Littérature scientifique sur le sujet « Spiking laser »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Spiking laser ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Spiking laser"

1

Ballard, S. G., et D. C. Mauzerall. « SPIKING IN N2-LASER PUMPED DYE LASERS ». Photochemistry and Photobiology 39, no 4 (2 janvier 2008) : 535–36. http://dx.doi.org/10.1111/j.1751-1097.1984.tb03889.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kovalev, Anton V., Evgeny A. Viktorov et Thomas Erneux. « Non-Spiking Laser Controlled by a Delayed Feedback ». Mathematics 8, no 11 (20 novembre 2020) : 2069. http://dx.doi.org/10.3390/math8112069.

Texte intégral
Résumé :
In 1965, Statz et al. (J. Appl. Phys. 30, 1510 (1965)) investigated theoretically and experimentally the conditions under which spiking in the laser output can be completely suppressed by using a delayed optical feedback. In order to explore its effects, they formulate a delay differential equation model within the framework of laser rate equations. From their numerical simulations, they concluded that the feedback is effective in controlling the intensity laser pulses provided the delay is short enough. Ten years later, Krivoshchekov et al. (Sov. J. Quant. Electron. 5394 (1975)) reconsidered the Statz et al. delay differential equation and analyzed the limit of small delays. The stability conditions for arbitrary delays, however, were not determined. In this paper, we revisit Statz et al.’s delay differential equation model by using modern mathematical tools. We determine an asymptotic approximation of both the domains of stable steady states as well as a sub-domain of purely exponential transients.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Dodd, J. W., et T. C. Marshall. « 'Spiking' radiation in the Columbia free electron laser ». IEEE Transactions on Plasma Science 18, no 3 (juin 1990) : 447–50. http://dx.doi.org/10.1109/27.55913.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Dodd, J. W., et T. C. Marshall. « “Spiking” radiation in the Columbia free electron laser ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 296, no 1-3 (octobre 1990) : 4–8. http://dx.doi.org/10.1016/0168-9002(90)91180-j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Russo, Nélida A., et Ricardo Duchowicz. « High frequency fiber laser emission generated by pump spiking ». Optics Communications 281, no 13 (juillet 2008) : 3532–37. http://dx.doi.org/10.1016/j.optcom.2008.03.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Robertson, Joshua, Ewan Wade, Yasmin Kopp, Julian Bueno et Antonio Hurtado. « Toward Neuromorphic Photonic Networks of Ultrafast Spiking Laser Neurons ». IEEE Journal of Selected Topics in Quantum Electronics 26, no 1 (janvier 2020) : 1–15. http://dx.doi.org/10.1109/jstqe.2019.2931215.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Jeys, Thomas H. « Suppression of laser spiking by intracavity second harmonic generation ». Applied Optics 30, no 9 (20 mars 1991) : 1011. http://dx.doi.org/10.1364/ao.30.001011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Lenstra, Daan, Lukas Puts et Weiming Yao. « First-Passage-Time Analysis of the Pulse-Timing Statistics in a Two-Section Semiconductor Laser under Excitable and Noisy Conditions ». Photonics 9, no 11 (14 novembre 2022) : 860. http://dx.doi.org/10.3390/photonics9110860.

Texte intégral
Résumé :
A two-section semiconductor laser can exhibit excitability for certain parameter settings. When used as a photonic spiking neuron, it is relevant to investigate its sensitivity to noise due to, e.g., spontaneous emission. Under excitable conditions, the system emits irregularly timed noise-triggered pulses. Their statistics is analyzed in terms of a first-passage time distribution for the fluctuating intensity to reach the threshold for excitable response. Two analytic approximations valid for short and long times, respectively, are derived which very well explain measured and simulated pulse-repetition time distributions. This provides physical insight into the noise-triggered spiking mechanism.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Rostro-Gonzalez, Horacio, Jesus Pablo Lauterio-Cruz et Olivier Pottiez. « Modelling Neural Dynamics with Optics : A New Approach to Simulate Spiking Neurons through an Asynchronous Laser ». Electronics 9, no 11 (5 novembre 2020) : 1853. http://dx.doi.org/10.3390/electronics9111853.

Texte intégral
Résumé :
In this paper, we propose a novel approach for implementing spiking neurons through an optical system. Spiking neurons are a new approach to emulate the neural processes that occur in the brain, known as the third generation of artificial neural networks. They have been successfully used to build a new technology called neuromorphic engineering, which looks for a better performance than traditional computing in tasks usually performed by AI-based systems. Our optical system consists of a low-cost laser source, based on a microcontroller and a continuous-wave laser diode; the microcontroller allows producing synchronous or asynchronous pulses with complex time profiles. Here, through said system we have successfully reproduced most of the neural dynamics observed in biological neurons. These dynamics have been reproduced using a very simple optical array with a great potential for the development of neuromorphic systems. The optical system has been experimentally validated.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Sánchez-León, José Antonio. « Parabolic approximation in Kleinman's mechanical approach to laser spiking analysis ». Journal of Applied Research and Technology 14, no 3 (juin 2016) : 191–94. http://dx.doi.org/10.1016/j.jart.2016.05.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Spiking laser"

1

Mekemeza, Ona Keshia. « Photonic spiking neuron network ». Electronic Thesis or Diss., Bourgogne Franche-Comté, 2023. http://www.theses.fr/2023UBFCD052.

Texte intégral
Résumé :
Les réseaux neuromorphiques pour le traitement d'informations ont pris une placeimportante aujourd'hui notamment du fait de la montée en complexité des tâches à effectuer : reconnaissance vocale, corrélation d'images dynamiques, prise de décision rapide multidimensionnelle, fusion de données, optimisation comportementale, etc... Il existe plusieurs types de tels réseaux et parmi ceux- ci les réseaux impulsionnels, c'est-à-dire, ceux dont le fonctionnement est calqué sur celui des neurones corticaux. Ce sont ceux qui devraient offrir le meilleur rendement énergétique donc le meilleur passage à l'échelle. Plusieurs démonstrations de neurones artificielles ont été menées avec des circuits électroniques et plus récemment photoniques. La densité d'intégration de la filière photonique sur silicium est un atout pour créer des circuits suffisamment complexes pour espérer réaliser des démonstrations complètes. Le but de la thèse est donc d'exploiter une architecture de réseau neuromorphique impulsionnel à base de lasers à bascule de gain (Q switch) intégrés sur silicium et d'un circuit d'interconnexion ultra-dense et reconfigurable apte à imiter les poids synaptiques. Une modélisation complète ducircuit est attendue avec, à la clé la démonstration pratique d'une application dans la résolution d'un problème mathématique à définir
Today, neuromorphic networks play a crucial role in information processing,particularly as tasks become increasingly complex: voice recognition, dynamic image correlation, rapid multidimensional decision- making, data merging, behavioral optimization, etc... Neuromorphic networks come in several types; spiking networks are one of them. The latter's modus operandi is based on that of cortical neurons. As spiking networks are the most energy-efficient neuromorphic networks, they offer the greatest potential for scaling. Several demonstrations of artificial neurons have been conducted with electronic and more recently photonic circuits. The integration density of silicon photonics is an asset to create circuits that are complex enough to hopefully carry out a complete demonstration. Therefore, this thesis aims to exploit an architecture of a photonic spiking neural network based on Q-switched lasers integrated into silicon and an ultra-dense and reconfigurable interconnection circuit that can simulate synaptic weights. A complete modeling of the circuit is expected with a practical demonstration of an application in solving a mathematical problem to be defined
Styles APA, Harvard, Vancouver, ISO, etc.
2

Shori, Ramesh K. « A Study of Spiking and Relaxation Oscillations in Nd:YAG Laser Using Measured Laser Parameters ». PDXScholar, 1993. https://pdxscholar.library.pdx.edu/open_access_etds/4641.

