Articles de revues sur le sujet « Spout-fluid bed »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Spout-fluid bed.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Spout-fluid bed ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Zhong, Wenqi, Mingyao Zhang et Baosheng Jin. « Maximum spoutable bed height of spout-fluid bed ». Chemical Engineering Journal 124, no 1-3 (novembre 2006) : 55–62. http://dx.doi.org/10.1016/j.cej.2006.08.021.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

ZHONG, W., Q. LI, M. ZHANG, B. JIN, R. XIAO, Y. HUANG et A. SHI. « Spout characteristics of a cylindrical spout-fluid bed with elevated pressure ». Chemical Engineering Journal 139, no 1 (15 mai 2008) : 42–47. http://dx.doi.org/10.1016/j.cej.2007.07.075.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Wu, Man, Jingxia Jiang, Cuiping Meng, Xiude Hu, Henglai Xie, Mingzhou Wu et Qingjie Guo. « Polypropylene Composites Reinforced by Nonmetallic from Waste Printed Circuit Boards Using Spout-Fluid Bed Coating with PP Particles Enhance Fluidization ». Polymers 13, no 18 (15 septembre 2021) : 3106. http://dx.doi.org/10.3390/polym13183106.

Texte intégral
Résumé :
Nonmetallic materials recycled from waste printed circuit boards (N-WPCBs) were modified by coating KH-550 in a spout-fluid bed. To improve the effect of the modification, PP particles were used to enhance the fluidization quality of the N-WPCB particles in the coating modification. Then, the modified N-WPCBs were used as fillers to fabricate PP/N-WPCB composites. The method of coating in a spout-fluid bed with PP particles enhanced fluidization and showed the best modification effect compared to other coating methods. The FT-IR and SEM results demonstrated that interfacial bonding between N-WPCBs and PP could be enhanced by modified N-WPCBs, which improved the mechanical properties of the composites. When the mass ratio of PP to N-WPCBs is 100:75 and the dose of KH-550 is 4 phr, the flexural strength, tensile strength, and impact strength of the composites increase by 16.60%, 23.22%, and 23.64%, respectively. This would realize the high-value utilization of N-WPCBs with coating modification in the spout-fluid bed.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Povrenovic, Dragan, et Suzana Dimitrijevic-Brankovic. « Drying of biological materials in a spout-fluid bed with a draft tube ». Chemical Industry 56, no 4 (2002) : 141–46. http://dx.doi.org/10.2298/hemind0204141p.

Texte intégral
Résumé :
The possibility of applying a spout-fluid bed with a draft tube and conical bottom was investigated for drying fluid media with a certain content of suspended material was investigated. The major goal who to study the drying of biological materials and products of food the industry. Experimental results concerning the fluidmechanical characteristics of a spout-fluid bed with a centrally situated draft tube and the drying characteristics were obtained on a pilot scale unit, 0.250 m in diameter, with a toed consisting of polyethylene particles 3.6 mm mean diameter and 940 kg/m3 density. Within the regime of the fluid mechanical stability, the system could be used for drying biological suspensions with satisfactory results.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Anabtawi, Mohammed Zohdi, Bekir Zuhtu Uysal et Rami Yussuf Jumah. « Flow characteristics in a rectangular spout-fluid bed ». Powder Technology 69, no 3 (mars 1992) : 205–11. http://dx.doi.org/10.1016/0032-5910(92)80011-k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

de Oliveira Silva, Jessica, Josiane Ribeiro Campos Silva, Lucas Barros de Oliveira, Marcio Yuji Nagamachi, Luiz Fernando de Araujo Ferrão et Kamila Pereira Cardoso. « Encapsulation of Oxidizers : Efficient Method by Spout-fluid Bed ». Journal of Aerospace Technology and Management, no 1 (21 janvier 2020) : 23–26. http://dx.doi.org/10.5028/jatm.etmq.66.

Texte intégral
Résumé :
In composite solid propellants, the oxidizer in the form of particles is embedded in a polymeric matrix. In general, these oxidizers consist in inorganic salts that are hygroscopic, chemically incompatible or sensitive to friction or impact, so that microencapsulation can be applied as a mean to provide a protective coating layer. This work aims to assess the effectiveness of the spout-fluid bed method to perform microencapsulation of ammonium perchlorate particles with acrylic-based resin. The formed coating integrity was assessed by an optical stereomicroscope for samples with one, two and four layers of coating before and after dissolving the cores in water. The parameters utilized in this method provided a complete and individualized encapsulation with sufficient integrity. Therefore, the spout-fluid bed method proved to be effective, particularly with the application of multiple layers.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Grbavčić, Ž B., Dž E. Hadžismajlović, R. V. Garić, D. V. Vuković et H. Littman. « Prediction of the maximum spoutable bed height in spout-fluid beds ». Canadian Journal of Chemical Engineering 69, no 1 (février 1991) : 386–89. http://dx.doi.org/10.1002/cjce.5450690148.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Araújo, Bruna Sene Alves, et Kássia Graciele dos Santos. « CFD Simulation of Different Flow Regimes of the Spout Fluidized Bed with Draft Plates ». Materials Science Forum 899 (juillet 2017) : 89–94. http://dx.doi.org/10.4028/www.scientific.net/msf.899.89.

Texte intégral
Résumé :
Spout fluidized bed has shown promising for gas-solid contact operations with and without chemical reactions, such as drying, coating, granulation, gasification, pyrolysis, etc. This is because these beds combine features from both spouted and fluidized beds. The other point is the ability to treat chemical transformations involving both heat and mass transfer in combination with particles of various sizes. Therefore, it is extremely important the knowledge of fluid dynamic of the bed, mainly for scale-up projects, which makes computer simulation an essential tool. Researches using the Computation Fluid Dynamics (CFD) proved to be very effective in predicting of particles dynamic in this type of bed. In Computation Fluid Dynamics, the two phases are treated as interpenetration continuous, and these phases are described by equations of conservation of mass, momentum and energy. The goal of the present work was to simulate using CFD experimental fluid dynamics data of a spout fluidized bed. Eight distinct flow regimes were identified which showed up in good agreement with the regime map presented in literature. The results showed that the technique was efficient for the simulation of the hydrodynamic of the bed presented.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Zhong, Wenqi, Xiaoping Chen et Mingyao Zhang. « Hydrodynamic characteristics of spout-fluid bed : Pressure drop and minimum spouting/spout-fluidizing velocity ». Chemical Engineering Journal 118, no 1-2 (mai 2006) : 37–46. http://dx.doi.org/10.1016/j.cej.2006.01.008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Shao, Yingjuan, Xuejiao Liu, Wenqi Zhong, B. S. Jin et Mingyao Zhang. « Recent Advances of Spout-Fluid Bed : A Review of Fundamentals and Applications ». International Journal of Chemical Reactor Engineering 11, no 1 (24 août 2013) : 243–58. http://dx.doi.org/10.1515/ijcre-2013-0065.

Texte intégral
Résumé :
Abstract The spout-fluid bed (SFB) is a very successful synthesis of the spouting and fluidization. The hydrodynamics of SFB are more complex than both fluidized beds and spouted beds. Up-to-date information on the fundamentals and applications of SFBs has been briefly presented, based on the limited work reported, in the new spouted bed book edited by Norman Epstein and John R. Grace (Spouted and spout-fluid beds: fundamentals and applications, 2011). In the past three years, nearly 30 papers have been published in international journals. They reported interesting studies on hydrodynamic characteristics, numerical simulations and new applications of SFBs. This article reviews the major research and development on SFB from the year 2010 and recommends further research topics. This review is intended not only as an important supplement to the SFB chapter of the spouted bed book but also helpful guidance for future research.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Zhong, Wenqi, Mingyao Zhang, Baosheng Jin et Xiaoping Chen. « Flow pattern and transition of rectangular spout–fluid bed ». Chemical Engineering and Processing : Process Intensification 45, no 9 (septembre 2006) : 734–46. http://dx.doi.org/10.1016/j.cep.2006.03.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Tang, L., H. Huang, X. Yang, H. Hao et K. Zhao. « A Preliminary Research on a Plasma Spout-Fluid Bed Reactor ». Energy and Power Engineering 05, no 04 (2013) : 287–90. http://dx.doi.org/10.4236/epe.2013.54b056.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Lim, C. Jim, A. Paul Watkinson, G. Khoen Khoe, Sam Low, Norman Epstein et John R. Grace. « Spouted, fluidized and spout-fluid bed combustion of bituminous coals ». Fuel 67, no 9 (septembre 1988) : 1211–17. http://dx.doi.org/10.1016/0016-2361(88)90040-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Zhang, Yong, Baosheng Jin et Wenqi Zhong. « Experiment on particle mixing in flat-bottom spout–fluid bed ». Chemical Engineering and Processing : Process Intensification 48, no 1 (janvier 2009) : 126–34. http://dx.doi.org/10.1016/j.cep.2008.02.012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Kumar, B. Sujan, et A. Venu Vinod. « Mixing characteristics of binary mixtures in a spout-fluid bed ». Particulate Science and Technology 35, no 2 (6 février 2016) : 183–91. http://dx.doi.org/10.1080/02726351.2016.1146810.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Berruti, Franco, James R. Muir et Leo A. Behie. « Solids circulation in a spout-fluid bed with draft tibe ». Canadian Journal of Chemical Engineering 66, no 6 (décembre 1988) : 919–23. http://dx.doi.org/10.1002/cjce.5450660604.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Pianarosa, Denis L., Luis A. P. Freitas, C. Jim Lim, John R. Grace et O. Murat Dogan. « Voidage and particle velocity profiles in a spout-fluid bed ». Canadian Journal of Chemical Engineering 78, no 1 (février 2000) : 132–42. http://dx.doi.org/10.1002/cjce.5450780118.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Zhong, Wenqi, et Mingyao Zhang. « Jet penetration depth in a two-dimensional spout–fluid bed ». Chemical Engineering Science 60, no 2 (janvier 2005) : 315–27. http://dx.doi.org/10.1016/j.ces.2004.08.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Zhong, Wenqi, Rui Xiao et Mingyao Zhang. « Experimental study of gas mixing in a spout-fluid bed ». AIChE Journal 52, no 3 (2006) : 924–30. http://dx.doi.org/10.1002/aic.10708.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Anabtawi, Mohammed Zohdi. « Minimum Spouting Velocity, Minimum Spout-fluidized Velocity and Maximum Spoutable Bed Height in a Gas-solid Bidimensional Spout-fluid Bed. » JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 26, no 6 (1993) : 728–32. http://dx.doi.org/10.1252/jcej.26.728.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Deng, Zhongyi, Rui Xiao, Baosheng Jin, He Huang, Laihong Shen, Qilei Song et Qianjun Li. « Computational Fluid Dynamics Modeling of Coal Gasification in a Pressurized Spout-Fluid Bed ». Energy & ; Fuels 22, no 3 (mai 2008) : 1560–69. http://dx.doi.org/10.1021/ef7007437.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

He, Y.-L., C. J. Lim et J. R. Grace. « Spouted bed and spout-fluid bed behaviour in a column of diameter 0.91 m ». Canadian Journal of Chemical Engineering 70, no 5 (octobre 1992) : 848–57. http://dx.doi.org/10.1002/cjce.5450700505.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Zhang, Yong, Baosheng Jin, Wenqi Zhong, Bing Ren et Rui Xiao. « DEM simulation of particle mixing in flat-bottom spout-fluid bed ». Chemical Engineering Research and Design 88, no 5-6 (mai 2010) : 757–71. http://dx.doi.org/10.1016/j.cherd.2009.11.011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Bashapaka, Sujan Kumar, et Venu Vinod Ananthula. « Pressure Drop and Gas Holdup Studies in a Spout-Fluid Bed ». Particulate Science and Technology 33, no 1 (29 juillet 2014) : 91–96. http://dx.doi.org/10.1080/02726351.2014.939316.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Ishikura, Toshifumi. « Regime Map of Binary Particle Mixture in a Spout-Fluid Bed. » KAGAKU KOGAKU RONBUNSHU 19, no 6 (1993) : 1189–92. http://dx.doi.org/10.1252/kakoronbunshu.19.1189.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Li, Qianjun, Mingyao Zhang, Wenqi Zhong, Xiaofang Wang, Rui Xiao et Baosheng Jin. « Simulation of coal gasification in a pressurized spout-fluid bed gasifier ». Canadian Journal of Chemical Engineering 87, no 2 (avril 2009) : 169–76. http://dx.doi.org/10.1002/cjce.20151.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Tia, S., S. C. Bhattacharya et P. Wibulswas. « Spouted and spout-fluid bed combustors. 2 : Batch combustion of carbon ». International Journal of Energy Research 15, no 3 (avril 1991) : 203–21. http://dx.doi.org/10.1002/er.4440150307.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Zhong, Wenqi, Yuanquan Xiong, Zhulin Yuan et Mingyao Zhang. « DEM simulation of gas–solid flow behaviors in spout-fluid bed ». Chemical Engineering Science 61, no 5 (mars 2006) : 1571–84. http://dx.doi.org/10.1016/j.ces.2005.09.015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Thamavithya, Maitri, et Animesh Dutta. « An investigation of MSW gasification in a spout-fluid bed reactor ». Fuel Processing Technology 89, no 10 (octobre 2008) : 949–57. http://dx.doi.org/10.1016/j.fuproc.2008.03.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Thamavithya, Maitri, Sompop Jarungthammachote, Animesh Dutta et Prabir Basu. « Experimental study on sawdust gasification in a spout-fluid bed reactor ». International Journal of Energy Research 36, no 2 (20 décembre 2010) : 204–17. http://dx.doi.org/10.1002/er.1796.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Link, J. M., N. G. Deen, J. A. M. Kuipers, X. Fan, A. Ingram, D. J. Parker, J. Wood et J. P. K. Seville. « PEPT and discrete particle simulation study of spout-fluid bed regimes ». AIChE Journal 54, no 5 (2008) : 1189–202. http://dx.doi.org/10.1002/aic.11456.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Nagashima, Hiroshi, Toshifumi Ishikura et Mitsuharu Ide. « Hydrodynamic Behavior of Gas and Particles in a Spout-Fluid Bed with a Draft Tube ». KAGAKU KOGAKU RONBUNSHU 36, no 4 (2010) : 371–78. http://dx.doi.org/10.1252/kakoronbunshu.36.371.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Correia, Rui, Bruna Barbon Paulo, Ana Silvia Prata et Almerindo D. Ferreira. « Fluid dynamics performance of phase change material particles in a Wurster spout–fluid bed ». Particuology 42 (février 2019) : 163–75. http://dx.doi.org/10.1016/j.partic.2018.05.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Day, J. Y., H. Littman, M. H. Morgan, Z. B. Grbavcic, Dz E. Hadzismajlovic et D. V. Vukovic. « An axisymmetric model for fluid flow in the annulus of a spout-fluid bed ». Chemical Engineering Science 46, no 3 (1991) : 773–79. http://dx.doi.org/10.1016/0009-2509(91)80183-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Povrenovic, Dragan. « The application of disperse systems in environmental engineering ». Chemical Industry 57, no 10 (2003) : 500–505. http://dx.doi.org/10.2298/hemind0310500p.

Texte intégral
Résumé :
This paper presents the experimental results of spouted and spout-fluid bed investigations and their application in waste treatment in the food industry and the fluid-mechanical investigations of a co-current spouted bed with the aim of its application in water treatment, with immobilized microorganism systems. The Investigated systems were applied in animal blood and plasma drying, as a possible ecological solution in the meat-processing industry and brewery yeast drying. These waste materials are very dangerous pollutants for natural recipients. The concept of a co-current spouted bed as a basis for microbiological water treatment in the nitrification process of ammonium nitrogen is presented in the second part of this paper.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Zhong, Wenqi, Mingyao Zhang, Baosheng Jin, Yong Zhang, Rui Xiao et Yaji Huang. « Experimental investigation of particle mixing behavior in a large spout–fluid bed ». Chemical Engineering and Processing - Process Intensification 46, no 10 (octobre 2007) : 990–95. http://dx.doi.org/10.1016/j.cep.2007.05.026.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

He, Yurong, Wengen Peng, Tianqi Tang, Shengnan Yan et Yunhua Zhao. « DEM numerical simulation of wet cohesive particles in a spout fluid bed ». Advanced Powder Technology 27, no 1 (janvier 2016) : 93–104. http://dx.doi.org/10.1016/j.apt.2015.10.022.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Xu, Jian, Junli Tang, Weisheng Wei et Xiaojun Bao. « Minimum spouting velocity in a spout-fluid bed with a draft tube ». Canadian Journal of Chemical Engineering 87, no 2 (avril 2009) : 274–78. http://dx.doi.org/10.1002/cjce.20145.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Waldie, B. « Separation and residence times of larger particles in a spout-fluid bed ». Canadian Journal of Chemical Engineering 70, no 5 (octobre 1992) : 873–79. http://dx.doi.org/10.1002/cjce.5450700507.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Ar, F. Figen, et B. Zühtü Uysal. « Solid circulation in a liquid spout-fluid bed with multi draft tubes ». Journal of Chemical Technology & ; Biotechnology 72, no 2 (juin 1998) : 143–48. http://dx.doi.org/10.1002/(sici)1097-4660(199806)72:2<143 ::aid-jctb885>3.0.co;2-l.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Zhong, Wenqi, et Mingyao Zhang. « Characterization of dynamic behavior of a spout-fluid bed with Shannon entropy analysis ». Powder Technology 159, no 3 (novembre 2005) : 121–26. http://dx.doi.org/10.1016/j.powtec.2005.08.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Zhang, Yong, Wenqi Zhong, Baosheng Jin et Rui Xiao. « Mixing and Segregation Behavior in a Spout-Fluid Bed : Effect of Particle Size ». Industrial & ; Engineering Chemistry Research 51, no 43 (16 octobre 2012) : 14247–57. http://dx.doi.org/10.1021/ie301005n.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Wu, Man, Qingjie Guo et Luyan Liu. « Hydrodynamic Performance of a Spout–Fluid Bed with Draft Tube at Different Temperatures ». Industrial & ; Engineering Chemistry Research 53, no 5 (22 janvier 2014) : 1999–2010. http://dx.doi.org/10.1021/ie4034494.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Szafran, Roman G., Wojciech Ludwig et Andrzej Kmiec. « New spout-fluid bed apparatus for electrostatic coating of fine particles and encapsulation ». Powder Technology 225 (juillet 2012) : 52–57. http://dx.doi.org/10.1016/j.powtec.2012.03.031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Tia, S., S. C. Bhattacharya et P. Wibulswas. « Spouted and spout-fluid bed combustors 1 : Devolatilization and combustion of coal volatiles ». International Journal of Energy Research 15, no 3 (avril 1991) : 185–201. http://dx.doi.org/10.1002/er.4440150306.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Link, J. M., L. A. Cuypers, N. G. Deen et J. A. M. Kuipers. « Flow regimes in a spout–fluid bed : A combined experimental and simulation study ». Chemical Engineering Science 60, no 13 (juillet 2005) : 3425–42. http://dx.doi.org/10.1016/j.ces.2005.01.027.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Munz, R. J., et O. S. Mersereau. « A plasma spout-fluid bed for the recovery of vanadium from vanadium ore ». Chemical Engineering Science 45, no 8 (1990) : 2489–95. http://dx.doi.org/10.1016/0009-2509(90)80133-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Yaman, Onur, Gorkem Kulah et Murat Koksal. « Surface-to-bed heat transfer for high-density particles in conical spouted and spout–fluid beds ». Particuology 42 (février 2019) : 35–47. http://dx.doi.org/10.1016/j.partic.2018.03.013.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Kumar, Bashapaka Sujan, et Ananthula Venu Vinod. « Bed expansion ratio of mono-sized and binary mixtures in fluidized, spouted, and spout-fluid beds ». Particulate Science and Technology 36, no 8 (27 juillet 2017) : 1006–16. http://dx.doi.org/10.1080/02726351.2017.1338808.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Xie, Yeping, Yongquan Liu, Linmin Li, Chang Xu et Baokuan Li. « Simulation of different gas–solid flow regimes using a drag law derived from lattice Boltzmann simulations ». Journal of Computational Multiphase Flows 10, no 4 (27 mars 2018) : 202–14. http://dx.doi.org/10.1177/1757482x18765383.

Texte intégral
Résumé :
Gas–solid flows are widely found in various industrial processes, e.g. chemical engineering and sand ingestion test for aero-engine; the interaction between continuum and discrete particles in such systems always leads to complex phase structures of which fundamental understandings are needed. Within the OpenFOAM, the present work uses the discrete element method combined with the computational fluid dynamics to investigate the gas–solid flow behaviors in a dense fluidized bed under various conditions. A drag law which is for polydisperse systems derived from lattice Boltzmann simulations is incorporated into the computational fluid dynamics-discrete element method framework and its suitability for different flow regimes is investigated. The regimes including, namely slugging bed, jet-in-fluidized bed, spout fluidization, and intermediate, are simulated and validated against experiments. The results show that the lattice Boltzmann drag relation performs well in capturing characteristics of different gas–solid flow regimes. Good agreements are also obtained quantitatively by comparisons of pressure drop fluctuation, and time-averaged gas velocity and particle flux.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie