Littérature scientifique sur le sujet « Spot price model calibration »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Spot price model calibration ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Spot price model calibration"
BARLOW, MARTIN, YURI GUSEV et MANPO LAI. « CALIBRATION OF MULTIFACTOR MODELS IN ELECTRICITY MARKETS ». International Journal of Theoretical and Applied Finance 07, no 02 (mars 2004) : 101–20. http://dx.doi.org/10.1142/s0219024904002396.
Texte intégralHIKSPOORS, SAMUEL, et SEBASTIAN JAIMUNGAL. « ENERGY SPOT PRICE MODELS AND SPREAD OPTIONS PRICING ». International Journal of Theoretical and Applied Finance 10, no 07 (novembre 2007) : 1111–35. http://dx.doi.org/10.1142/s0219024907004573.
Texte intégralAiube, Fernando Antonio Lucena, et Ariel Levy. « Recent movement of oil prices and future scenarios ». Nova Economia 29, no 1 (avril 2019) : 223–48. http://dx.doi.org/10.1590/0103-6351/4159.
Texte intégralFOUQUE, JEAN-PIERRE, YURI F. SAPORITO et JORGE P. ZUBELLI. « MULTISCALE STOCHASTIC VOLATILITY MODEL FOR DERIVATIVES ON FUTURES ». International Journal of Theoretical and Applied Finance 17, no 07 (novembre 2014) : 1450043. http://dx.doi.org/10.1142/s0219024914500435.
Texte intégralGonzalez, Jhonny, John Moriarty et Jan Palczewski. « Bayesian calibration and number of jump components in electricity spot price models ». Energy Economics 65 (juin 2017) : 375–88. http://dx.doi.org/10.1016/j.eneco.2017.04.022.
Texte intégralMasala, Giovanni, Marco Micocci et Andrea Rizk. « Hedging Wind Power Risk Exposure through Weather Derivatives ». Energies 15, no 4 (13 février 2022) : 1343. http://dx.doi.org/10.3390/en15041343.
Texte intégralGürtler, Marc, et Thomas Paulsen. « Forecasting performance of time series models on electricity spot markets ». International Journal of Energy Sector Management 12, no 4 (5 novembre 2018) : 617–40. http://dx.doi.org/10.1108/ijesm-12-2017-0006.
Texte intégralJędrzejewski, Arkadiusz, Grzegorz Marcjasz et Rafał Weron. « Importance of the Long-Term Seasonal Component in Day-Ahead Electricity Price Forecasting Revisited : Parameter-Rich Models Estimated via the LASSO ». Energies 14, no 11 (2 juin 2021) : 3249. http://dx.doi.org/10.3390/en14113249.
Texte intégralShao, Lingjie, et Kaili Xiang. « Valuation of Swing Options under a Regime-Switching Mean-Reverting Model ». Mathematical Problems in Engineering 2019 (9 janvier 2019) : 1–14. http://dx.doi.org/10.1155/2019/5796921.
Texte intégralDi Francesco, Marco. « A General Gaussian Interest Rate Model Consistent with the Current Term Structure ». ISRN Probability and Statistics 2012 (5 septembre 2012) : 1–16. http://dx.doi.org/10.5402/2012/673607.
Texte intégralThèses sur le sujet "Spot price model calibration"
CALDANA, RUGGERO. « Spread and basket option pricing : an application to interconnected power markets ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2012. http://hdl.handle.net/10281/39422.
Texte intégralBlöchlinger, Lea. « Power Prices - A Regime-Switching Spot/Forward Price Model with Kim Filter Estimation ». kostenfrei, 2008. http://www.biblio.unisg.ch/www/edis.nsf/wwwDisplayIdentifier/3442.
Texte intégralAMARAL, LUIZ FELIPE MOREIRA DO. « USING LINEAR AND NON-LINEAR APPROACHES TO MODEL THE BRAZILIAN ELECTRICITY SPOT PRICE SERIES ». PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2003. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=3727@1.
Texte intégralNesta dissertação, estratégias de modelagem são apresentadas envolvendo modelos de séries temporais lineares e não lineares para modelar a série do preço spot no mercado elétrico brasileiro. Foram usados, dentre os lineares, os modelos ARIMA(p,d,q) proposto por Box, Jenkins e Reinsel (1994) e os modelos de regressão dinâmica. Dentre os não lineares, o modelo escolhido foi o STAR desenvolvido, inicialmente, por Chan e Tong (1986) e, posteriormente, por Teräsvista (1994). Para este modelo, testes do tipo Multiplicador de Lagrange foram usados para testar linearidade, bem como para avaliar os modelos estimados. Além disso, foi também utilizada uma proposta para os valores iniciais do algoritmo de otimização, desenvolvido por Franses e Dijk (2000). Estimativas do filtro de Kalman suavizado foram usadas para substituir os valores da série de preço durante o racionamento de energia ocorrido no Brasil.
In this dissertation, modeling strategies are presented involving linear and non-linear time series models to model the spot price of Brazil s electrical energy market. It has been used, among the linear models, the modeling approach of Box, Jenkins and Reinsel (1994) i.e., ARIMA(p,d,q) models, and dynamic regression. Among the non-linear ones, the chosen model was the STAR developed, initially, by Chan and Tong (1986) and, later, by Teräsvirta (1994). For this model, the Lagrange Multipliers test, to measure the degree of non linearity of the series , as well as to evaluate the estimated model was used. Moreover, it was also used a proposal for the initial values of the optimization algorithm, developed by Franses and Dijk (2000). The smoothed Kalman filter estimates were used in order to provide values for the spot price series during the energy shortage period.
Talasli, Irem. « Stochastic Modeling Of Electricity Markets ». Phd thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614034/index.pdf.
Texte intégralŠtork, Zbyněk. « Term Structure of Interest Rates : Macro-Finance Approach ». Doctoral thesis, Vysoká škola ekonomická v Praze, 2010. http://www.nusl.cz/ntk/nusl-125158.
Texte intégralHu, Hsu-Ning, et 胡緒寧. « The Relative Price Between Index Spot And Index Futures Using MS-AR(1) Model ». Thesis, 2007. http://ndltd.ncl.edu.tw/handle/jsgk6v.
Texte intégral淡江大學
財務金融學系碩士在職專班
95
Because of the high liquidity and lower fee, the index futures become the favorable tools for the purpose of hedging, arbitraging and speculating. In this paper, we use the weekly data of spot price and futures price from the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) and the MSCI Taiwan Index to investigate the behavior of the relative price between the spot and futures. We also check the relationship between the volatility of return of both spot and futures and the relative price. The empirical results indicated that : (1) Both relative price represent high and low volatility state of the Markov process. (2) At high volatility state, the relative price represent more negative effect in the Taiwan market and more positive effect in the Singapore market. (3) The probabilities of state persistence are very high in both markets. (4) The relationship between the volatility of return and the relative price are different in both markets.
Chen, Hung-Chung, et 陳弘忠. « Using the Application of Grey Relational Analysis and Artifical Neural Network to Establish an International Spot Gold Price Forecasting Model ». Thesis, 2014. http://ndltd.ncl.edu.tw/handle/29456059936645785233.
Texte intégral義守大學
工業管理學系
102
The bankruptcy of Lehman Brothers in 2008 triggered the financial tsunami making the world’s central banks to increase the need for the reservation of gold. People are worried about the economic uncertainty caused by the financial tsunami, so they have more demand for capital preservation. As one of the international currency in circulation, gold is the first choice of investors among the general public. The international price of gold from $ 1,000 per ounce since 2008 has risen to nearly $ 2,000 writhin just 3 to 4 years, so the appreciation magnitude can not be ignored. Thus, how to accurately predict the price of gold is what the modern investors highly expect. In view of the methods of investor’s predictions on the international spot gold prices, which refer to mathematical-technical analysis and time series analysis, it inevitably has its limitations. This study attempts gray relational analysis and artificial neural network on the basis, analog to artificial intelligence, including the factors of the price of oil, the stock market, the dollar exchange rate and other factors and technical indicators for gray relational analysis and artificial neural networks prediction, to break through the limitations of traditional technical analysis and time series analysis, to improve forecast accuracy, and to help investors make beneficial and long-term investment reference.
De, Beer Johannes Scheepers. « The impact of single stock futures on the South African equity market ». Diss., 2008. http://hdl.handle.net/10500/1339.
Texte intégralThe introduction of single stock futures to a market presents the opportunity to assess an individual company's response to futures trading directly, in contrast to the market-wide impact obtained from index futures studies. Thirty-eight South African companies were evaluated in terms of a possible price, volume, and volatility effect due to the initial trading of their respective single stock futures contracts. An event study revealed that SSF trading had little impact on the underlying share prices. A normalised volume comparison pre to post SSF trading showed a general increase in spot market trading volumes. The volatility effect was the main focus of this study with a GARCH(1,1) model establishing a volatility structure (pattern of behaviour) per company. Results showed a reduction in the level and changes in the structure of spot market volatility. In addition, a dummy variable regression could find no evidence of an altered company-market relationship (systematic risk) post futures.
Business Management
M.Com. (Business Management)
El-Khatib, Mayar. « Highway Development Decision-Making Under Uncertainty : Analysis, Critique and Advancement ». Thesis, 2010. http://hdl.handle.net/10012/5741.
Texte intégralLivres sur le sujet "Spot price model calibration"
Power Prices : A Regime-Switching Spot/Forward Price Model with Kim Filter Estimation. Südwestdeutscher Verlag für Hochschulschriften AG & Company KG, 2009.
Trouver le texte intégralKrause, Timothy A. Pricing of Futures Contracts. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190656010.003.0015.
Texte intégralBack, Kerry E. Forwards, Futures, and More Option Pricing. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780190241148.003.0017.
Texte intégralChapitres de livres sur le sujet "Spot price model calibration"
Helland, Eivind, Timur Aka et Eric Winnington. « Stochastic Spot Price Multi-Period Model and Option Valuation for Electrical Markets ». Dans Commodities, 559–72. 2e éd. Boca Raton : Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003265399-29.
Texte intégral« - Stochastic Spot Price Multi-Period Model and Option Valuation for Electrical Markets ». Dans Commodities, 606–19. Chapman and Hall/CRC, 2015. http://dx.doi.org/10.1201/b19020-34.
Texte intégralLin, Yaojia, et Junyi Su. « The Tour Spot Attraction Evaluation and Analysis of National Forest Parks in Guangdong Province on Basis of the AHP Model ». Dans Advances in Transdisciplinary Engineering. IOS Press, 2022. http://dx.doi.org/10.3233/atde221109.
Texte intégralZhu, Heliang, Xi Zhang et Patricia Ordenaz de Pablos. « The Role of Gold Market as Stabilizer of Service Industry ». Dans Advances in Logistics, Operations, and Management Science, 267–82. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9758-4.ch014.
Texte intégralActes de conférences sur le sujet "Spot price model calibration"
Liu, Duan, Zhicheng Cai et Xiaoping Li. « Hidden Markov Model Based Spot Price Prediction for Cloud Computing ». Dans 2017 IEEE International Symposium on Parallel and Distributed Processing with Applications and 2017 IEEE International Conference on Ubiquitous Computing and Communications (ISPA/IUCC). IEEE, 2017. http://dx.doi.org/10.1109/ispa/iucc.2017.00152.
Texte intégralLi, Zheng, William Tärneberg, Maria Kihl et Anders Robertsson. « Using a Predator-Prey Model to Explain Variations of Cloud Spot Price ». Dans 6th International Conference on Cloud Computing and Services Science. SCITEPRESS - Science and and Technology Publications, 2016. http://dx.doi.org/10.5220/0005808600510058.
Texte intégralZheng Yanan, Gengyin Li, Ming Zhou, Shan Lin et K. L. Lo. « An improved grey model for forecasting spot and long term electricity price ». Dans 2010 International Conference on Power System Technology - (POWERCON 2010). IEEE, 2010. http://dx.doi.org/10.1109/powercon.2010.5666371.
Texte intégralPeng, Chun-Cheng, Chia-Wei Yeh, Jun-Gong Wang, Shih-Hao Wang et Chung-Wei Huang. « Prediction of LME lead spot price by neural network and NARX model ». Dans 2020 IEEE 2nd Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (ECBIOS). IEEE, 2020. http://dx.doi.org/10.1109/ecbios50299.2020.9203577.
Texte intégralAmekraz, Zohra, et Moulay Youssef. « Prediction of Amazon spot price based on chaos theory using ANFIS model ». Dans 2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA). IEEE, 2016. http://dx.doi.org/10.1109/aiccsa.2016.7945632.
Texte intégralKrecar, Nikola, Andrej F. Gubina et Gregor Bozic. « A method for calibration of a fundamental model of electricity price ». Dans 2011 European Energy Market (EEM). IEEE, 2011. http://dx.doi.org/10.1109/eem.2011.5952990.
Texte intégralAli, Aliyuda. « Ensemble Learning Model for Prediction of Natural Gas Spot Price Based on Least Squares Boosting Algorithm ». Dans 2020 International Conference on Data Analytics for Business and Industry : Way Towards a Sustainable Economy (ICDABI). IEEE, 2020. http://dx.doi.org/10.1109/icdabi51230.2020.9325615.
Texte intégralOgwu, Jessica, Emmanuel Ikpesu et Kingsley Ogbonna. « Natural Gas Spot Price Prediction Using a Machine Learning Datacentric Approach ». Dans SPE Nigeria Annual International Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/211979-ms.
Texte intégralSilva, Lucas Barth, Roberto Zanetti Freire et Osíris Canciglieri Junior. « Spot Energy Price Forecasting Using Wavelet Transform and Extreme Learning Machine ». Dans Congresso Brasileiro de Inteligência Computacional. SBIC, 2021. http://dx.doi.org/10.21528/cbic2021-62.
Texte intégralOzozen, Avni, Gulgun Kayakutlu, Marcel Ketterer et Ozgur Kayalica. « A combined seasonal ARIMA and ANN model for improved results in electricity spot price forecasting : Case study in Turkey ». Dans 2016 Portland International Conference on Management of Engineering and Technology (PICMET). IEEE, 2016. http://dx.doi.org/10.1109/picmet.2016.7806831.
Texte intégralRapports d'organisations sur le sujet "Spot price model calibration"
Balat, Jorge, Juan Esteban Carranza, Juan David Martin et Álvaro Riascos. El efecto de cambios en la regulación del mercado mayorista de electricidad en Colombia en un modelo estructural de subastas complejas. Banco de la República, octobre 2022. http://dx.doi.org/10.32468/be.1211.
Texte intégral