Articles de revues sur le sujet « Spinal cord computational model »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Spinal cord computational model ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Arle, Jeffrey E., Nicolae Iftimia, Jay L. Shils, Longzhi Mei, and Kristen W. Carlson. "Dynamic Computational Model of the Human Spinal Cord Connectome." Neural Computation 31, no. 2 (2019): 388–416. http://dx.doi.org/10.1162/neco_a_01159.
Texte intégralAkanksha Kaushik. "A Computational Neural Network Model Depicting Bradykinesia in Parkinson’s Disease." Journal of Information Systems Engineering and Management 10, no. 42s (2025): 1203–30. https://doi.org/10.52783/jisem.v10i42s.8656.
Texte intégralShevtsova, Natalia A., Erik Z. Li, Shayna Singh, Kimberly J. Dougherty, and Ilya A. Rybak. "Ipsilateral and Contralateral Interactions in Spinal Locomotor Circuits Mediated by V1 Neurons: Insights from Computational Modeling." International Journal of Molecular Sciences 23, no. 10 (2022): 5541. http://dx.doi.org/10.3390/ijms23105541.
Texte intégralJérusalem, Antoine, Julián A. García-Grajales, Angel Merchán-Pérez, and José M. Peña. "A computational model coupling mechanics and electrophysiology in spinal cord injury." Biomechanics and Modeling in Mechanobiology 13, no. 4 (2013): 883–96. http://dx.doi.org/10.1007/s10237-013-0543-7.
Texte intégralPithapuram, Madhav Vinodh, and Mohan Raghavan. "Automatic rule-based generation of spinal cord connectome model for a neuro-musculoskeletal limb in-silico." IOP SciNotes 3, no. 1 (2022): 014001. http://dx.doi.org/10.1088/2633-1357/ac585e.
Texte intégralLempka, Scott F., Cameron C. McIntyre, Kevin L. Kilgore, and Andre G. Machado. "Computational Analysis of Kilohertz Frequency Spinal Cord Stimulation for Chronic Pain Management." Anesthesiology 122, no. 6 (2015): 1362–76. http://dx.doi.org/10.1097/aln.0000000000000649.
Texte intégralBilston, Lynne E., Marcus A. Stoodley, and David F. Fletcher. "The influence of the relative timing of arterial and subarachnoid space pulse waves on spinal perivascular cerebrospinal fluid flow as a possible factor in syrinx development." Journal of Neurosurgery 112, no. 4 (2010): 808–13. http://dx.doi.org/10.3171/2009.5.jns08945.
Texte intégralSolanes, Carmen, Jose L. Durá, M. Ángeles Canós, Jose De Andrés, Luis Martí-Bonmatí, and Javier Saiz. "3D patient-specific spinal cord computational model for SCS management: potential clinical applications." Journal of Neural Engineering 18, no. 3 (2021): 036017. http://dx.doi.org/10.1088/1741-2552/abe44f.
Texte intégralSarntinoranont, Malisa, Rupak K. Banerjee, Russell R. Lonser, and Paul F. Morrison. "A Computational Model of Direct Interstitial Infusion of Macromolecules into the Spinal Cord." Annals of Biomedical Engineering 31, no. 4 (2003): 448–61. http://dx.doi.org/10.1114/1.1558032.
Texte intégralSarntinoranont, Malisa, Xiaoming Chen, Jianbing Zhao, and Thomas H. Mareci. "Computational Model of Interstitial Transport in the Spinal Cord using Diffusion Tensor Imaging." Annals of Biomedical Engineering 34, no. 8 (2006): 1304–21. http://dx.doi.org/10.1007/s10439-006-9135-3.
Texte intégralFardadi, Mahshid, J. C. Leiter, Daniel C. Lu, and Tetsuya Iwasaki. "Model-based analysis of the acute effects of transcutaneous magnetic spinal cord stimulation on micturition after spinal cord injury in humans." PLOS Computational Biology 20, no. 7 (2024): e1012237. http://dx.doi.org/10.1371/journal.pcbi.1012237.
Texte intégralPersson, Cecilia, Jon Summers, and Richard M. Hall. "The Effect of Cerebrospinal Fluid Thickness on Traumatic Spinal Cord Deformation." Journal of Applied Biomechanics 27, no. 4 (2011): 330–35. http://dx.doi.org/10.1123/jab.27.4.330.
Texte intégralLeblond, Lugdivine, Patrice Sudres, and Morgane Evin. "Cerebro-spinal flow pattern in the cervical subarachnoid space of healthy volunteers: Influence of the spinal cord morphology." PLOS ONE 19, no. 8 (2024): e0290927. http://dx.doi.org/10.1371/journal.pone.0290927.
Texte intégralSarntinoranont, Malisa, Michael J. Iadarola, Russell R. Lonser, and Paul F. Morrison. "Direct interstitial infusion of NK1-targeted neurotoxin into the spinal cord: a computational model." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 285, no. 1 (2003): R243—R254. http://dx.doi.org/10.1152/ajpregu.00472.2002.
Texte intégralHowell, Bryan, Shivanand P. Lad, and Warren M. Grill. "Evaluation of Intradural Stimulation Efficiency and Selectivity in a Computational Model of Spinal Cord Stimulation." PLoS ONE 9, no. 12 (2014): e114938. http://dx.doi.org/10.1371/journal.pone.0114938.
Texte intégralZiraldo, Cordelia, Alexey Solovyev, Ana Allegretti, et al. "A Computational, Tissue-Realistic Model of Pressure Ulcer Formation in Individuals with Spinal Cord Injury." PLOS Computational Biology 11, no. 6 (2015): e1004309. http://dx.doi.org/10.1371/journal.pcbi.1004309.
Texte intégralZiraldo, C., A. Solovyev, A. Allegretti, et al. "A computational, tissue-realistic model of pressure ulcer formation in individuals with spinal cord injury." Journal of Critical Care 28, no. 1 (2013): e23. http://dx.doi.org/10.1016/j.jcrc.2012.10.061.
Texte intégralLinge, Svein O., Kent-A. Mardal, Anders Helgeland, John D. Heiss, and Victor Haughton. "Effect of craniovertebral decompression on CSF dynamics in Chiari malformation Type I studied with computational fluid dynamics." Journal of Neurosurgery: Spine 21, no. 4 (2014): 559–64. http://dx.doi.org/10.3171/2014.6.spine13950.
Texte intégralZander, Hans, Krzysztof E. Kowalski, Anthony F. DiMarco, and Scott F. Lempka. "A Computational Model of Upper Thoracic High‐Frequency Spinal Cord Stimulation to Optimize Inspiratory Muscle Activation." FASEB Journal 34, S1 (2020): 1. http://dx.doi.org/10.1096/fasebj.2020.34.s1.04201.
Texte intégralStein, Paul S. G. "Central pattern generators in the turtle spinal cord: selection among the forms of motor behaviors." Journal of Neurophysiology 119, no. 2 (2018): 422–40. http://dx.doi.org/10.1152/jn.00602.2017.
Texte intégralSingh, Anita, Kalyani Ghuge, Yashvy Patni, and Sriram Balasubramanian. "Experimental Biomechanics of Neonatal Brachial Plexus Avulsion Injuries Using a Piglet Model." Bioengineering 12, no. 1 (2025): 91. https://doi.org/10.3390/bioengineering12010091.
Texte intégralBrucker-Hahn, Meagan, Megan Settell, Justin Chin, et al. "O013 COMPUTATIONAL MODELING OF EVOKED COMPOUND ACTION POTENTIALS DURING EPIDURAL SPINAL CORD STIMULATION IN A SWINE MODEL." Neuromodulation: Technology at the Neural Interface 28, no. 1 (2025): S59. https://doi.org/10.1016/j.neurom.2024.09.114.
Texte intégralShils, Jay, Kris Carlson, Longzhi Mei, and Jeffrey Arle. "34. Mechanism of therapeutic benefit with dorsal column stimulation using a computational model of the spinal cord." Clinical Neurophysiology 125, no. 5 (2014): e23-e24. http://dx.doi.org/10.1016/j.clinph.2013.12.037.
Texte intégralGadomski, Benjamin C., Bradley J. Hindman, Mitchell I. Page, Franklin Dexter, and Christian M. Puttlitz. "Intubation Biomechanics: Clinical Implications of Computational Modeling of Intervertebral Motion and Spinal Cord Strain during Tracheal Intubation in an Intact Cervical Spine." Anesthesiology 135, no. 6 (2021): 1055–65. http://dx.doi.org/10.1097/aln.0000000000004024.
Texte intégralCandito, Antonio, Richard Holbrey, Ana Ribeiro, et al. "Deep Learning for Delineation of the Spinal Canal in Whole-Body Diffusion-Weighted Imaging: Normalising Inter- and Intra-Patient Intensity Signal in Multi-Centre Datasets." Bioengineering 11, no. 2 (2024): 130. http://dx.doi.org/10.3390/bioengineering11020130.
Texte intégralDe Los Santos, Jennifer, Smadar Arvatz, Oshrit Zeevi, Shay levi, Zeev Bomzon, and Tal Marciano. "INNV-05. TUMOR TREATING FIELDS (TTFIELDS) TREATMENT PLANNING FOR A PATIENT WITH ASTROCYTOMA IN THE SPINAL CORD." Neuro-Oncology 22, Supplement_2 (2020): ii117. http://dx.doi.org/10.1093/neuonc/noaa215.489.
Texte intégralCrodelle, Jennifer, and Pedro D. Maia. "A Computational Model for Pain Processing in the Dorsal Horn Following Axonal Damage to Receptor Fibers." Brain Sciences 11, no. 4 (2021): 505. http://dx.doi.org/10.3390/brainsci11040505.
Texte intégralChafaï, Magda, Ariane Delrocq, Perrine Inquimbert, et al. "Dual contribution of ASIC1a channels in the spinal processing of pain information by deep projection neurons revealed by computational modeling." PLOS Computational Biology 19, no. 4 (2023): e1010993. http://dx.doi.org/10.1371/journal.pcbi.1010993.
Texte intégralNakayama, Takayuki, and Hidenori Kimura. "Trajectory tracking control of robot arm by using computational models of spinal cord and cerebellum." Systems and Computers in Japan 35, no. 11 (2004): 1–13. http://dx.doi.org/10.1002/scj.10646.
Texte intégralHillen, Brian K., Devin L. Jindrich, James J. Abbas, Gary T. Yamaguchi, and Ranu Jung. "Effects of spinal cord injury-induced changes in muscle activation on foot drag in a computational rat ankle model." Journal of Neurophysiology 113, no. 7 (2015): 2666–75. http://dx.doi.org/10.1152/jn.00507.2014.
Texte intégralShuaib, Ali, Ali K. Bourisly, and Eman Alazmi. "Fluence as a Function of Weight: A Photobiomodulation Therapy (PBMT) Spinal Cord Injury (SCI) Rat Model—A Computational Study." IEEE Photonics Journal 12, no. 6 (2020): 1–8. http://dx.doi.org/10.1109/jphot.2020.3033476.
Texte intégralLe Franc, Yann, and Gwendal Le Masson. "Multiple Firing Patterns in Deep Dorsal Horn Neurons of the Spinal Cord: Computational Analysis of Mechanisms and Functional Implications." Journal of Neurophysiology 104, no. 4 (2010): 1978–96. http://dx.doi.org/10.1152/jn.00919.2009.
Texte intégralRoy, Abhishek, Santimoy Sen, Rudradip Das, Amit Shard, and Hemant Kumar. "Modulation of the LIMK Pathway by Myricetin: A Protective Strategy Against Neurological Impairments in Spinal Cord Injury." Neurospine 21, no. 3 (2024): 878–89. http://dx.doi.org/10.14245/ns.2448546.273.
Texte intégralBruel, Alice, Ignacio Abadía, Thibault Collin, et al. "The spinal cord facilitates cerebellar upper limb motor learning and control; inputs from neuromusculoskeletal simulation." PLOS Computational Biology 20, no. 1 (2024): e1011008. http://dx.doi.org/10.1371/journal.pcbi.1011008.
Texte intégralSilva, Afonso J. C., Ricardo J. Alves de Sousa, Fábio A. O. Fernandes, Mariusz Ptak, and Marco P. L. Parente. "Development of a Finite Element Model of the Cervical Spine and Validation of a Functional Spinal Unit." Applied Sciences 12, no. 21 (2022): 11295. http://dx.doi.org/10.3390/app122111295.
Texte intégralKinzel, A., O. Yesharim, A. Naveh, and Z. Bomzon. "P11.18 Tumor treating fields (TTFields) treatment of spinal cord metastases." Neuro-Oncology 21, Supplement_3 (2019): iii46. http://dx.doi.org/10.1093/neuonc/noz126.164.
Texte intégralYork, Gareth, Hugh Osborne, Piyanee Sriya, Sarah Astill, Marc de Kamps, and Samit Chakrabarty. "The effect of limb position on a static knee extension task can be explained with a simple spinal cord circuit model." Journal of Neurophysiology 127, no. 1 (2022): 173–87. http://dx.doi.org/10.1152/jn.00208.2021.
Texte intégralde Los Santos, Jennifer, Smadar Arvatz, Oshrit Zeevi, et al. "RBIO-01. DEVELOPING THE FRAMEWORK FOR TUMOR TREATING FIELDS (TTFIELDS) TREATMENT PLANNING FOR A PATIENT WITH ASTROCYTOMA IN THE SPINAL CORD." Neuro-Oncology 23, Supplement_6 (2021): vi191. http://dx.doi.org/10.1093/neuonc/noab196.758.
Texte intégralSantos, Jennifer De Los, Smadar Arvatz, Oshrit Zeevi, et al. "Abstract 3447: Tumor treating fields (TTFields) treatment planning for a patient with astrocytoma in the spinal cord." Cancer Research 82, no. 12_Supplement (2022): 3447. http://dx.doi.org/10.1158/1538-7445.am2022-3447.
Texte intégralA/L Vengadesarao, Divyarao, Siti Salasiah Binti Mokri, Ashrani Aizuddin Abd Rahni, and Asma Amirah Nazarudin. "TRANSFORMER NETWORK FOR BRAIN GLIOMA SEGMENTATION IN MRI IMAGES." International Journal of Advanced Research 13, no. 06 (2025): 714–22. https://doi.org/10.21474/ijar01/21130.
Texte intégralLaura, Adrian Porras, Robert Graham, Ehsan Mirzakhalili, Evan Rogers, Vishwanath Sankarasubramanian, and Scott Lempka. "ID: 203787 Patient-Specific Computational Models to Characterize Physiological Effects of Spinal Cord Stimulation for Chronic Pain Management." Neuromodulation: Technology at the Neural Interface 26, no. 4 (2023): S165. http://dx.doi.org/10.1016/j.neurom.2023.04.291.
Texte intégralde Almeida, Romulo Augusto Andrade, Daniel Ledbetter, Xizi Wu, et al. "Abstract 3339: TTFields for the management of spinal metastases in in vitro and in vivo models." Cancer Research 84, no. 6_Supplement (2024): 3339. http://dx.doi.org/10.1158/1538-7445.am2024-3339.
Texte intégralMaza, Rodrigo M., María Asunción Barreda-Manso, David Reigada, et al. "MicroRNA-138-5p Targets Pro-Apoptotic Factors and Favors Neural Cell Survival: Analysis in the Injured Spinal Cord." Biomedicines 10, no. 7 (2022): 1559. http://dx.doi.org/10.3390/biomedicines10071559.
Texte intégralLempka, Scott. "IS014 PHYSIOLOGICAL EFFECTS AND MECHANISMS OF ACTION OF SPINAL CORD STIMULATION TO TREAT PAIN: INSIGHTS FROM COMPUTATIONAL MODELS AND QUANTITATIVE SENSORY TESTING." Neuromodulation: Technology at the Neural Interface 28, no. 1 (2025): S8. https://doi.org/10.1016/j.neurom.2024.09.023.
Texte intégralLaschowski, Brock, Naser Mehrabi, and John McPhee. "Inverse Dynamics Modeling of Paralympic Wheelchair Curling." Journal of Applied Biomechanics 33, no. 4 (2017): 294–99. http://dx.doi.org/10.1123/jab.2016-0143.
Texte intégralKerensky, Max J., Abhijit Paul, Denis Routkevitch, et al. "Tethered spinal cord tension assessed via ultrasound elastography in computational and intraoperative human studies." Communications Medicine 4, no. 1 (2024). http://dx.doi.org/10.1038/s43856-023-00430-6.
Texte intégralTakasawa, Eiji, Mitsunari Abe, Hirotaka Chikuda, and Takashi Hanakawa. "A computational model based on corticospinal functional MRI revealed asymmetrically organized motor corticospinal networks in humans." Communications Biology 5, no. 1 (2022). http://dx.doi.org/10.1038/s42003-022-03615-2.
Texte intégralRycman, Aleksander, Stewart McLachlin, and Duane S. Cronin. "A Hyper-Viscoelastic Continuum-Level Finite Element Model of the Spinal Cord Assessed for Transverse Indentation and Impact Loading." Frontiers in Bioengineering and Biotechnology 9 (August 12, 2021). http://dx.doi.org/10.3389/fbioe.2021.693120.
Texte intégral"Computational Modeling of SAR and Heat Distribution in Lossy Medium at GSM Frequencies." East European Journal of Physics, no. 4 (2018). http://dx.doi.org/10.26565/2312-4334-2018-4-14.
Texte intégralLi, Guijin, Gustavo Balbinot, Julio Cesar Furlan, Sukhvinder Kalsi-Ryan, and José Zariffa. "A computational model of surface electromyography signal alterations after spinal cord injury." Journal of Neural Engineering, November 10, 2023. http://dx.doi.org/10.1088/1741-2552/ad0b8e.
Texte intégral