Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Spherical coordinate.

Livres sur le sujet « Spherical coordinate »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 19 meilleurs livres pour votre recherche sur le sujet « Spherical coordinate ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les livres sur diverses disciplines et organisez correctement votre bibliographie.

1

Mueller, Ivan Istvan. Reference coordinate systems : An update. Columbus, Ohio : Ohio State University Research Foundation, 1988.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Chen, Y. S. A computer code for three-dimensional incompressible flows using nonorthogonal body-fitted coordinate systems. Marshall Space Flight Center, Ala : Marshall Space Flight Center, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Zingg, D. W. A method of smooth bivariate interpolation for data given on a generalized curvilinear grid. [S.l.] : [s.n.], 1992.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Nerney, Steven. Analytic solutions of the vector Burgers' equation. [Washington, DC : National Aeronautics and Space Administration, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

H, Carpenter Mark, et Institute for Computer Applications in Science and Engineering., dir. High order finite difference methods, multidimensional linear problems and curvilinear coordinates. Hampton, VA : Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1999.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Breckenridge, Richard P. Localization of multiple broadband targets in spherical coordinates via adaptive beamforming and non-linear estimation. Monterey, Calif : Naval Postgraduate School, 1989.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

G, Ramirez, Pei K. C et United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., dir. Discrete-layer piezoelectric plate and shell models for active tip-clearance control. [Washington, DC] : National Aeronautics and Space Administration, Scientific and Technical Information Division, 1994.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

G, Ramirez, Pei K. C et United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., dir. Discrete-layer piezoelectric plate and shell models for active tip-clearance control. [Washington, DC] : National Aeronautics and Space Administration, Scientific and Technical Information Division, 1994.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

G, Ramirez, Pei K. C et United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., dir. Discrete-layer piezoelectric plate and shell models for active tip-clearance control. [Washington, DC] : National Aeronautics and Space Administration, Scientific and Technical Information Division, 1994.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

N, Tiwari S., et Langley Research Center, dir. Numerical solutions of Navier-Stokes equations for a Butler wing : Progress report for the period ending August 31, 1985. Norfolk, Va : Old Dominion University Research Foundation, 1985.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

N, Tiwari S., et United States. National Aeronautics and Space Administration., dir. Numerical solutions of Navier-Stokes equations for a Butler wing. Norfolk, Va : Old Dominion University Research Foundation, 1987.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Mann, Peter. Energy and Work. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0002.

Texte intégral
Résumé :
This chapter discusses the work–energy theorem, which is developed from Newton’s second law, and defines the kinetic and potential energies of the system. While there is some vector calculus involved, it has been kept to the bare minimum and the reader should not require in-depth knowledge to understand the salient points. If there is a net force on the particle, it accelerates in the direction of the unbalanced force. The force is a central force if it depends only on the distance between the point on which the force acts and the coordinate origin. Using Stokes’s theorem, potential energies are thoroughly discussed. The chapter also discusses spherically symmetric potentials, isotropic force, force on systems of particles, centre of mass coordinates and rigid bodies.
Styles APA, Harvard, Vancouver, ISO, etc.
13

A spectral mulit-domain technique application to generalized curvilinear coordinates. Hampton, Va : National Aeronautics and Space Administration, Langley Research Center, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

A spectral mulit-domain technique application to generalized curvilinear coordinates. Hampton, Va : National Aeronautics and Space Administration, Langley Research Center, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Deruelle, Nathalie, et Jean-Philippe Uzan. The Schwarzschild solution. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0046.

Texte intégral
Résumé :
This chapter deals with the Schwarzschild metric. To find the gravitational potential U produced by a spherically symmetric object in the Newtonian theory, it is necessary to solve the Poisson equation Δ‎U = 4π‎Gρ‎. Here, the matter density ρ‎ and U depend only on the radial coordinate r and possibly on the time t. Outside the source the solution is U = –GM/r, where M = 4π‎ ∫ ρ‎r2dr is the source mass. In general relativity the problem is to find the ‘spherically symmetric’ spacetime solutions of the Einstein equations, and the analog of the vacuum solution U = –GM/r is the Schwarzschild metric.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Krishnamurti, T. N., H. S. Bedi et V. M. Hardiker. An Introduction to Global Spectral Modeling. Oxford University Press, 1998. http://dx.doi.org/10.1093/oso/9780195094732.001.0001.

Texte intégral
Résumé :
This book is an indispensable guide to the methods used by nearly all major weather forecast centers in the United States, England, Japan, India, France, and Australia. Designed for senior-level undergraduates and first-year graduate students, the book provides an introduction to global spectral modeling. It begins with an introduction to elementary finite-difference methods and moves on towards the gradual description of sophisticated dynamical and physical models in spherical coordinates. Topics include computational aspects of the spectral transform method, the planetary boundary layer physics, the physics of precipitation processes in large-scale models, the radiative transfer including effects of diagnostic clouds and diurnal cycle, the surface energy balance over land and ocean, and the treatment of mountains. The discussion of model initialization includes the treatment of normal modes and physical processes, and the concluding chapter covers the spectral energetics as a diagnostic tool for model evaluation.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Chemin, Jean-Yves, Benoit Desjardins, Isabelle Gallagher et Emmanuel Grenier. Mathematical Geophysics. Oxford University Press, 2006. http://dx.doi.org/10.1093/oso/9780198571339.001.0001.

Texte intégral
Résumé :
Aimed at graduate students, researchers and academics in mathematics, engineering, oceanography, meteorology, and mechanics, this text provides a detailed introduction to the physical theory of rotating fluids, a significant part of geophysical fluid dynamics. The text is divided into four parts, with the first part providing the physical background of the geophysical models to be analyzed. Part two is devoted to a self contained proof of the existence of weak (or strong) solutions to the imcompressible Navier-Stokes equations. Part three deals with the rapidly rotating Navier-Stokes equations, first in the whole space, where dispersion effects are considered. The case where the domain has periodic boundary conditions is then analyzed, and finally rotating Navier-Stokes equations between two plates are studied, both in the case of periodic horizontal coordinated and those in R2. In Part IV, the stability of Ekman boundary layers and boundary layer effects in magnetohydrodynamics and quasigeostrophic equations are discussed. The boundary layers which appear near vertical walls are presented and formally linked with the classical Prandlt equations. Finally spherical layers are introduced, whose study is completely open.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Numerical solution of the incompressible Navier-Stokes equations. Moffett Field, Calif : National Aeronautics and Space Administration, Ames Research Center, 1990.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

The Essentials of Pattern Grading : The Projection of Cartesian Coordinates Into a Spherical Geometry of Fractal Order 2.5 Using Collinear Scaling As the Algebraic Matrix..... Clarified. Hanover Phist, 2003.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie