Littérature scientifique sur le sujet « Spindle position checkpoint »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Spindle position checkpoint ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Spindle position checkpoint"
Caydasi, Ayse Koca, Bahtiyar Kurtulmus, Maria I. L. Orrico, Astrid Hofmann, Bashar Ibrahim et Gislene Pereira. « Elm1 kinase activates the spindle position checkpoint kinase Kin4 ». Journal of Cell Biology 190, no 6 (20 septembre 2010) : 975–89. http://dx.doi.org/10.1083/jcb.201006151.
Texte intégralCaydasi, Ayse K., Bashar Ibrahim et Gislene Pereira. « Monitoring spindle orientation : Spindle position checkpoint in charge ». Cell Division 5, no 1 (2010) : 28. http://dx.doi.org/10.1186/1747-1028-5-28.
Texte intégralLázaro-Diéguez, Francisco, Iaroslav Ispolatov et Anne Müsch. « Cell shape impacts on the positioning of the mitotic spindle with respect to the substratum ». Molecular Biology of the Cell 26, no 7 (avril 2015) : 1286–95. http://dx.doi.org/10.1091/mbc.e14-08-1330.
Texte intégralFraschini, Roberta, Denis Bilotta, Giovanna Lucchini et Simonetta Piatti. « Functional Characterization of Dma1 and Dma2, the Budding Yeast Homologues of Schizosaccharomyces pombe Dma1 and Human Chfr ». Molecular Biology of the Cell 15, no 8 (août 2004) : 3796–810. http://dx.doi.org/10.1091/mbc.e04-02-0094.
Texte intégralWang, Mengqiao, et Ruth N. Collins. « A lysine deacetylase Hos3 is targeted to the bud neck and involved in the spindle position checkpoint ». Molecular Biology of the Cell 25, no 18 (15 septembre 2014) : 2720–34. http://dx.doi.org/10.1091/mbc.e13-10-0619.
Texte intégralNelson, Scott A., et John A. Cooper. « A Novel Pathway that Coordinates Mitotic Exit with Spindle Position ». Molecular Biology of the Cell 18, no 9 (septembre 2007) : 3440–50. http://dx.doi.org/10.1091/mbc.e07-03-0242.
Texte intégralMoore, Jeffrey K., Valentin Magidson, Alexey Khodjakov et John A. Cooper. « The Spindle Position Checkpoint Requires Positional Feedback from Cytoplasmic Microtubules ». Current Biology 19, no 23 (décembre 2009) : 2026–30. http://dx.doi.org/10.1016/j.cub.2009.10.020.
Texte intégralAdames, Neil R., Jessica R. Oberle et John A. Cooper. « The Surveillance Mechanism of the Spindle Position Checkpoint in Yeast ». Journal of Cell Biology 153, no 1 (2 avril 2001) : 159–68. http://dx.doi.org/10.1083/jcb.153.1.159.
Texte intégralCaydasi, Ayse Koca, Maiko Lohel, Gerd Grünert, Peter Dittrich, Gislene Pereira et Bashar Ibrahim. « A dynamical model of the spindle position checkpoint ». Molecular Systems Biology 8, no 1 (janvier 2012) : 582. http://dx.doi.org/10.1038/msb.2012.15.
Texte intégralMoore, Jeffrey K., Prakash Chudalayandi, Richard A. Heil-Chapdelaine et John A. Cooper. « The spindle position checkpoint is coordinated by the Elm1 kinase ». Journal of Cell Biology 191, no 3 (1 novembre 2010) : 493–503. http://dx.doi.org/10.1083/jcb.201006092.
Texte intégralThèses sur le sujet "Spindle position checkpoint"
Chan, Leon Y. (Leon Yen-Lee). « Mechanisms of regulation of the spindle position checkpoint kinase, Kin4 ». Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/58197.
Texte intégralCataloged from PDF version of thesis.
Includes bibliographical references.
Most cells are polarized in that they are aware of spatial cues and can respond to these cues accordingly. One major aspect of cell function that is often responsive to these polarization cues is cell division. Cell division, the process of making two cells from one progenitor, requires equal distribution of the genetic material to the two progeny cells. When polarized cells divide, an additional constraint on the segregation of the genetic material is imposed, namely, cells must divide the genetic material along axes defined by polarization cues. In eukaryotes, this problem is generally solved by the positioning of the mitotic spindle according to these spatial cues. Defects in spindle positioning can lead to the generation of cells with incorrect organelle, genetic and molecular contents, fate and/or, spatial orientation. Cells have evolved feedback mechanisms that monitor defects in spindle positioning and delay the cell cycle in response to such defects. These mechanisms are best elucidated in the budding yeast, Saccharomyces cerevisiae. The protein kinase Kin4 inhibits the Mitotic Exit Network when the spindle is mis-positioned. How Kin4 is itself regulated and whether or how Kin4 responds to spindle mis-position is not known. The work presented in this thesis elucidates the regulation of Kin4. We identify a novel spindle position checkpoint component, PP2A-Rts 1, and show that it promotes checkpoint function by enabling proper Kin4 localization. We also identify domains and sequence determinants within Kin4 that control localization and function. We present a model of how the spindle position checkpoint senses spindle position and test this model for Kin4 function. We find that the generation of positive and negative mitotic exit regulatory zones allows the cell to sense and translate the spatial information of spindle position into a chemical cell cycle signal.
by Leon Y. Chan.
Ph.D.
MERLINI, LAURA. « Cell cycle regulation of septins : implications for cytokinesis and the spindle position checkpoint ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2011. http://hdl.handle.net/10281/19955.
Texte intégralLiu, Yu-Chia, et 劉又嘉. « The role of a spindle position checkpoint protein, Tem1, in yeast sporulation ». Thesis, 2016. http://ndltd.ncl.edu.tw/handle/61547692446477724504.
Texte intégral國立臺灣大學
分子與細胞生物學研究所
104
In the yeast Saccharomyces cerevisiae, diploid cells enter meiosis and produce four haploid spores when fermentable sugar and nitrogen resources are limited. Several stress proteins are induced during sporulation, including Hsp26. Our laboratory has discovered that there is a Hsp26-dependent spindle checkpoint to monitor spindle formation or position, and to regulate spore formation in the budding yeast. To explore the mechanism of the Hsp26-dependent spindle checkpoint in monitoring spindle positioning, we studied Tem1, one of the Hsp26-interacting proteins. Tem1 is a critical component in the mitotic exit network (MEN) pathway, it plays a sensor for proper spindle positioning between the mother cell and the daughter bud. Since the TEM1 gene is essential, we could not use a knock-out method to explore the function of Tem1 in sporulation. We put the TEM1 gene under the control of the mitosis-specific CLB2 promoter to shut down TEM1 expression in meiosis. Interestingly, sporulation frequency was increased in the CLB2p-TEM1 cells. Meiotic time course studies showed that the increase in sporulation occurs at the step of spore formation, and similar result was obtained in the hsp26 cells. In addition, the response to benomyl treatment of the CLB2p-TEM1 mutant was the same to that of the hsp26 mutant. The phenotype of the hsp26 CLB2p-TEM1 double mutant indicated that Tem1 and Hsp26 might be involved in the same pathway of the spindle checkpoint for spore formation. Our results suggest that Tem1 may be involved in the Hsp26-dependent spindle checkpoint. According to the function of Tem1 in mitosis, Tem1 might act as a sensor in the checkpoint to monitor spindle position, and in turn control spore formation. We also investigated whether the Hsp26-dependent spindle checkpoint is functional in the cells undergoing only a single meiotic division. Because cells lacking Spo13 undergo a single meiotic division, we generated hsp26 deletion strain in the spo13 background and examined its effect on sporulation. However, the sporulation frequency of the hsp26 spo13 mutant is not increased, unlike that of the hsp26 mutant. In addition, the spo13 mutant did not display a decrease in sporulation after benomyl treatment or cold-shock treatment. These observations indicated that the spindle position checkpoint has no effect in the cells undergoing only a single meiotic division.
Chapitres de livres sur le sujet "Spindle position checkpoint"
Caydasi, Ayse Koca, et Gislene Pereira. « Evaluation of the Dynamicity of Mitotic Exit Network and Spindle Position Checkpoint Components on Spindle Pole Bodies by Fluorescence Recovery After Photobleaching (FRAP) ». Dans Methods in Molecular Biology, 167–82. New York, NY : Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-6502-1_13.
Texte intégralActes de conférences sur le sujet "Spindle position checkpoint"
Ramalho, Tarciane Campos, Rafael Victor Moita Minervino, IsaIbela Campos Ramalho, Jean Fabricio de Lima Pereira et Og Arnaud Rodrigues. « METAPLASTIC CARCINOMA OF THE BREAST WITH CHONDROID-TYPE MESENCHYMAL DIFFERENTIATION : A CASE REPORT ». Dans XXIV Congresso Brasileiro de Mastologia. Mastology, 2022. http://dx.doi.org/10.29289/259453942022v32s1055.
Texte intégral