Texte intégral
Résumé :
It was shown analytically and experimentally that when the cavity losses are perturbed, the output intensity experiences an amplitude modulation or becomes a regular train of spikes, with the frequency depending on both the frequency of perturbation as well as pump power. Coupled nonlinear rate equations including the cavity perturbation term, are solved numerically by a Runga-Kutta method using experimentally-measured parameter values for Nd: Y AG laser. A continuously pumped Nd: Y AG laser was used to verify this theory.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Reiter, Matt J. « Partial Penetration Fiber Laser Welding on Austenitic Stainless Steel ». The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1243339754.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Sivarajan, Vishalini [Verfasser], Dirk [Akademischer Betreuer] Feldmeyer et Björn M. [Akademischer Betreuer] Kampa. « Morphological and functional characterisation of non-fast spiking interneurons in layer 4 microcircuitry of rat barrel cortex / Vishalini Sivarajan ; Dirk Feldmeyer, Björn M. Kampa ». Aachen : Universitätsbibliothek der RWTH Aachen, 2017. http://d-nb.info/1158667817/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Zeng, Sheng-Wei, et 曾聖維. « Self-induced Spiking Oscillations in a Np-cut Microchip Nd:KGW Laser ». Thesis, 2012. http://ndltd.ncl.edu.tw/handle/20299314077435165803.

Texte intégral
Résumé :
碩士
國立高雄師範大學
物理學系
100
In this paper we have investigated the dynamical behaviors of laser-diode-pumped microchip Np-cut Nd:KGW laser. Optical properties including oscillation spectra and input-output characteristics are studied experimentally. Self-induced spiking oscillations were observed in the microchip Nd:KGW laser crystal (3×3×1㎜). The study investigated the behavior of the self-induced spiking oscillations under different pump conditions by varying the magnifications of the microscope objective lenses, polarized pump source, and cavity length. Experimental results suggest that self-induced spiking oscillations are affected by different cavity lengths. Furthermore, we observed relaxation oscillation frequency and it’s harmonics during the entire experiment.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Yang, Shang-Lin, et 楊尚霖. « Laser spiking and relaxation oscillation in optical vortex formed by the coherent superposition of off-axis multiple pass transverse modes in an azimuthal symmetry-breaking laser resonator ». Thesis, 2018. http://ndltd.ncl.edu.tw/handle/h2jnfn.

Texte intégral
Résumé :
碩士
國立中山大學
光電工程學系研究所
106
Optical vortex (OV) is a special morphological beam with orbital angular momentum. It has a ring shape with no energy at the center. In recent years, there have been many applications associated with optical vortex beam, such as STED microscopy, OAM multiplexing optical communication, optical tweezers and the like. Upon the demand of the applications, high quality optical vortex is necessary and there are many different methods to achieve this goal, such as the pump beam shaping, fiber-based amplifier with mode conversion, and degenerate cavity with intra-cavity spiral phase plate (SPP). In particular, a nearly hemi-spherical cavity with SPP produces OV with ultrahigh vortex purity of more than 99.99%. In such a laser configuration, the OV is formed as a coherent superposition of off-axis multiple pass transverse modes circulating in the resonator. They retrace a periodic orbital when travels twice roundtrips and form a V-shaped optical path. The phases of the beamlets traveling a MPT modes are then correlated by the strong coupling during the stimulated emission process in the laser gain medium and can be understood by the Kuromoto model under the minimum energy criterion. In this new laser configuration, built up dynamics has never been explored. Multi-mode relaxation oscillations in lasers can be modeled by Tang-Statz-deMars (TSD) equation. It is found that modes with unbalanced gain volume results in irregular relaxation oscillation for each mode while the intensity sum of all modes remains regular. However, the relaxation dynamics in our optical vortex produces irregular but synchronized spiking and relaxation oscillation across the spatial measurement. By introducing coupling terms between modes in to the photon equations in TSD equations, the spiking and relaxation synchronizations among modes can be explained. Experiments with a varying gain volume and coupling strength showed degradation in the correlation of signals taken from different oscillating modes as can be expected by TSD equations with photon mode couplings. Moreover it is also found that during the laser spiking phase, the optical vortex output shows a regular high and low changes, which we believe is due to the interplay between competition and couplings among the resonating modes.
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Spiking laser"

1

Grigorieva, Elena V., et Sergey A. Kaschenko. « Spiking in Single-Mode Laser ». Dans Understanding Complex Systems, 27–75. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42860-4_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Hulea, Mircea. « Bioinspired Control Method Based on Spiking Neural Networks and SMA Actuator Wires for LASER Spot Tracking ». Dans Nature-Inspired Computing for Control Systems, 13–38. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-26230-7_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Grigorieva, Elena V., et Sergey A. Kaschenko. « Spiking in Lasers with Delayed Feedback ». Dans Understanding Complex Systems, 77–127. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42860-4_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Turkson, Regina Esi, Hong Qu, Yuchen Wang et Moses J. Eghan. « Unsupervised Multi-layer Spiking Convolutional Neural Network Using Layer-Wise Sparse Coding ». Dans Neural Information Processing, 353–65. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-63836-8_30.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Peralta, Ivan, Nanci Odetti et Hugo L. Rufiner. « Extreme Learning Layer : A Boost for Spoken Digit Recognition with Spiking Neural Networks ». Dans Speech and Computer, 3–17. Cham : Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-48309-7_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Tavanaei, Amirhossein, et Anthony Maida. « Bio-inspired Multi-layer Spiking Neural Network Extracts Discriminative Features from Speech Signals ». Dans Neural Information Processing, 899–908. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70136-3_95.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Jia, Yongbin, et Danjing Li. « Spiking Neural Network Based on Layer-Wise Compensation for Event-Stream Image Classification ». Dans Lecture Notes in Electrical Engineering, 734–43. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3927-3_72.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Luque, Niceto R., Jesús A. Garrido, Richard R. Carrillo et Eduardo Ros. « Context Separability Mediated by the Granular Layer in a Spiking Cerebellum Model for Robot Control ». Dans Advances in Computational Intelligence, 537–46. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21501-8_67.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Yang, Wenyu, Jie Yang et Wei Wu. « A Modified One-Layer Spiking Neural Network Involves Derivative of the State Function at Firing Time ». Dans Advances in Neural Networks – ISNN 2012, 149–58. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31346-2_18.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Bisht, Prem B. « Laser spiking and Q-switching ». Dans An Introduction to Photonics and Laser Physics with Applications. IOP Publishing, 2022. http://dx.doi.org/10.1088/978-0-7503-5226-0ch13.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Spiking laser"

1

Owen-Newns, Dafydd, Andrew Adair, Dylan Black, Giovanni Donati, Joshua Robertson et Antonio Hurtado. « Photonic spiking neurons and spiking neural networks ». Dans Semiconductor Lasers and Laser Dynamics XI, sous la direction de Marc Sciamanna, Jesper Mørk et Fan-Yi Lin. SPIE, 2024. http://dx.doi.org/10.1117/12.3025405.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Zhang, Dongliang, Zeyang Fan, Yihang Dan, Tian Zhang, Jian Dai et Kun Xu. « Spiking photonic reservoir computing system based on photonic spiking neuron ». Dans Advanced Fiber Laser Conference (AFL2023), sous la direction de Pu Zhou. SPIE, 2024. http://dx.doi.org/10.1117/12.3023642.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Pammi, Venkata Anirudh, Soizic Terrien, Neil G. R. Broderick, Rémy Braive, Grégoire Beaudoin, Isabelle Sagnes, Bernd Krauskopf et Sylvain Barbay. « Associative memory in regenerative spiking micropillar lasers (Conference Presentation) ». Dans Semiconductor Lasers and Laser Dynamics IX, sous la direction de Krassimir Panajotov, Marc Sciamanna, Rainer Michalzik et Sven Höfling. SPIE, 2020. http://dx.doi.org/10.1117/12.2555025.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Syvridis, Dimitris, et Charis Mesaritakis. « Quantum-Dot Laser Assisted Spiking Neural Networks ». Dans 2018 International Conference Laser Optics (ICLO). IEEE, 2018. http://dx.doi.org/10.1109/lo.2018.8435458.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Le Flohic, M., P. L. Francois, J. Y. Allain, F. Sanchez et G. Stephen. « Transient Chaotic Mode Competition in Nd3+-Doped Fiber Lasers ». Dans Nonlinear Dynamics in Optical Systems. Washington, D.C. : Optica Publishing Group, 1990. http://dx.doi.org/10.1364/nldos.1990.ld310.

Texte intégral
Résumé :
The study of transient oscillations in Nd3+-doped fiber lasers shows that a chaotic spiking is obtained either for high pumping rates and/or at low temperatures. An improved laser model is proposed to understand this irregular behaviour. Using a multimode formalism, we show that a small homogeneous to inhomogeneous linewidths ratio leads to a strongly irregular spiking. The spectra of the laser emission reveal then a high number of active cavity modes.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Diamantopoulos, Nikolaos-Panteleimon, Suguru Yamaoka, Takuro Fujii, Hidetaka Nishi, Toru Segawa et Shinji Matsuo. « All-Optical Spiking Membrane III-V Laser on Si ». Dans CLEO : Science and Innovations. Washington, D.C. : Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_si.2023.stu4p.3.

Texte intégral
Résumé :
We present an all-optical photonic spiking neuron based on a membrane laser on silicon with optical feedback. Ultrafast dynamics with ~200-ps refractory periods using 10-GHz signals are demonstrated, at a laser-energy cost of ~10 pJ/spike.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Jurba, Mihai, Vasile D. Babin, N. Baltateanu, Ion Gherghina, V. Jipa, E. Popescu, Liviu Cosereanu et Marinica Mirzu. « Control of laser spiking in Nd:YAG lasers with saturable absorbers ». Dans ROMOPTO '97 : Fifth Conference on Optics, sous la direction de Valentin I. Vlad et Dan C. Dumitras. SPIE, 1998. http://dx.doi.org/10.1117/12.312691.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Wei, P. S., K. C. Chuang et J. S. Ku. « Spiking and Humping Defects in Laser Welding ». Dans ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-39513.

Texte intégral
Résumé :
Pitches of surface humps or coarse ripples and spikes affected by the focusing characteristics and scanning speed in high-intensity electron-beam welding or melting are quantitatively measured. Humping and coarse rippling are referred to surface roughness, which often accompanies with undercut, segregation, porosity and other defects. Spiking represents a sudden increase in penetration beyond the average penetration line. In this work, acceleration voltage and welding current of the electron beam welder used are 55 kV and 20 mA, whereas scanning speed is between 15–30 mm/s. Specimens are Al 6061, 1050, 1100 and 5083, and SS 304. This study found that humping and coarse rippling are enhanced by lowering the focal spot location. The measured amplitudes of humping are confirmed by successfully comparing with scale analysis.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Erneux, Thomas, et Ira B. Schwartz. « New Asymptotic Theory for the Periodically Forced Laser ». Dans Nonlinear Dynamics in Optical Systems. Washington, D.C. : Optica Publishing Group, 1990. http://dx.doi.org/10.1364/nldos.1990.ld384.

Texte intégral
Résumé :
Sustained relaxation oscillations and irregular spiking have been observed in many periodically modulated lasers [2]. These observations have been substantiated numerically by recent studies of the laser rate equations [3,4]. In this paper, we propose a new asymptotic analysis of the laser equations which assumes that the laser oscillations correspond to relaxation oscillations. We identify a large parameter and construct these periodic solutions using singular perturbation techniques. We obtain the equations for the Poincare map and determine the first period doubling bifurcation.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Komarov, Konstantin P. « Change of transverse mode structure and undamped spiking in solid state laser ». Dans Laser Optics '95, sous la direction de Neal B. Abraham et Yakov I. Khanin. SPIE, 1996. http://dx.doi.org/10.1117/12.239176.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Spiking laser"

1

Shori, Ramesh. A Study of Spiking and Relaxation Oscillations in Nd:YAG Laser Using Measured Laser Parameters. Portland State University Library, janvier 2000. http://dx.doi.org/10.15760/etd.6525.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Masoller, Cristina. Spiking Excitable Semiconductor Laser as Optical Neurons : Dynamics, Clustering and Global Emerging Behaviors. Fort Belvoir, VA : Defense Technical Information Center, juin 2014. http://dx.doi.org/10.21236/ada611722.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Krinsky, Samuel. Analysis of Statistical Correlations and Intensity Spiking in the Self-Amplified Spontaneous-Emission Free-Electron Laser. Office of Scientific and Technical Information (OSTI), février 2003. http://dx.doi.org/10.2172/812642.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie