Littérature scientifique sur le sujet « Specialized metabolome »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Specialized metabolome ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Specialized metabolome"
Solanki, Hiren, Manon Pierdet, Olivier P. Thomas et Mayalen Zubia. « Insights into the Metabolome of the Cyanobacterium Leibleinia gracilis from the Lagoon of Tahiti and First Inspection of Its Variability ». Metabolites 10, no 5 (24 mai 2020) : 215. http://dx.doi.org/10.3390/metabo10050215.
Texte intégralSchweiger, Rabea, Eva Castells, Luca Da Sois, Jordi Martínez-Vilalta et Caroline Müller. « Highly Species-Specific Foliar Metabolomes of Diverse Woody Species and Relationships with the Leaf Economics Spectrum ». Cells 10, no 3 (13 mars 2021) : 644. http://dx.doi.org/10.3390/cells10030644.
Texte intégralRai, Megha, Amit Rai, Tetsuya Mori, Ryo Nakabayashi, Manami Yamamoto, Michimi Nakamura, Hideyuki Suzuki, Kazuki Saito et Mami Yamazaki. « Gene-Metabolite Network Analysis Revealed Tissue-Specific Accumulation of Therapeutic Metabolites in Mallotus japonicus ». International Journal of Molecular Sciences 22, no 16 (17 août 2021) : 8835. http://dx.doi.org/10.3390/ijms22168835.
Texte intégralLi, Dapeng, Rayko Halitschke, Ian T. Baldwin et Emmanuel Gaquerel. « Information theory tests critical predictions of plant defense theory for specialized metabolism ». Science Advances 6, no 24 (juin 2020) : eaaz0381. http://dx.doi.org/10.1126/sciadv.aaz0381.
Texte intégralDarghouth, Dhouha, Bérengère Koehl, Geoffrey Madalinski, Jean-François Heilier, Petra Bovee, Ying Xu, Marie-Françoise Olivier et al. « Pathophysiology of sickle cell disease is mirrored by the red blood cell metabolome ». Blood 117, no 6 (10 février 2011) : e57-e66. http://dx.doi.org/10.1182/blood-2010-07-299636.
Texte intégralDesmet, Sandrien, Yvan Saeys, Kevin Verstaen, Rebecca Dauwe, Hoon Kim, Claudiu Niculaes, Atsushi Fukushima et al. « Maize specialized metabolome networks reveal organ-preferential mixed glycosides ». Computational and Structural Biotechnology Journal 19 (2021) : 1127–44. http://dx.doi.org/10.1016/j.csbj.2021.01.004.
Texte intégralOstash, I., M. Deneka, M. Lopatniuk, T. Busche, J. Kalinowski, A. Luzhetskyy, V. Fedorenko et B. Ostash. « Mining the cryptic specialized metabolome of Streptomyces cyanogenus S136 ». Visnyk of Lviv University. Biological series, no 91 (7 juin 2024) : 14–21. http://dx.doi.org/10.30970/vlubs.2024.91.02.
Texte intégralDubery, Ian A., Lerato P. Nephali, Fidele Tugizimana et Paul A. Steenkamp. « Data-Driven Characterization of Metabolome Reprogramming during Early Development of Sorghum Seedlings ». Metabolites 14, no 2 (7 février 2024) : 112. http://dx.doi.org/10.3390/metabo14020112.
Texte intégralHao, Da-Cheng, Pei Li, Pei-Gen Xiao et Chun-Nian He. « Dissection of full-length transcriptome and metabolome of Dichocarpum (Ranunculaceae) : implications in evolution of specialized metabolism of Ranunculales medicinal plants ». PeerJ 9 (5 novembre 2021) : e12428. http://dx.doi.org/10.7717/peerj.12428.
Texte intégralPiasecka, Anna, Aneta Sawikowska, Nicolas Jedrzejczak-Rey, Mariola Piślewska-Bednarek et Paweł Bednarek. « Targeted and Untargeted Metabolomic Analyses Reveal Organ Specificity of Specialized Metabolites in the Model Grass Brachypodium distachyon ». Molecules 27, no 18 (13 septembre 2022) : 5956. http://dx.doi.org/10.3390/molecules27185956.
Texte intégralThèses sur le sujet "Specialized metabolome"
Barreda, Léa. « Characterization of the seed specialized metabolome landscape and plasticity in Brassicaceae species ». Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASB048.
Texte intégralSpecialized metabolites (SMs) play crucial roles in the interaction of plants and seeds with their environment. SM modifications greatly contribute to SM diversity and activities. Despite their importance for seed quality, the study of the impact of the environment on the synthesis, modification and accumulation of SMs in seeds has been neglected. Seeds accumulate both beneficial and antinutritional SMs with a large range of biological and ecological roles and significant importance for human and animal nutrition, and other industrial uses. Hence, study the diversity, distribution and regulation of SMs in seeds upon environmental stresses is of major relevance, especially in the current context of climate change. This is particularly true for seeds of Brassicaceae species, which include both model and crop species that are widely cultivated across the world and used/consumed as vegetables, fodder, or oilseeds. These species show diverse SM composition and distribution, which makes them valuable models to study the impacts of environmental stresses on seed SMs. This Ph.D. project aimed at characterizing the diversity and plasticity of seed specialized metabolites in Brassicaceae species under environmental stresses by using multi-omic, molecular biology and reverse genetic approaches. In a first study, the diversity and plasticity of seed SMs from several Camelina sativa genotypes cultivated in open field for several consecutive years were assessed. The results obtained showed that the accumulation of SMs in Camelina seeds was more impacted by the environmental conditions rather than the genotype, and that the plasticity of SMs was higher compared to those of major seed storage compounds, including oil, proteins, and other primary metabolites. A second study aimed to evaluate the impact of stress conditions on developing seeds of the model species Arabidopsis thaliana. Heat stress (HS) was found to induce the strongest changes in seed specialized metabolome, compared to drought stress and copper chloride stress (inducing oxidative stress and mimicking biotic stress effects). Hence, the study has been focused on studying the effect of HS on specialized metabolome during Arabidopsis seed development by using multi-omic analyses (untargeted metabolomic and transcriptomic analyses). A wide range of SMs and genes were affected by HS during seed development. Among them, glucosinolates (GSLs) related to ALKENYL HYDROXALKYL PRODUCING 3 (AOP3) GSL hydroxylase enzyme were strongly induced by HS. Besides, several thioglucose sinapoylated and benzoylated GSLs were identified and reported for the first time. Untargeted metabolomic and physiological analyses were performed with several Arabidopsis mutants for GSL-related genes and wild-type genotype, in order to elucidate the synthesis, modifications, regulation and functions of those thioglucose acylated GSLs. The obtained results showed that the acyltransferase SERINE CARBOXYPEPTIDASE LIKE 17 (SCPL17) and BENZOYLGLUCOSINOLATE 1 (BZO1) are involved in the sinapoylation and/or benzoylation of GSL thioglucose moieties and that thioglucose benzoylated and sinapoylated GSLs are involved in Arabidopsis HS responses in seeds. Finally, to study and characterize seed SM distribution, multi-omic analyses have been performed on C. sativa seed embryo (SE) and seed coat and endosperm (SCE) tissues from developing and germinating seeds. The data obtained revealed some specific accumulation pattern of GSLs and related degradation products in the different seed tissues of C. sativa, A. thaliana and Brassica napus species that provide valuable complementary information to the previously described work about GSL functions and activities. In particular, the short methionine derived (Met-de) GSLs (<8C) accumulated in SE, while longer Met-de GSLs (>7C) accumulated in SC. Differently, GSL degradation products accumulation showed diverse accumulation patterns in the three Brassicaceae species
Xie, Zhengzhi. « Investigation of Plant Specialized Metabolism (Secondary Metabolism) Using Metabolomic and Proteomic Approaches ». Diss., The University of Arizona, 2007. http://hdl.handle.net/10150/195218.
Texte intégralMissinou, Anani Amegan. « Specialized metabolism in Brassica napus : Characterization of phytochemical diversity, its genetic determinants, and its regulation by pathogen infection ». Electronic Thesis or Diss., Rennes, Agrocampus Ouest, 2022. http://www.theses.fr/2022NSARC162.
Texte intégralSpecialized metabolism plays an essential role in plant-environment interactions. Its characterization in cultivated plants represents a significant scientific challenge. During my thesis, I worked on the characterization of the specialized metabolism and its genetic determinants in Brassica napus (oilseed rape), and I studied its regulation in response to infection by Leptosphaeria maculans (causal agent of phoma). I contributed to developing a targeted metabolic profiling method and identified 36 foliar/root glucosinolates (GLSs), 32 foliar phenolic compounds (PHLs), and 18 previously undocumented root compounds. The quantification of these SMs in 304 Brassicaaccessions revealed important phytochemical contrasts within the panel. GWA analysis of these phytochemical variations identified 104 loci (QTLs). The genetic architecture thus highlighted an independent control of the subcategories of GLSs, PHLs, and new root compounds. This work provides a useful resource for Brassica chemical ecology and breeding. Using the same targeted profiling method, we showed induction of indole GLSs 14 days after inoculation of the B. napus stems with L. maculans. Mass spectrometric imaging of the cross-section of infected rapeseed stem revealed the spatialization of metabolic responses to L. maculans infection
Barthélémy, Morgane. « Etude de la diversité chimique et biologique d’endophytes de palmiers ». Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS563.
Texte intégralThe palm Astrocaryum sciophilum is the host plant model chosen in this work. Indeed, due to the longevity of its leaves, we expected to highlight a competitive community of endophytes within the oldest leaves. Thus, 197 endophytes have been isolated and identified from different leaves of six palm specimens. In order to evaluate whether the compounds produced by these microorganisms could be used for the treatment of human disease, the ethyl acetate extracts of each endophyte were tested against methicillin-resistant Staphylococcus aureus (MRSA) as well as for a quorum quenching (QQ) activity. Simultaneously, co-culture were carried with the fungi Fusarium oxysporum in order to highlight endophytes providing plant protection against phytopathogens. We selected extracts in order to isolate and identify the bioactive metabolites. Various analytical tools have been used to improve the isolation process (LC-MS/MS, molecular networking or MS imaging).The study of the endophytic community isolated from older leaves did not show a more competitive chemical arsenal. However, two Luteibacter strains exhibited an ethyl acetate extract active against MRSA and several bacteria provide quorum quenching extracts. The metabolome of Colletotrichum genus was studied using molecular networking and a fungus from the Xylariaceae family was studied for its capacity to inhibit F. oxysporum’s growth. In our study, seven endophyte strains were chemically investigated leading to the isolation and identification of 42 molecules whose ten are new
Negri, Stefano. « The tomato serotonin pathway : unravelling the puzzling biological roles of plant indolamines ». Doctoral thesis, 2020. http://hdl.handle.net/11562/1017074.
Texte intégralLivres sur le sujet "Specialized metabolome"
Mewis, Inga, Marie-Theres Hauser, Titta Katariina Kotilainen et Nadja Förster, dir. Effects of Different Light Spectra on Secondary/Specialized Metabolite Accumulation and Plant Resistance Mechanisms. Frontiers Media SA, 2021. http://dx.doi.org/10.3389/978-2-88971-705-7.
Texte intégralChapitres de livres sur le sujet "Specialized metabolome"
Kautsar, Satria A., Hernando G. Suarez Duran et Marnix H. Medema. « Genomic Identification and Analysis of Specialized Metabolite Biosynthetic Gene Clusters in Plants Using PlantiSMASH ». Dans Methods in Molecular Biology, 173–88. New York, NY : Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7874-8_15.
Texte intégralJeyapragash, Danaraj, Ayyappan Saravanakumar et Mariasingarayan Yosuva. « Seagrass Metabolomics : A New Insight towards Marine Based Drug Discovery ». Dans Metabolomics - Methodology and Applications in Medical Sciences and Life Sciences. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97875.
Texte intégralShukla, Pragya, Archana Prasad, Khushboo Chawda, Gauri Saxena, Kapil D. Pandey et Debasis Chakrabarty. « Glandular Trichomes : Bio-cell Factories of Plant Secondary Metabolites ». Dans In Vitro Propagation and Secondary Metabolite Production from Medicinal Plants : Current Trends (Part 1), 91–119. BENTHAM SCIENCE PUBLISHERS, 2024. http://dx.doi.org/10.2174/9789815165227124010008.
Texte intégralHiltner, Jana K., Iain S. Hunter et Paul A. Hoskisson. « Tailoring Specialized Metabolite Production in Streptomyces ». Dans Advances in Applied Microbiology, 237–55. Elsevier, 2015. http://dx.doi.org/10.1016/bs.aambs.2015.02.002.
Texte intégral« Carbohydrates and Glycosides ». Dans Chemical Diversity of Plant Specialized Metabolites, 5–34. Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/9781837671472-00005.
Texte intégralWigle, Donald T. « Hormonally Active Agents ». Dans Child Health and the Environment, 189–228. Oxford University PressNew York, NY, 2003. http://dx.doi.org/10.1093/oso/9780195135596.003.0008.
Texte intégralGupta, Shifali G., Paranjeet Kaur, Rajwinder G. Kaur et Thakur G. Singh. « Harnessing the Potential of Metabolomic Biomarkers for Metabolic Health ». Dans Biomedical Research Developments for Improved Healthcare, 119–37. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-1922-2.ch007.
Texte intégralNandini, Boregowda, Kiran S. Mawale et Parvatam Giridhar. « The Contemporary Facts Towards In Vitro Production of the Plant-derived Medicinal Metabolites ». Dans In Vitro Propagation and Secondary Metabolite Production from Medicinal Plants : Current Trends (Part 1), 213–64. BENTHAM SCIENCE PUBLISHERS, 2024. http://dx.doi.org/10.2174/9789815165227124010014.
Texte intégralWierzbicki, Anthony S. « Disorders of peroxisomal metabolism in adults ». Dans Oxford Textbook of Medicine, sous la direction de Timothy M. Cox, 2157–73. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198746690.003.0236.
Texte intégralActes de conférences sur le sujet "Specialized metabolome"
van der Hooft, Justin, Madeleine Ernst, Ricardo da Silva, Mingxun Wang, Kyo Bin Kang, Joe Wandy, Simon Rogers, Marnix Medema et Pieter Dorrestein. « Integrated metabolome mining and annotation pipeline accelerates elucidation and prioritisation of specialised metabolites ». Dans 3rd International Electronic Conference on Metabolomics. Basel, Switzerland : MDPI, 2018. http://dx.doi.org/10.3390/iecm-3-05843.
Texte intégral