Articles de revues sur le sujet « Spin crossover complexes »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Spin crossover complexes.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Spin crossover complexes ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Takahashi, Kazuyuki. « Spin-Crossover Complexes ». Inorganics 6, no 1 (1 mars 2018) : 32. http://dx.doi.org/10.3390/inorganics6010032.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Murray, Keith S., Hiroki Oshio et José Antonio Real. « Spin-Crossover Complexes ». European Journal of Inorganic Chemistry 2013, no 5-6 (18 février 2013) : 577–80. http://dx.doi.org/10.1002/ejic.201300062.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

NIHEI, M., T. SHIGA, Y. MAEDA et H. OSHIO. « Spin crossover iron(III) complexes ». Coordination Chemistry Reviews 251, no 21-24 (novembre 2007) : 2606–21. http://dx.doi.org/10.1016/j.ccr.2007.08.007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Wang, Jun-Li, Qiang Liu, Xiao-Jin Lv, Rui-Lin Wang, Chun-Ying Duan et Tao Liu. « Magnetic fluorescent bifunctional spin-crossover complexes ». Dalton Transactions 45, no 46 (2016) : 18552–58. http://dx.doi.org/10.1039/c6dt03714c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Ekanayaka, Thilini K., Krishna Prasad Maity, Bernard Doudin et Peter A. Dowben. « Dynamics of Spin Crossover Molecular Complexes ». Nanomaterials 12, no 10 (19 mai 2022) : 1742. http://dx.doi.org/10.3390/nano12101742.

Texte intégral
Résumé :
We review the current understanding of the time scale and mechanisms associated with the change in spin state in transition metal-based spin crossover (SCO) molecular complexes. Most time resolved experiments, performed by optical techniques, rely on the intrinsic light-induced switching properties of this class of materials. The optically driven spin state transition can be mediated by a rich interplay of complexities including intermediate states in the spin state transition process, as well as intermolecular interactions, temperature, and strain. We emphasize here that the size reduction down to the nanoscale is essential for designing SCO systems that switch quickly as well as possibly retaining the memory of the light-driven state. We argue that SCO nano-sized systems are the key to device applications where the “write” speed is an important criterion.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Dankhoff, Katja, et Birgit Weber. « Isostructural iron(iii) spin crossover complexes with a tridentate Schiff base-like ligand : X-ray structures and magnetic properties ». Dalton Transactions 48, no 41 (2019) : 15376–80. http://dx.doi.org/10.1039/c9dt00846b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Quintero, Carlos M., Gautier Félix, Iurii Suleimanov, José Sánchez Costa, Gábor Molnár, Lionel Salmon, William Nicolazzi et Azzedine Bousseksou. « Hybrid spin-crossover nanostructures ». Beilstein Journal of Nanotechnology 5 (25 novembre 2014) : 2230–39. http://dx.doi.org/10.3762/bjnano.5.232.

Texte intégral
Résumé :
This review reports on the recent progress in the synthesis, modelling and application of hybrid spin-crossover materials, including core–shell nanoparticles and multilayer thin films or nanopatterns. These systems combine, often in synergy, different physical properties (optical, magnetic, mechanical and electrical) of their constituents with the switching properties of spin-crossover complexes, providing access to materials with unprecedented capabilities.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Schulte, Kelsey A., Stephanie R. Fiedler et Matthew P. Shores. « Solvent Dependent Spin-State Behaviour via Hydrogen Bonding in Neutral FeII Diimine Complexes ». Australian Journal of Chemistry 67, no 11 (2014) : 1595. http://dx.doi.org/10.1071/ch14145.

Texte intégral
Résumé :
We report the syntheses, structures, and magnetic properties of cis-[Fe(pizR)2(NCS)2] complexes based on the pyridyl imidazoline ligands 2-(2′-pyridinyl)-4,5-dihydroimidazole (pizH, 1) and 2-(2′-pyridinyl)-4,5-dihydro-1-methylimidazole (pizMe, 2). The ligands, complexes, and magnetic measurements are chosen to separate hydrogen-bonding and intrinsic ligand field properties, so as to improve our understanding of the effect of hydrogen-bonding interactions on spin-state switching. In the solid state, both complexes are high spin between 5 and 300 K. In deuterated methanol and acetonitrile solutions, both complexes show gradual thermal spin crossover. Complex 1, capable of hydrogen bonding, shows solvent-sensitive spin crossover, whereas spin crossover in the methylated analogue 2 is insensitive to solvent identity.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Halepoto, Dost M., David G. L. Holt, Leslie F. Larkworthy, David C. Povey, Gallienus W. Smith et G. Jeffrey Leigh. « Spin crossover in chromium(II) complexes ». Polyhedron 8, no 13-14 (janvier 1989) : 1821–22. http://dx.doi.org/10.1016/s0277-5387(00)80658-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Harding, David J., Phimphaka Harding et Wasinee Phonsri. « Spin crossover in iron(III) complexes ». Coordination Chemistry Reviews 313 (avril 2016) : 38–61. http://dx.doi.org/10.1016/j.ccr.2016.01.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Feltham, Humphrey L. C., Katja Dankhoff, Carla J. Meledandri et Sally Brooker. « Towards Dual-Functionality Spin-Crossover Complexes ». ChemPlusChem 83, no 7 (26 janvier 2018) : 582–89. http://dx.doi.org/10.1002/cplu.201700512.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Shen, Fu-Xing, Wei Huang, Takashi Yamamoto, Yasuaki Einaga et Dayu Wu. « Preparation of dihydroquinazoline carbohydrazone Fe(ii) complexes for spin crossover ». New Journal of Chemistry 40, no 5 (2016) : 4534–42. http://dx.doi.org/10.1039/c5nj03095a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Wilson, Benjamin, Hayley Scott, Rosanna Archer, Corine Mathonière, Rodolphe Clérac et Paul Kruger. « Solution-State Spin Crossover in a Family of [Fe(L)2(CH3CN)2](BF4)2 Complexes ». Magnetochemistry 5, no 2 (1 avril 2019) : 22. http://dx.doi.org/10.3390/magnetochemistry5020022.

Texte intégral
Résumé :
We report herein on five new Fe(II) complexes of general formula [Fe(L)2(NCCH3)2](BF4)2•xCH3CN (L = substituted 2-pyridylimine-based ligands). The influence of proximally located electron withdrawing groups (e.g., NO2, CN, CF3, Cl, Br) bound to coordinated pyridylimine ligands has been studied for the effect on spin crossover in their Fe(II) complexes. Variable-temperature UV-visible spectroscopic studies performed on complexes with more strongly electronegative ligand substituents revealed spin crossover (SCO) in the solution, and thermodynamic parameters associated with the spin crossover were estimated.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Boča, Roman. « Thermodynamics and cooperativeness of the spin crossover ». Nova Biotechnologica et Chimica 19, no 2 (1 décembre 2020) : 138–53. http://dx.doi.org/10.36547/nbc.v19i2.769.

Texte intégral
Résumé :
Spin transition – a passage from the low-spin electronic state to the high-spin one of Fe(III) and Fe(II) complexes is assessed from several points of view: theoretical modelling, magnetic susceptibility data, and calorimetric measurements. The concept of the cooperativeness in the solid state is discussed in detail. Thermodynamic parameters are mutually correlated for a set of analogous Fe(III) complexes by using modern statistical methods.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Phonsri, Wasinee, David J. Harding, Phimphaka Harding, Keith S. Murray, Boujemaa Moubaraki, Ian A. Gass, John D. Cashion, Guy N. L. Jameson et Harry Adams. « Stepped spin crossover in Fe(iii) halogen substituted quinolylsalicylaldimine complexes ». Dalton Trans. 43, no 46 (2014) : 17509–18. http://dx.doi.org/10.1039/c4dt01701c.

Texte intégral
Résumé :
Four iron(iii) spin crossover complexes with halogen substituted ligands are reported. The halogen is correlated with T1/2 and controls the degree of spin crossover while extensive C–H⋯X and X⋯π interactions increase cooperativity.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Bushuev, Mark B., Denis P. Pishchur, Elena B. Nikolaenkova et Viktor P. Krivopalov. « Compensation effects and relation between the activation energy of spin transition and the hysteresis loop width for an iron(ii) complex ». Physical Chemistry Chemical Physics 18, no 25 (2016) : 16690–99. http://dx.doi.org/10.1039/c6cp01892k.

Texte intégral
Résumé :
Wide thermal hysteresis loops for iron(ii) spin crossover complexes are associated with high activation barriers: the higher the activation barrier, the wider the hysteresis loop for a series of related spin crossover systems.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Pandurangan, Komala, Anthony B. Carter, Paulo N. Martinho, Brendan Gildea, Tibebe Lemma, Shang Shi, Aizuddin Sultan, Tia E. Keyes, Helge Müller-Bunz et Grace G. Morgan. « Steric Quenching of Mn(III) Thermal Spin Crossover : Dilution of Spin Centers in Immobilized Solutions ». Magnetochemistry 8, no 1 (10 janvier 2022) : 8. http://dx.doi.org/10.3390/magnetochemistry8010008.

Texte intégral
Résumé :
Structural and magnetic properties of a new spin crossover complex [Mn(4,6-diOMe-sal2323)]+ in lattices with ClO4−, (1), NO3−, (2), BF4−, (3), CF3SO3−, (4), and Cl− (5) counterions are reported. Comparison with the magnetostructural properties of the C6, C12, C18 and C22 alkylated analogues of the ClO4− salt of [Mn(4,6-diOMe-sal2323)]+ demonstrates that alkylation effectively switches off the thermal spin crossover pathway and the amphiphilic complexes are all high spin. The spin crossover quenching in the amphiphiles is further probed by magnetic, structural and Raman spectroscopic studies of the PF6− salts of the C6, C12 and C18 complexes of a related complex [Mn(3-OMe-sal2323)]+ which confirm a preference for the high spin state in all cases. Structural analysis is used to rationalize the choice of the spin quintet form in the seven amphiphilic complexes and to highlight the non-accessibility of the smaller spin triplet form of the ion more generally in dilute environments. We suggest that lattice pressure is a requirement to stabilize the spin triplet form of Mn3+ as the low spin form is not known to exist in solution.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Gütlich, Philipp, Yann Garcia et Harold A. Goodwin. « Spin crossover phenomena in Fe(ii) complexes ». Chemical Society Reviews 29, no 6 (2000) : 419–27. http://dx.doi.org/10.1039/b003504l.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Nemec, Ivan, Roman Boča, Radovan Herchel, Zdeněk Trávníček, Milan Gembický et Wolfgang Linert. « Dinuclear Fe(III) complexes with spin crossover ». Monatshefte für Chemie - Chemical Monthly 140, no 7 (4 décembre 2008) : 815–28. http://dx.doi.org/10.1007/s00706-008-0096-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Halcrow, Malcolm A. « Structure:function relationships in molecular spin-crossover complexes ». Chemical Society Reviews 40, no 7 (2011) : 4119. http://dx.doi.org/10.1039/c1cs15046d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Krivokapic, Itana, Mohamed Zerara, Max Lawson Daku, Alfredo Vargas, Cristian Enachescu, Christina Ambrus, Philip Tregenna-Piggott, Nahid Amstutz, Elmars Krausz et Andreas Hauser. « Spin-crossover in cobalt(II) imine complexes ». Coordination Chemistry Reviews 251, no 3-4 (février 2007) : 364–78. http://dx.doi.org/10.1016/j.ccr.2006.05.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Sun, Hui-Ying, Yin-Shan Meng et Tao Liu. « Photo-switched magnetic coupling in spin-crossover complexes ». Chemical Communications 55, no 58 (2019) : 8359–73. http://dx.doi.org/10.1039/c9cc03952j.

Texte intégral
Résumé :
This feature article summarizes the recent progress in the magnetically coupled spin-crossover (SCO) complexes. The photo-switched molecular nanomagnet property, long range magnetic ordering, and the perspectives of SCO complexes are also presented.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Augustín, Peter, et Roman Boča. « Magnetostructural Relationships For Fe(III) Spin Crossover Complexes ». Nova Biotechnologica et Chimica 14, no 1 (1 juin 2015) : 96–103. http://dx.doi.org/10.1515/nbec-2015-0019.

Texte intégral
Résumé :
Abstract Structural data for fifteen complexes of Fe(III) of a general formula [FeL5X], with pentadentate Schiff-base ligands L5 and unidentate coligands X−, were subjected to a statistical analysis. The multivariate methods such as Pearson correlation, cluster analysis and principal component analysis split the data into two clusters depending upon the low-spin and/or high-spin state of the complex at the temperature of the X-ray experiment. Some of these complexes exhibit a thermally induced spin crossover. The numerical analysis of the magnetic susceptibility and magnetization data for an enlarged set of Fe(III) spin crossover systems yields the enthalpy ΔH and entropy ΔS of the transition along with the transition temperature T1/2 and the solid state cooperativeness. The thermodynamic data show a mutual relationship manifesting itself by linear ΔS vs ΔH and T1/2 vs ΔH correlations.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Zaiter, Samantha, Charlotte Kirk, Matthew Taylor, Y. Maximilian Klein, Catherine E. Housecroft, Natasha F. Sciortino, John E. Clements, Richard I. Cooper, Cameron J. Kepert et Suzanne M. Neville. « Heteroatom substitution effects in spin crossover dinuclear complexes ». Dalton Transactions 48, no 21 (2019) : 7337–43. http://dx.doi.org/10.1039/c8dt05010d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Senthil Kumar, Kuppusamy, Yosef Bayeh, Tesfay Gebretsadik, Fikre Elemo, Mamo Gebrezgiabher, Madhu Thomas et Mario Ruben. « Spin-crossover in iron(ii)-Schiff base complexes ». Dalton Transactions 48, no 41 (2019) : 15321–37. http://dx.doi.org/10.1039/c9dt02085c.

Texte intégral
Résumé :
A collective overview of iron(ii)-Schiff base complexes, showing abrupt and hysteretic SCO suitable for device applications, and the structure–property relationships governing the SCO of the complexes in the solid-state is presented.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Masárová, Petra, Pavel Zoufalý, Ján Moncol, Ivan Nemec, Ján Pavlik, Milan Gembický, Zdeněk Trávníček, Roman Boča et Ivan Šalitroš. « Spin crossover and high spin electroneutral mononuclear iron(iii) Schiff base complexes involving terminal pseudohalido ligands ». New Journal of Chemistry 39, no 1 (2015) : 508–19. http://dx.doi.org/10.1039/c4nj01363h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Bushuev, Mark B., Viktor P. Krivopalov, Elena B. Nikolaenkova, Katerina A. Vinogradova et Yuri V. Gatilov. « Hysteretic spin crossover in isomeric iron(ii) complexes ». Dalton Transactions 47, no 29 (2018) : 9585–91. http://dx.doi.org/10.1039/c8dt02223b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Garcia, Yann, Stewart J. Campbell, James S. Lord et Philipp Gütlich. « Muon spin relaxation studies of iron(II) spin crossover complexes ». Inorganica Chimica Acta 361, no 12-13 (septembre 2008) : 3577–85. http://dx.doi.org/10.1016/j.ica.2008.03.034.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Ide, Yuki, Nami Murai, Hiroki Ishimae, Masaaki Suzuki, Shigeki Mori, Masashi Takahashi, Mikio Nakamura, Katsumi Yoshino et Takahisa Ikeue. « Spin-crossover between high-spin (S = 5/2) and low-spin (S = 1/2) states in six-coordinate iron(iii) porphyrin complexes having two pyridine-N oxide derivatives ». Dalton Transactions 46, no 1 (2017) : 242–49. http://dx.doi.org/10.1039/c6dt03859j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Huang, Jing, Rong Xie, Weiyi Wang, Qunxiang Li et Jinlong Yang. « Coherent transport through spin-crossover magnet Fe2complexes ». Nanoscale 8, no 1 (2016) : 609–16. http://dx.doi.org/10.1039/c5nr05601b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Hogue, Ross W., Sandhya Singh et Sally Brooker. « Spin crossover in discrete polynuclear iron(ii) complexes ». Chemical Society Reviews 47, no 19 (2018) : 7303–38. http://dx.doi.org/10.1039/c7cs00835j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Kusz, Joachim. « Long Range Ordering in Spin Crossover Compounds ». Solid State Phenomena 130 (décembre 2007) : 199–202. http://dx.doi.org/10.4028/www.scientific.net/ssp.130.199.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Dankhoff, Katja, Charles Lochenie et Birgit Weber. « Iron(II) Spin Crossover Complexes with 4,4′-Dipyridylethyne—Crystal Structures and Spin Crossover with Hysteresis ». Molecules 25, no 3 (29 janvier 2020) : 581. http://dx.doi.org/10.3390/molecules25030581.

Texte intégral
Résumé :
Three new iron(II) 1D coordination polymers with cooperative spin crossover behavior showing thermal hysteresis loops were synthesized using N2O2 Schiff base-like equatorial ligands and 4,4′-dipyridylethyne as a bridging, rigid axial linker. One of those iron(II) 1D coordination polymers showed a 73 K wide hysteresis below room temperature, which, upon solvent loss, decreased to a still remarkable 30 K wide hysteresis. Single crystal X-ray structures of two iron(II) coordination polymers and T-dependent powder XRD patterns are discussed to obtain insight into the structure property relationship of those materials.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Cui, Hui-Hui, Jing Wang, Xue-Tai Chen et Zi-Ling Xue. « Slow magnetic relaxation in five-coordinate spin-crossover cobalt(ii) complexes ». Chemical Communications 53, no 67 (2017) : 9304–7. http://dx.doi.org/10.1039/c7cc04785a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Akiyoshi, Ryohei, Ryo Ohtani, Leonard F. Lindoy et Shinya Hayami. « Spin crossover phenomena in long chain alkylated complexes ». Dalton Transactions 50, no 15 (2021) : 5065–79. http://dx.doi.org/10.1039/d1dt00004g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Phonsri, Wasinee, David S. Macedo, Barnaby A. I. Lewis, Declan F. Wain et Keith S. Murray. « Iron(III) Azadiphenolate Compounds in a New Family of Spin Crossover Iron(II)–Iron(III) Mixed-Valent Complexes ». Magnetochemistry 5, no 2 (12 juin 2019) : 37. http://dx.doi.org/10.3390/magnetochemistry5020037.

Texte intégral
Résumé :
A new family of mixed valent, double salt spin crossover compounds containing anionic FeIII and cationic FeII compounds i.e., [FeII{(pz)3CH}2][FeIII(azp)2]2·2H2O (4), [FeII(TPPZ)2][FeIII(azp)2]2]·H2O (5) and [FeII(TPPZ)2][FeIII(azp)2]2]·H2O·3MeCN (6) (where (pz)3CH = tris-pyrazolylmethane, TPPZ = 2,3,5,6, tetrapyridylpyrazine and azp2− = azadiphenolato) has been synthesized and characterised. This is the first time that the rare anionic spin crossover species, [FeIII(azp)2]−, has been used as an anionic component in double salts complexes. Single crystal structures and magnetic studies showed that compound 6 exhibits a spin transition relating to one of the FeIII centres of the constituent FeII and FeIII sites. Crystal structures of the anionic and cationic precursor complexes were also analysed and compared to the double salt products thus providing a clearer picture for future crystal design in double spin crossover materials. We discuss the effects that the solvent and counterion had on the crystal packing and spin crossover properties.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Phonsri, Wasinee, Phimphaka Harding, Keith S. Murray, Boujemaa Moubaraki et David J. Harding. « Spin crossover in mixed ligand iron(iii) complexes ». New Journal of Chemistry 41, no 22 (2017) : 13747–53. http://dx.doi.org/10.1039/c7nj03676k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Lazaro, Sharon E., Adil Alkaş, Seok J. Lee, Shane G. Telfer, Keith S. Murray, Wasinee Phonsri, Phimphaka Harding et David J. Harding. « Abrupt spin crossover in iron(iii) complexes with aromatic anions ». Dalton Transactions 48, no 41 (2019) : 15515–20. http://dx.doi.org/10.1039/c9dt02373a.

Texte intégral
Résumé :
Two iron(iii) complexes, [Fe(qsal-X)2]OTs·nH2O, are found to exhibit abrupt spin crossover with the spin transition temperature substituent dependent, and X⋯O halogen bonds linking the spin centres.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Dova, Eva, René Peschar, Makoto Sakata, Kenichi Kato, Arno F. Stassen, Henk Schenk et Jaap G. Haasnoot. « Structures of FeII spin-crossover complexes from synchrotron powder-diffraction data ». Acta Crystallographica Section B Structural Science 60, no 5 (15 septembre 2004) : 528–38. http://dx.doi.org/10.1107/s0108768104015356.

Texte intégral
Résumé :
Crystal structure determination and analysis have been carried out for the two spin-crossover compounds [Fe(teeX)6](BF4)2 (teeX is haloethyltetrazole; X = I: teei; X = Br: teeb), in both their high-spin (near 300 K) and their low-spin states (T = 90 K), using high-resolution powder-diffraction data collected at the ESRF (Grenoble, France) and SPring8 (Japan) synchrotron radiation facilities. The structures of teei have been solved using various direct-space structure determination techniques (grid search, genetic algorithm and parallel tempering) and refined with the Rietveld method using geometrical restraints. In the case of teeb, a structural model was found but a full refinement was not successful because of the presence of a significant amount of an amorphous component. Analysis of the structures (space group P21/c, Z = 2) and diffraction data, and the absence of phase transitions, show the overall structural similarity of these compounds and lead to the conclusion that the gradual spin-crossovers are likely to be accompanied by small structural changes only.
Styles APA, Harvard, Vancouver, ISO, etc.
40

Finney, Brian A., Sabyasachi Roy Chowdhury, Clara Kirkvold et Bess Vlaisavljevich. « CASPT2 molecular geometries of Fe(ii) spin-crossover complexes ». Physical Chemistry Chemical Physics 24, no 3 (2022) : 1390–98. http://dx.doi.org/10.1039/d1cp04885f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Shakirova, Olga G., et Ludmila G. Lavrenova. « Spin Crossover in New Iron(II) Coordination Compounds with Tris(pyrazol-1-yl)Methane ». Crystals 10, no 9 (22 septembre 2020) : 843. http://dx.doi.org/10.3390/cryst10090843.

Texte intégral
Résumé :
We review here new advances in the synthesis and investigation of iron(II) coordination compounds with tris(pyrazol-1-yl)methane and its derivatives as ligands. The complexes demonstrate thermally induced spin crossover accompanied by thermochromism. Factors that influence the nature and temperature of the spin crossover are discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Qamar, Obaid Ali, Cong Cong et Huaibo Ma. « Solid state mononuclear divalent nickel spin crossover complexes ». Dalton Transactions 49, no 47 (2020) : 17106–14. http://dx.doi.org/10.1039/d0dt03421e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Weihermüller, Johannes, Stephan Schlamp, Wolfgang Milius, Florian Puchtler, Josef Breu, Philipp Ramming, Sven Hüttner et al. « Amphiphilic iron(ii) spin crossover coordination polymers : crystal structures and phase transition properties ». Journal of Materials Chemistry C 7, no 5 (2019) : 1151–63. http://dx.doi.org/10.1039/c8tc05580g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Lochenie, Charles, Julia Heinz, Wolfgang Milius et Birgit Weber. « Iron(ii) spin crossover complexes with diaminonaphthalene-based Schiff base-like ligands : mononuclear complexes ». Dalton Transactions 44, no 41 (2015) : 18065–77. http://dx.doi.org/10.1039/c5dt03048j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Gruber, Manuel, et Richard Berndt. « Spin-Crossover Complexes in Direct Contact with Surfaces ». Magnetochemistry 6, no 3 (27 août 2020) : 35. http://dx.doi.org/10.3390/magnetochemistry6030035.

Texte intégral
Résumé :
The transfer of the inherent bistability of spin crossover compounds to surfaces has attracted considerable interest in recent years. The deposition of the complexes on surfaces allows investigating them individually and to further understand the microscopic mechanisms at play. Moreover, it offers the prospect of engineering switchable functional surfaces. We review recent progress in the field with a particular focus on the challenges and limits associated with the dominant experimental techniques used, namely near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and scanning tunneling microscopy (STM). One of the main difficulties in NEXAFS-based experiments is to ascertain that the complexes are in direct contact with the surfaces. We show that molecular coverage determination based on the amplitude of the edge-jump of interest is challenging because the latter quantity depends on the substrate. Furthermore, NEXAFS averages the signals of a large number of molecules, which may be in different states. In particular, we highlight that the signal of fragmented molecules is difficult to distinguish from that of intact and functional ones. In contrast, STM allows investigating individual complexes, but the identification of the spin states is at best done indirectly. As quite some of the limits of the techniques are becoming apparent as the field is gaining maturity, their detailed descriptions will be useful for future investigations and for taking a fresh look at earlier reports.
Styles APA, Harvard, Vancouver, ISO, etc.
46

Boča, Roman, Ivan Nemec, Ivan Šalitroš, Ján Pavlik, Radovan Herchel et Franz Renz. « Interplay between spin crossover and exchange interaction in iron(III) complexes ». Pure and Applied Chemistry 81, no 8 (20 juillet 2009) : 1357–83. http://dx.doi.org/10.1351/pac-con-08-07-20.

Texte intégral
Résumé :
In the dinuclear and polynuclear metal complexes exhibiting the low-spin (LS) to high-spin (HS) transition, the spin-crossover phenomenon interferes with the magnetic exchange interaction. The latter manifests itself in forming spin-multiplets, which causes a possible overlap of the band originating in different reference spin states (LL, LH, HL, and HH). A series of dinuclear Fe(III) complexes has been prepared; the iron centers are linked by a bidentate bridge (CN-, and diamagnetic metallacyanates {Fe(CN)5(NO)}, {Ni(CN)4}, {Pt(CN)4}, and {Ag(CN)2}). Magnetic measurements confirm that the spin crossover proceeds on the thermal propagation. This information has been completed also by the Mössbauer spectral (MS) data. A theoretical model has been developed that allows a simultaneous fitting of all available experimental data (magnetic susceptibility, magnetization, HS mole fraction) on a common set of parameters.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Brachňaková, Barbora, Júlia Adamko Kožíšková, Jozef Kožíšek, Eva Melníková, Miroslav Gál, Radovan Herchel, Tibor Dubaj et Ivan Šalitroš. « Low-spin and spin-crossover iron(ii) complexes with pyridyl-benzimidazole ligands : synthesis, and structural, magnetic and solution study ». Dalton Transactions 49, no 48 (2020) : 17786–95. http://dx.doi.org/10.1039/d0dt03497e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Fuentealba, M., A. A. Goeta, M. R. Probert et A. R. Whiting. « Structural studies of N4O2iron(II) spin crossover complexes ». Acta Crystallographica Section A Foundations of Crystallography 67, a1 (22 août 2011) : C644—C645. http://dx.doi.org/10.1107/s0108767311083681.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Gaspar, A. B., M. Seredyuk et P. Gütlich. « Spin crossover in iron(II) complexes : Recent advances ». Journal of Molecular Structure 924-926 (avril 2009) : 9–19. http://dx.doi.org/10.1016/j.molstruc.2008.11.021.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Zhang, Rui, Dan-Li Hong, Xiao-Tong He, Fang-Hui Chen, Jia Jiao, Xiao-Qing Zhao, Xin Li, Yang-Hui Luo et Bai-Wang Sun. « Protonation-induced ligand distortion of spin-crossover complexes ». Inorganic Chemistry Communications 102 (avril 2019) : 40–44. http://dx.doi.org/10.1016/j.inoche.2018.09.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie