) : 293–305. http://dx.doi.org/10.1007/bf00764102.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Tzallas, Paraskevas. « Squeezed light effect ». Nature Photonics 17, no 6 (juin 2023) : 463–64. http://dx.doi.org/10.1038/s41566-023-01218-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Zhang, Yan, Juan Yu, Peng-Fei Yang et Jun-Xiang Zhang. « Preparation of continuously tunable orthogonal squeezed light filed corresponding to cesium D<sub>1</sub> ; line ». Acta Physica Sinica 71, no 4 (2022) : 044203. http://dx.doi.org/10.7498/aps.71.20211382.

Texte intégral
Résumé :
The non-classical light resonance on the cesium D<sub>1</sub> (894.6 nm) line has important applications in solid-state quantum information networks due to its unique advantages. The cesium D<sub>1</sub> line has a simplified hyperfine structure and can be used to realize a light-atom interface. In our previous work, we demonstrated 2.8-dB quadrature squeezed vacuum light at cesium D<sub>1</sub> line in an optical parametric oscillator(OPO) with a periodically poled KTP(PPKTP) crystal. However, the squeezing level is relatively low, and the tunability that has practical significance for squeezed light has not been further investigated. Theoretically, the increase of the transmittance of output mirror and the decrease of the intra-cavity loss of the OPO can improve the squeezing level. Here, we use super-polished and optimal coating cavity mirrors to improve the nonlinear process in OPO. We prepare 447.3 nm blue light from 894.6 nm fundamental light by a second harmonic generation cavity (SHG). The SHG is a two-mirror standing-wave cavity with a PPKTP crystal as the nonlinear medium. The power of generated blue laser is 32 mW when the incident infrared power is 120 mW. Using the blue light to pump an OPO, we achieve quadrature squeezed vacuum light at cesium D<sub>1</sub> line. The OPO is a two-mirror standing-wave cavity with a PPKTP crystal. The threshold of OPO is reduced to 28 mW. The squeezing level of generated quadrature squeezed vacuum light is increased to 3.3 dB when the pump power is 15 mW. Taking into account the overall detection efficiency, the actual squeezing reaches 5.5 dB. We inject a weak signal beam into the OPO cavity to act as an optical parametric amplifier (OPA), and test the tunability of squeezzed light. The blue light and the squeezed light are tuned by using a low-frequency triangular wave signal to scan the Ti: sapphire laser. Gradually increasing the amplitude of the scanning triangle wave signal, the generated bright squeezed light can be continuously tuned over a range around 80 MHz without losing the stability of the whole system. The generated squeezed light offers the possibility for the efficient coupling between the non-classical source and solid medium in the process of quantum interface.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Mehmet, Moritz, et Henning Vahlbruch. « The Squeezed Light Source for the Advanced Virgo Detector in the Observation Run O3 ». Galaxies 8, no 4 (26 novembre 2020) : 79. http://dx.doi.org/10.3390/galaxies8040079.

Texte intégral
Résumé :
From 1 April 2019 to 27 March 2020, the Advanced Virgo detector, together with the two Advanced LIGO detectors, conducted the third joint scientific observation run O3, aiming for further detections of gravitational wave signals from astrophysical sources. One of the upgrades to the Virgo detector for O3 was the implementation of the squeezed light technology to improve the detector sensitivity beyond its classical quantum shot noise limit. In this paper, we present a detailed description of the optical setup and performance of the employed squeezed light source. The squeezer was constructed as an independent, stand-alone sub-system operated in air. The generated squeezed states are tailored to exhibit high purity at intermediate squeezing levels in order to significantly reduce the interferometer shot noise level while keeping the correlated enhancement of quantum radiation pressure noise just below the actual remaining technical noise in the Advanced Virgo detector.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Polzik, E. S., J. Carri et H. J. Kimble. « Spectroscopy with squeezed light ». Physical Review Letters 68, no 20 (18 mai 1992) : 3020–23. http://dx.doi.org/10.1103/physrevlett.68.3020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Giacobino, Elizabeth, Claude Fabre et Gerd Leuchs. « Communication by squeezed light ». Physics World 2, no 2 (février 1989) : 31–35. http://dx.doi.org/10.1088/2058-7058/2/2/25.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Teich, M. C., et B. E. A. Saleh. « Squeezed state of light ». Quantum Optics : Journal of the European Optical Society Part B 1, no 2 (décembre 1989) : 153–91. http://dx.doi.org/10.1088/0954-8998/1/2/006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Fabre, C. « Squeezed states of light ». Physics Reports 219, no 3-6 (octobre 1992) : 215–25. http://dx.doi.org/10.1016/0370-1573(92)90138-p.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Vaccaro, J. A., et D. T. Pegg. « Squeezed Atomic Light Amplifiers ». Journal of Modern Optics 34, no 6-7 (juin 1987) : 855–72. http://dx.doi.org/10.1080/09500348714550791.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Knight, Peter. « Squeezed and Nonclassical Light ». Journal of Modern Optics 37, no 1 (janvier 1990) : 145–46. http://dx.doi.org/10.1080/09500349014550141.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Barnett, S. M. « Squeezed and Nonclassical Light ». Journal of Modern Optics 37, no 5 (mai 1990) : 1005. http://dx.doi.org/10.1080/09500349014551011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

TUCCI, ROBERT R. « DIFFRACTION AND SQUEEZED LIGHT ». International Journal of Modern Physics B 07, no 26 (30 novembre 1993) : 4403–37. http://dx.doi.org/10.1142/s0217979293003735.

Texte intégral
Résumé :
We discuss the effect of diffraction on squeezed light propagation. All electric fields concerned are approximated to be monochromatic and paraxial. We consider: (1)(propagation without gain) a squeezed signal propagating in free space, and (2)(propagation with gain) a squeezed signal propagating in a non-linear crystal which amplifies the signal by a process of frequency halving (degenerate parametric amplification). The pump beam required for this process is assumed to have a Gaussian amplitude profile. For propagation without gain, our expression for the final signal is exact, but for propagation with gain, it is given as a perturbative expansion. The lowest order term in the expansion neglects diffraction of the signal and assumes flat pump wavefronts. Higher order terms include these factors and thus improve the accuracy with which the signal’s transverse behavior is described. We present graphs showing the dependence of squeezing on pump and signal beam parameters. We also find and discuss approximate formulas that characterize these graphs in various regimes.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Teich, Malvin C., et Bahaa E. A. Saleh. « Squeezed and Antibunched Light ». Physics Today 43, no 6 (juin 1990) : 26–34. http://dx.doi.org/10.1063/1.881246.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Shukla, Namrata, et Ranjana Prakash. « Alteration in non-classicality of light on passing through a linear polarization beam splitter ». Modern Physics Letters B 30, no 21 (10 août 2016) : 1650289. http://dx.doi.org/10.1142/s0217984916502894.

Texte intégral
Résumé :
We observe the polarization squeezing in the mixture of a two mode squeezed vacuum and a simple coherent light through a linear polarization beam splitter. Squeezed vacuum not being squeezed in polarization, generates polarization squeezed light when superposed with coherent light. All the three Stokes parameters of the light produced on the output port of polarization beam splitter are found to be squeezed and squeezing factor also depends upon the parameters of coherent light.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Azuma, Hiroo. « Generation of a coherent squeezed-like state defined with the Lie–Trotter product formula using a nonlinear photonic crystal ». Journal of Physics D : Applied Physics 56, no 47 (24 août 2023) : 475101. http://dx.doi.org/10.1088/1361-6463/acefdc.

Texte intégral
Résumé :
Abstract In this paper, we investigate how to generate coherent squeezed-like light using a nonlinear photonic crystal. Because the photonic crystal reduces the group velocity of the incident light, if it is composed of a material with a second-order nonlinear optical susceptibility χ ( 2 ) , the interaction between the nonlinear material and the light passing through it strengthens and the quantum state of the emitted light is largely squeezed. Thus, we can generate a coherent squeezed-like light with a resonating cavity in which the nonlinear photonic crystal is placed. This coherent squeezed-like state is defined with the Lie–Trotter product formula and its mathematical expression is different from those of conventional coherent squeezed states. We show that we can obtain this coherent squeezed-like state with a squeezing level 15.9 dB practically by adjusting the physical parameters for our proposed method. Feeding the squeezed light whose average number of photons is given by one or two into a beam splitter and splitting the flow of the squeezed light into a pair of entangled light beams, we estimate their entanglement quantitatively. This paper is a sequel to Azuma (2022 J. Phys. D: Appl. Phys. 55 315106).
Styles APA, Harvard, Vancouver, ISO, etc.
21

Aggarwal, Neha, Aranya B. Bhattacherjee et Man Mohan. « Generation of Atomic-Squeezed States via Pondermotively Squeezed Light ». Journal of Atomic, Molecular, Condensate and Nano Physics 3, no 1 (17 janvier 2016) : 17–25. http://dx.doi.org/10.26713/jamcnp.v3i1.345.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Lu, Bao Zhu, Si Wen Bi, Fei Feng, Meng Hua Kang et Fei Qin. « Experimental Study on the Imaging of the Squeezed State Light with -4.93dB Quantum-Noise Reduction at 1064 nm ». Advanced Materials Research 571 (septembre 2012) : 439–44. http://dx.doi.org/10.4028/www.scientific.net/amr.571.439.

Texte intégral
Résumé :
A stable amplitude squeezed state light was generated by utilizing the optical parametric down-conversion (OPDC) technique based on periodically poled KTiOPO4(PPKTP) in an optical parametric oscillator (OPO) resonator. We observed a -4.93dB of squeezing in homodyne measurement. The imaging experiments of resolution target were conducted. It shown that the imaging resolution with squeezed state light as light source was 1.26 times that of the resolution with coherent light as light source. The squeezed state light was applied for imaging of real objects and we found that the imaging with squeezed light as light source is more distinct and has less distortion.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Fyath, Raad Sami, et Ismael Shanan Desher Alaskary. « Binary Quantum Communication using Squeezed Light : Numerical, Simulation, and Experimental Resuts ». INTERNATIONAL JOURNAL OF COMPUTERS & ; TECHNOLOGY 11, no 7 (17 novembre 2013) : 2839–58. http://dx.doi.org/10.24297/ijct.v11i7.3490.

Texte intégral
Résumé :
In this paper, the squeezed quantum state is generated using an optical parametric oscillator via a spontaneous parametric down conversion technique to investigate squeezed states with quantum noise in one quadrature below the standard quantum limit at the expense of the other. The setup involves four main parts: generation of Nd-YAG second harmonic via a ring resonator, squeezed cavity with a nonlinear crystal inside to generate the squeezed state, Pound-Drever-Hall technique to stabilize the laser in the squeezed cavity and balanced homodyne receiver with high efficiency to detect the squeezed state. A comparison in error probability is addressed between the quantum coherent classical and the quantum squeezed non-classical state in the presence of thermal noise and the dissipation. It is found that with extremely low number of photons, the squeezed state is robust against channel noise.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Bykov, Vladimir P. « Basic properties of squeezed light ». Uspekhi Fizicheskih Nauk 161, no 10 (1991) : 145. http://dx.doi.org/10.3367/ufnr.0161.199110f.0145.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Sperling, J., et W. Vogel. « Entanglement quasiprobabilities of squeezed light ». New Journal of Physics 14, no 5 (31 mai 2012) : 055026. http://dx.doi.org/10.1088/1367-2630/14/5/055026.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Qu, Kenan, et G. S. Agarwal. « Ramsey spectroscopy with squeezed light ». Optics Letters 38, no 14 (12 juillet 2013) : 2563. http://dx.doi.org/10.1364/ol.38.002563.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Grangier, P., R. E. Slusher, B. Yurke et A. LaPorta. « Squeezed-light–enhanced polarization interferometer ». Physical Review Letters 59, no 19 (9 novembre 1987) : 2153–56. http://dx.doi.org/10.1103/physrevlett.59.2153.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Slusher, R. E., et B. Yurke. « Squeezed light for coherent communications ». Journal of Lightwave Technology 8, no 3 (mars 1990) : 466–77. http://dx.doi.org/10.1109/50.50742.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Dalton, B. J., Z. Ficek et S. Swain. « Atoms in squeezed light fields ». Journal of Modern Optics 46, no 3 (mars 1999) : 379–474. http://dx.doi.org/10.1080/09500349908231278.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Bullough, R. K. « Squeezed and non-classical light ». Nature 333, no 6174 (juin 1988) : 601–2. http://dx.doi.org/10.1038/333601a0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Bykov, Vladimir P. « Basic properties of squeezed light ». Soviet Physics Uspekhi 34, no 10 (31 octobre 1991) : 910–24. http://dx.doi.org/10.1070/pu1991v034n10abeh002528.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Bell, A. S., E. Riis et A. I. Ferguson. « Bright tunable ultraviolet squeezed light ». Optics Letters 22, no 8 (15 avril 1997) : 531. http://dx.doi.org/10.1364/ol.22.000531.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Ralph, T. C., et P. K. Lam. « Teleportation with Bright Squeezed Light ». Physical Review Letters 81, no 25 (21 décembre 1998) : 5668–71. http://dx.doi.org/10.1103/physrevlett.81.5668.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Lawrie, B. J., P. D. Lett, A. M. Marino et R. C. Pooser. « Quantum Sensing with Squeezed Light ». ACS Photonics 6, no 6 (13 mai 2019) : 1307–18. http://dx.doi.org/10.1021/acsphotonics.9b00250.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Li, Shiqun, et Ling-An Wu. « Phase Conjugation of Squeezed Light ». Chinese Physics Letters 10, no 4 (avril 1993) : 220–22. http://dx.doi.org/10.1088/0256-307x/10/4/009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

SLUSHER, R. E., L. W. HOLLBERG, B. YURKE, J. C. MERTZ et J. F. VALLEY. « Squeezed states of light I ». Optics News 12, no 12 (1 décembre 1986) : 16. http://dx.doi.org/10.1364/on.12.12.000016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

KIMBLE, H. J. « Squeezed states of light III ». Optics News 12, no 12 (1 décembre 1986) : 17. http://dx.doi.org/10.1364/on.12.12.000017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

KIMBLE, H. J. « Squeezed states of light III ». Optics News 12, no 12 (1 décembre 1986) : 17_1. http://dx.doi.org/10.1364/on.12.12.0017_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Powell, Devin. « Squeezed light mutes quantum noise ». Nature 500, no 7461 (août 2013) : 131. http://dx.doi.org/10.1038/500131a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Fox, A. M., J. J. Baumberg, M. Dabbicco, B. Huttner et J. F. Ryan. « Squeezed Light Generation in Semiconductors ». Physical Review Letters 74, no 10 (6 mars 1995) : 1728–31. http://dx.doi.org/10.1103/physrevlett.74.1728.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Patera, Giuseppe, et Mikhail I. Kolobov. « Temporal imaging with squeezed light ». Optics Letters 40, no 6 (13 mars 2015) : 1125. http://dx.doi.org/10.1364/ol.40.001125.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Böhmer, B., et U. Leonhardt. « Correlation interferometer for squeezed light ». Optics Communications 118, no 3-4 (juillet 1995) : 181–85. http://dx.doi.org/10.1016/0030-4018(95)00272-a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Bykov, V. P. « Buffer excitation of squeezed light ». Laser Physics Letters 2, no 5 (1 mai 2005) : 223–36. http://dx.doi.org/10.1002/lapl.200410148.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Liu, Peng, Juan Li, Xiao Xiang, Ming-Tao Cao, Rui-Fang Dong, Tao Liu et Shou-Gang Zhang. « Experimental scheme of non-critical squeezed light field detection ». Acta Physica Sinica 71, no 1 (2022) : 010301. http://dx.doi.org/10.7498/aps.71.20211212.

Texte intégral
Résumé :
The squeezed state, as an important quantum resource, has great potential applications in quantum computing, quantum communication and precision measurement. In the noncritically squeezed light theory, the predicted noncritically squeezed light can be generated by breaking the spontaneous rotational symmetry occurring in a degenerate optical parametric oscillator (DOPO) pumped above threshold. The reliability of this kind of squeezing is crucially important, as its quantum performance is robust to the pump power in experiment. However, the detected squeezing degrades rapidly in detection, because the squeezed mode orientation diffuses slowly, resulting in a small mode mismatch during the homodyne detection. In this paper, we propose an experimentally feasible scheme to detect noncritically squeezing reliable by employing the spatial mode swapping technic. Theoretically, the dynamic fluctuation aroused by random mode rotation in the squeezing detection can be compensated for perfectly, and 3 dB squeezing can be achieved robustly even with additional vacuum noise. Our scheme makes an important step forward for the experimental generation of noncritically squeezed light.
Styles APA, Harvard, Vancouver, ISO, etc.
45

Dwyer, S., L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai et al. « Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light ». Optics Express 21, no 16 (2 août 2013) : 19047. http://dx.doi.org/10.1364/oe.21.019047.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Abebe, Tamirat, Demissie Jobir, Chimdessa Gashu et Ebisa Mosisa. « Interaction of Two-Level Atom with Squeezed Vacuum Reservoir ». Advances in Mathematical Physics 2021 (29 janvier 2021) : 1–7. http://dx.doi.org/10.1155/2021/6696253.

Texte intégral
Résumé :
In this paper, the quantum properties of a two-level atom interaction with squeezed vacuum reservoir is throughly analyzed. With the aid of the interaction Hamiltonian and the master equation, we obtain the time evolution of the expectation values of the atomic operators. Employing the steady-state solution of these equations, we calculate the power spectrum and the second-order correlation function for the interaction of two-level atom with squeezed vacuum reservoir. It is found that the half width of the power spectrum of the light increases with the squeeze parameter, r . Furthermore, in the absence of decay constant and interaction time, it enhances the probability for the atom to be in the upper level.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Chihua Zhou, Chihua Zhou, Changchun Zhang Changchun Zhang, Hongbo Liu Hongbo Liu, Kui Liu Kui Liu, Hengxin Sun Hengxin Sun et Jiangrui Gao Jiangrui Gao. « Generation of temporal multimode squeezed states of femtosecond pulse light ». Chinese Optics Letters 15, no 9 (2017) : 092703. http://dx.doi.org/10.3788/col201715.092703.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Irastorza, Igor G. « Shedding squeezed light on dark matter ». Nature 590, no 7845 (10 février 2021) : 226–27. http://dx.doi.org/10.1038/d41586-021-00295-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

AOKI, Takao. « Quantum Information Experiments with Squeezed Light ». Review of Laser Engineering 31, no 9 (2003) : 599–604. http://dx.doi.org/10.2184/lsj.31.599.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Vyas, Reeta, et Surendra Singh. « Quantum statistics of broadband squeezed light ». Optics Letters 14, no 20 (15 octobre 1989) : 1110. http://dx.doi.org/10.1364/ol.14.001110.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie