Littérature scientifique sur le sujet « Spatial omics »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Spatial omics ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Spatial omics"
Schueder, Florian, et Joerg Bewersdorf. « Omics goes spatial epigenomics ». Cell 185, no 23 (novembre 2022) : 4253–55. http://dx.doi.org/10.1016/j.cell.2022.10.014.
Texte intégralLee, Sumin, Amos C. Lee et Sunghoon Kwon. « Abstract 5639 : High throughput spatially resolved laser-activated cell sorting links the genomic molecules with its spatial information ». Cancer Research 83, no 7_Supplement (4 avril 2023) : 5639. http://dx.doi.org/10.1158/1538-7445.am2023-5639.
Texte intégralXu, Tinghui, et Kris Sankaran. « Interactive visualization of spatial omics neighborhoods ». F1000Research 11 (18 juillet 2022) : 799. http://dx.doi.org/10.12688/f1000research.122113.1.
Texte intégralLeMieux, Julianna. « Spatial The Next Omics Frontier ». Genetic Engineering & ; Biotechnology News 40, no 10 (1 octobre 2020) : 18–20. http://dx.doi.org/10.1089/gen.40.10.07.
Texte intégralMoses, Lambda. « From Geospatial to Spatial -Omics ». XRDS : Crossroads, The ACM Magazine for Students 30, no 2 (décembre 2023) : 16–19. http://dx.doi.org/10.1145/3637459.
Texte intégralKim, Meeri. « Mapping Biology with Spatial Omics ». Optics and Photonics News 35, no 4 (1 avril 2024) : 26. http://dx.doi.org/10.1364/opn.35.4.000026.
Texte intégralMa, Yanxia, Nhat Nguyen, Sanjay Singh, Akshay Basi, Duncan Mak, Javier Gomez, Jared Burks, Erin Seely, Frederick Lang et Chibawanye Ene. « EPCO-07. INTEGRATING SPATIALLY RESOLVED MULTI-OMICS DATA TO UNCOVER DYSFUNCTIONAL METABOLISM DRIVEN NETWORKS THAT ENHANCE INFILTRATION OF DIFFUSE GLIOMAS ». Neuro-Oncology 26, Supplement_8 (1 novembre 2024) : viii2. http://dx.doi.org/10.1093/neuonc/noae165.0007.
Texte intégralPalla, Giovanni, Hannah Spitzer, Michal Klein, David Fischer, Anna Christina Schaar, Louis Benedikt Kuemmerle, Sergei Rybakov et al. « Squidpy : a scalable framework for spatial omics analysis ». Nature Methods 19, no 2 (31 janvier 2022) : 171–78. http://dx.doi.org/10.1038/s41592-021-01358-2.
Texte intégralFan, Rong, et Omer Bayraktar. « Special Issue : Spatial Omics ». GEN Biotechnology 2, no 1 (1 février 2023) : 3–4. http://dx.doi.org/10.1089/genbio.2023.29076.cfp.
Texte intégralFan, Rong, et Omer Bayraktar. « Special Issue : Spatial Omics ». GEN Biotechnology 2, no 2 (1 avril 2023) : 61–62. http://dx.doi.org/10.1089/genbio.2023.29076.cfp2.
Texte intégralThèses sur le sujet "Spatial omics"
van, den Bruck David. « Spatial omics in neuronal cells - what goes where and why ? » Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/20232.
Texte intégralIntracellular protein and RNA localization is one of the mayor players in the formation of cell shape, enabling cell agility, cellular differentiation and cell signaling. Various diseases are associated with malfunctions of intracellular molecule transport. There are many known pathways of how and why proteins and RNAs are transported within the cell and where they are located, though there is not much known about the global distribution of proteins and RNAs within the cell. In this study I apply a subcellular fractionation method coupled to multiple omics approaches to investigate the global distribution of mRNAs, noncoding RNAs and proteins in neuronal cells. Neurites and soma from mouse neuroblastoma cells (N1E-115) as well as from Ascl1 induced neurons (Ascl1-iNs) were isolated and the composition of the spatial proteome and transcriptome was examined. The localization of mRNAs correlates significantly with the localization of their corresponding protein products in Ascl1-iNs whereas it does not in the mouse neuroblastoma cell line N1E-115. Comparing these datasets with recently published data of other cell lines and methods it is clear, that the local proteome, transcriptome and translatome of neuronal cells is highly cell type specific. To investigate how spatial protein pools are established I analyzed local pools of newly synthesized proteins revealing that many proteins are synthesized on the spot. RNA localization therefore plays a crucial role in generating local protein pools in these highly polarized cell systems. Additionally, I propose a method to identify on a global scale de novo “zip codes” in these cell systems which would be a great step towards understanding malfunctions in molecule transport.
Schmitz-Linneweber, Christian [Gutachter], Marina [Gutachter] Chekulaeva et Matthias [Gutachter] Selbach. « Spatial omics in neuronal cells - what goes where and why ? / Gutachter : Christian Schmitz-Linneweber, Marina Chekulaeva, Matthias Selbach ». Berlin : Humboldt-Universität zu Berlin, 2019. http://d-nb.info/1200026233/34.
Texte intégralBlampey, Quentin. « Deep learning and computational methods on single-cell and spatial data for precision medicine in oncology ». Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASL116.
Texte intégralPrecision medicine in oncology customizes treatments based on the unique genetic and molecular profiles of patients' tumors, which is crucial for enhancing therapeutic efficacy and minimizing adverse effects. As technological advancements yield increasingly precise data about the tumor microenvironment (TME), the complexity of this data also grows. Notably, spatial data — a recent and promising type of omics data — provides molecular information at the single-cell level while maintaining the spatial context of cells within tissues. To fully exploit this rich and complex data, deep learning is emerging as a powerful approach that overcomes multiple limitations of traditional approaches. This manuscript details the development of new deep learning and computational methods to enhance our analysis of intricate systems like single-cell and spatial data. Three tools are introduced: (i) Scyan, for cell type annotation in cytometry, (ii) Sopa, a general pipeline for spatial omics, and (iii) Novae, a foundation model for spatial omics. These methods are applied to multiple precision medicine projects, exemplifying how they deepen our understanding of cancer biology, facilitating the discovery of new biomarkers and identifying potentially actionable targets for precision medicine
DENTI, VANNA. « Development of multi-omic mass spectrometry imaging approaches to assist clinical investigations ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/365169.
Texte intégralThe field of spatial omics defines the gathering of different techniques that allow the detection of significant alterations of biomolecules in the context of their native tissue or cellular structures. As such, they extend the landscape of biological changes occurring in complex and heterogeneous pathological tissues, such as cancer. However, additional molecular levels, such as lipids and glycans, must be studied to define a more comprehensive molecular snapshot of disease and fully understand the complexity and dynamics beyond pathological condition. Among the spatial-omics techniques, matrix-assisted laser desorption/ionisation (MALDI)-mass spectrometry imaging (MSI) offers a powerful insight into the chemical biology of pathological tissues in a multiplexed approach where several hundreds of biomolecules can be examined within a single experiment. Thus, MALDI-MSI has been readily employed for spatial omics studies of proteins, peptides and N-Glycans on clinical formalin-fixed paraffin-embedded (FFPE) tissue samples. Conversely, MALDI-MSI analysis of lipids has always been considered not feasible on FFPE samples due to the loss of a great amount of lipid content during washing steps with organic solvents, with the remaining solvent-resistant lipids being involved in the formalin cross-links. In this three-year thesis work, novel MALDI-MSI approaches for spatial multi-omics analysis on clinical FFPE tissue samples were developed. The first three publications reported in this thesis focused on the development of protocols for MALDI-MSI of lipids in FFPE samples. In particular, two of them describe a sample preparation method for the detection of positively charged phospholipids ions, mainly phosphatidylcholines (PCs), in clinical clear cell Renal Cell Carcinoma (ccRCC) samples and in a xenograft model of breast cancer. The third publication reports the possibility to use negatively charged phospholipids ions, mainly phosphatidylinositols (PIs), to define lipid signatures able to distinguish colorectal cancers with different amount of tumour infiltrating lymphocytes (TILs). The final work proposes a unique multi-omic MALDI-MSI method for the sequential analysis of lipids, N-Glycans and tryptic peptides on a single FFPE section. Specifically, the method feasibility was first established on murine brain technical replicates. The method was consequently used on ccRCC samples, as a proof of concept, assessing a more comprehensive characterisation of the tumour tissue when combining the multi-level molecular information. Altogether, these findings pave the way for new MSI-based spatial multi-omics approach aiming at an extensive and more precise molecular portrait of disease.
Devaux, Stéphanie. « Spatio-temporal studies of the spinal cord injury through OMICs and physiological approaches ». Thesis, Lille 1, 2016. http://www.theses.fr/2016LIL10073/document.
Texte intégralSpinal cord injury (SCI) belongs to incurable disorders of the CNS. Primary damage and axonal disruption are followed by progressive cascade of secondary deleterious reactions. Although axonal regeneration is initiated, it is quickly repressed due to severe inflammation, lack of trophic support and inhibitory environment. In a balloon-compression SCI rat model the secretomes of the lesion segment and adjacent segments 3 days after SCI were studied and a regionalization of inflammatory and neurotrophic response between the rostral and caudal segments was highlighted. These results were complemented with spatiotemporal study of SCI. Rostral and caudal segments have shown the ability to regenerate due to the presence of immune cells with an anti-inflammatory and neurotrophic phenotype. However, a time lag occurs between segments, with a caudal segment near the lesion expressing inflammatory and apoptotic phenotype. This segment appears to be a potential target for future treatment. Indeed, this segment shows the presence of lectins and RhoA proteins but also the presence of antibodies colocalized with neurons. Therapeutic strategies have focused on the inhibition of these factors in addition to the use of biomaterials. Alginates fill the cavity and create a network facilitating axonal regrowth and have the ability to release factors which would modulate inflammation and stimulate regeneration. These data established spatiotemporal evolution and indicate that we can initiate regenerative processes in the caudal segment if trophic factors are added
Chang, Chih-Wei, et 張至為. « Spatially resolved omics via photoredox catalysis ». Thesis, 2018. http://ndltd.ncl.edu.tw/handle/57mpy4.
Texte intégralLivres sur le sujet "Spatial omics"
Spatial Omics : Methods for Reconstructing the Spatial Heterogeneity of Biological Tissue. Elsevier Science & Technology, 2023.
Trouver le texte intégralMcgourty, Kieran. Spatial Omics : Methods for Reconstructing the Spatial Heterogeneity of Biological Tissue. Elsevier Science & Technology Books, 2023.
Trouver le texte intégralSiegel, Tiffany Porta. MALDI Mass Spectrometry Imaging : From Fundamentals to Spatial Omics. Royal Society of Chemistry, The, 2021.
Trouver le texte intégralSiegel, Tiffany Porta. MALDI Mass Spectrometry Imaging : From Fundamentals to Spatial Omics. Royal Society of Chemistry, The, 2021.
Trouver le texte intégralSiegel, Tiffany Porta. MALDI Mass Spectrometry Imaging : From Fundamentals to Spatial Omics. Royal Society of Chemistry, The, 2021.
Trouver le texte intégralPineda, Jesús, et Nathalie Reyns, dir. Larval Transport in the Coastal Zone : Biological and Physical Processes. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786962.003.0011.
Texte intégralChapitres de livres sur le sujet "Spatial omics"
Schrod, Stefan, Niklas Lück, Robert Lohmayer, Stefan Solbrig, Tina Wipfler, Katherine H. Shutta, Marouen Ben Guebila et al. « SpaCeNet : Spatial Cellular Networks from Omics Data ». Dans Lecture Notes in Computer Science, 344–47. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-1-0716-3989-4_27.
Texte intégralGuo, Pengfei, et Yanxiang Deng. « Spatial Omics : Navigating Neuroscience Research into the New Era ». Dans Advances in Neurobiology, 133–49. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-69188-1_6.
Texte intégralBiradar, Shantagoud, Chandana Korrapati, Ramya J. Krishna et Nagashri Nanjundeshwara. « Spatial Omics and Gene Circuits ». Dans Advances in Medical Diagnosis, Treatment, and Care, 383–408. IGI Global, 2025. https://doi.org/10.4018/979-8-3693-7728-4.ch014.
Texte intégralMa, Yinxing. « CRISPR screening meets spatial omics : Opportunities and challenges ». Dans Reference Module in Biomedical Sciences. Elsevier, 2024. http://dx.doi.org/10.1016/b978-0-443-14064-8.00023-0.
Texte intégralBiradar, Shantagoud, Chaaya Suresh, Nagashri Nanjundeshwara et Ramya Raghavan. « Spatially Variable Genes ». Dans Advances in Medical Diagnosis, Treatment, and Care, 1–28. IGI Global, 2025. https://doi.org/10.4018/979-8-3693-7728-4.ch001.
Texte intégralSwargam, Sandeep, et Indu Kumari. « An Introduction to the Integration of Systems Biology and OMICS data for Animal Scientists ». Dans Systems Biology, Bioinformatics and Livestock Science, 1–16. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815165616123010006.
Texte intégralActes de conférences sur le sujet "Spatial omics"
Wang, Bo, Wei Liu, Jiawei Luo, Xiangtao Chen et Chee Keong Kwoh. « SMMGCL : a novel multi-level graph contrastive learning framework for integrating spatial multi-omics data ». Dans 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 1213–18. IEEE, 2024. https://doi.org/10.1109/bibm62325.2024.10822097.
Texte intégralMartinez Martinez, Damian C., et Margarita S. Narducci. « Spatial Variation Prediction and Mapping of Soil Temperature ». Dans 2020 Virtual Symposium in Plant Omics Sciences (OMICAS). IEEE, 2020. http://dx.doi.org/10.1109/omicas52284.2020.9535656.
Texte intégralBaker, Ethan, Aaron Mayer et Alexandro E. Trevino. « 899 emObject : domain specific data abstraction for spatial omics ». Dans SITC 38th Annual Meeting (SITC 2023) Abstracts. BMJ Publishing Group Ltd, 2023. http://dx.doi.org/10.1136/jitc-2023-sitc2023.0899.
Texte intégral« How to integrate Spatial Omics techniques in your lab/core facility ». Dans European Light Microscopy Initiative 2024. Royal Microscopical Society, 2024. http://dx.doi.org/10.22443/rms.elmi2024.30.
Texte intégralNilges, Benedikt S., Paul Kießling, Mar MMuniz Moreno, Niklas Klümper, Markus Eckstein et Christoph Kuppe. « 214 Decoding ADC-response in urothelial cancer with spatial multi-omics ». Dans SITC 39th Annual Meeting (SITC 2024) Abstracts, A246. BMJ Publishing Group Ltd, 2024. http://dx.doi.org/10.1136/jitc-2024-sitc2024.0214.
Texte intégralShepherd, Douglas. « Spatial '-omics' in large samples using high numerical aperture oblique plane microscopy ». Dans Virtual 12th Light Sheet Fluorescence Microscopy Conference 2020. Royal Microscopical Society, 2020. http://dx.doi.org/10.22443/rms.lsfm2020.42.
Texte intégralLokhande, Lavanya, Daniel Nilsson, Joana Rodrigues, May Hassan, Lina Olsson, Anna Porwit, Anna S. Gerdtsson, Mats Jerkeman et Sara Ek. « 1480 Spatially resolved T-cell microenvironment in mantle cell lymphoma using combined image analysis and spatial omics ». Dans SITC 38th Annual Meeting (SITC 2023) Abstracts. BMJ Publishing Group Ltd, 2023. http://dx.doi.org/10.1136/jitc-2023-sitc2023.1480.
Texte intégralEng, Christine L., Joe P. Yeong, Andy Nguyen, Amanda Y. Guo, Brenda Tay, Mei Mei Chang, Sherlly Lim et al. « Abstract 3872 : Spatial and multi-omics characterization of the tumor microenvironment in colorectal cancer ». Dans Proceedings : AACR Annual Meeting 2020 ; April 27-28, 2020 and June 22-24, 2020 ; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-3872.
Texte intégralElston, Katherine, Jessica Runyon, Vijay Baichwal, Arne Christians, Weston Stauffer, Analise Leddy et Savannah Santoro. « 1474 Investigating the molecular architecture of triple positive breast cancer samples with spatial omics technologies ». Dans SITC 38th Annual Meeting (SITC 2023) Abstracts. BMJ Publishing Group Ltd, 2023. http://dx.doi.org/10.1136/jitc-2023-sitc2023.1474.
Texte intégralAzher, Zarif L., Michael Fatemi, Yunrui Lu, Gokul Srinivasan, Alos B. Diallo, Brock C. Christensen, Lucas A. Salas et al. « Spatial Omics Driven Crossmodal Pretraining Applied to Graph-based Deep Learning for Cancer Pathology Analysis ». Dans Pacific Symposium on Biocomputing 2024. WORLD SCIENTIFIC, 2023. http://dx.doi.org/10.1142/9789811286421_0036.
Texte intégralRapports d'organisations sur le sujet "Spatial omics"
Fait, Aaron, Grant Cramer et Avichai Perl. Towards improved grape nutrition and defense : The regulation of stilbene metabolism under drought. United States Department of Agriculture, mai 2014. http://dx.doi.org/10.32747/2014.7594398.bard.
Texte intégralPokrzywinski, Kaytee, Kaitlin Volk, Taylor Rycroft, Susie Wood, Tim Davis et Jim Lazorchak. Aligning research and monitoring priorities for benthic cyanobacteria and cyanotoxins : a workshop summary. Engineer Research and Development Center (U.S.), août 2021. http://dx.doi.org/10.21079/11681/41680.
Texte intégral