Littérature scientifique sur le sujet « Sparsification de graphe »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Sparsification de graphe ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Sparsification de graphe"
Chen, Yuhan, Haojie Ye, Sanketh Vedula, Alex Bronstein, Ronald Dreslinski, Trevor Mudge et Nishil Talati. « Demystifying Graph Sparsification Algorithms in Graph Properties Preservation ». Proceedings of the VLDB Endowment 17, no 3 (novembre 2023) : 427–40. http://dx.doi.org/10.14778/3632093.3632106.
Texte intégralParchas, Panos, Nikolaos Papailiou, Dimitris Papadias et Francesco Bonchi. « Uncertain Graph Sparsification ». IEEE Transactions on Knowledge and Data Engineering 30, no 12 (1 décembre 2018) : 2435–49. http://dx.doi.org/10.1109/tkde.2018.2819651.
Texte intégralBatson, Joshua, Daniel A. Spielman, Nikhil Srivastava et Shang-Hua Teng. « Spectral sparsification of graphs ». Communications of the ACM 56, no 8 (août 2013) : 87–94. http://dx.doi.org/10.1145/2492007.2492029.
Texte intégralSpielman, Daniel A., et Shang-Hua Teng. « Spectral Sparsification of Graphs ». SIAM Journal on Computing 40, no 4 (janvier 2011) : 981–1025. http://dx.doi.org/10.1137/08074489x.
Texte intégralLi, Jiayu, Tianyun Zhang, Hao Tian, Shengmin Jin, Makan Fardad et Reza Zafarani. « Graph sparsification with graph convolutional networks ». International Journal of Data Science and Analytics 13, no 1 (13 octobre 2021) : 33–46. http://dx.doi.org/10.1007/s41060-021-00288-8.
Texte intégralSun, He, et Luca Zanetti. « Distributed Graph Clustering and Sparsification ». ACM Transactions on Parallel Computing 6, no 3 (5 décembre 2019) : 1–23. http://dx.doi.org/10.1145/3364208.
Texte intégralSpielman, Daniel A., et Nikhil Srivastava. « Graph Sparsification by Effective Resistances ». SIAM Journal on Computing 40, no 6 (janvier 2011) : 1913–26. http://dx.doi.org/10.1137/080734029.
Texte intégralDanciu, Daniel, Mikhail Karasikov, Harun Mustafa, André Kahles et Gunnar Rätsch. « Topology-based sparsification of graph annotations ». Bioinformatics 37, Supplement_1 (1 juillet 2021) : i169—i176. http://dx.doi.org/10.1093/bioinformatics/btab330.
Texte intégralFung, Wai-Shing, Ramesh Hariharan, Nicholas J. A. Harvey et Debmalya Panigrahi. « A General Framework for Graph Sparsification ». SIAM Journal on Computing 48, no 4 (janvier 2019) : 1196–223. http://dx.doi.org/10.1137/16m1091666.
Texte intégralBroutin, Nicolas, Luc Devroye et Gábor Lugosi. « Almost optimal sparsification of random geometric graphs ». Annals of Applied Probability 26, no 5 (octobre 2016) : 3078–109. http://dx.doi.org/10.1214/15-aap1170.
Texte intégralThèses sur le sujet "Sparsification de graphe"
Petit, Claude. « E︠́chantillonnage de données : acquisition comprimée et réduction de graphe ». Electronic Thesis or Diss., Université de Rennes (2023-....), 2024. http://www.theses.fr/2024URENS049.
Texte intégralIn this thesis, we study three aspects of the dimensionality reduction problem. The first concerns database compression. We propose several sampling algorithms that preserve the information contained in the data, along with two applications in matrix conditioning and compressive sensing. These algorithms are deterministic, and their low complexity makes them an interesting alternative to the state-of-the-art algorithms. The second aspect addressed is graph reduction. We aim to reduce the number of edges, while attempting to preserve the graph’s connectivity. We develop two iterative, deterministic, and low-complexity algorithms that approximate the solution to this NP-hard problem. We also present a possible application in simplifying the underlying graph of a Graph Neural Network. The third part of the thesis deals with compressive sensing and provides a statistical analysis of a reconstruction algorithm for sparse signals. In the context of an asymptotic model where both the measurement matrix and the sparse signal are random, and the size parameters tend to infinity at the same rate, we show that the probability of success at a given iteration tends to 1
Shah, Shivani. « Graph sparsification and unsupervised machine learning for metagenomic binning ». Thesis, Tours, 2019. http://theses.scd.univ-tours.fr/index.php?fichier=2019/shivani.shah_18225.pdf.
Texte intégralMetagenomics is the field biology that relates to the study of genomic content of microbial communities directly in their natural environments. The metagenomic data is generated by sequencing technology that take the enviormental samples as the input. The generated data is composed of short fragments of DNA (called reads), which originate from genomes of all species present in the sample. The datasets size range from thousands to millions of reads. One of the steps of metagenomic data analysis is binning of the reads. In binning groups (called bins) are to be formed such that each group is composed of reads which are likely to originate from the same specie or specie family. It has essentially been treated as a task of clustering in the metagenomic literature. One of the challenges in binning occurs due to the large size of the datasets. The method overwhelms the computational resources required while performing the task. Hence the development of binning approaches which are scalable to large datasets is required.In this thesis, we address this issue by proposing a scalable method to perform binning. We position our work among the compositional based binning approaches (use of short kmers) and in completely unsupervised context. On order to decrease the complexity of the binning task, methods are proposed to perform sparsification of the data prior to clustering. The development of the approach has been performed in two steps. First the idea has been evaluated on smaller metagenomic datasets (composed of few thousands of points). In the second step, we propose to scale this approach to larger datasets (composed of Millions of points) with similarity based indexing methods (LSH approaches). There are three major contributions of the thesis.First, we propose the idea of performing sparsification of the data with proximity graphs, prior to clustering. The proximity graphs are built on the data to capture pair-wise relationships between data points that are relevant for clustering. Then we leverage community detection algorithms on these graphs to identify clusters from the data. An exploratory study has been performed with several proximity graphs and community detection algorithm on three metagenomic datasets. Based on this study we propose an approach named ProxiClust with KNN graph and Louvain community detection to perform binning.Second, to scale this approach to larger datasets the distance matrix in the pipeline is replaced with hash tables built from Sim-hash LSH approach. We introduce two strategies to build proximity graphs from the hash tables: 1) Microclusters graph and 2) Approximate k nearest neighbour graph. The performance of these graphs have been evaluated on large MC datasets. The performance and limitations of these graphs are discussed. The baseline evaluation of these datasets have also been performed to determine their clustering difficulty. Based on this study we propose Mutual-KNN graph to be the appropriate proximity graph for the large datasets. This proposal has also evaluated and confirmed on the CAMI benchmark metagenomic datasets.Lastly, we examine alternative hashing approaches to build better quality hash tables. A data-dependent hashing approach ITQ and orthogonal version of Sim-hash have been included. Two new data dependent hashing approaches named ITQ-SH and ITQ-OrthSH are introduced. All the hashing approaches have been evaluated w.r.t their ability to hash the MC datasets with high precision and recall. AndThe introduction of Mutual-KNN as the appropriate proximity graph has led to new challenges in the pipeline. First, large number of clusters are generated due to high number of components in the Mutual-KNN graph. So, in order to obtain appropriate number of clusters, a strategy needs to be devised to merge the similar clusters. Also an approach to build Mutual-KNN graph from hash tables needs to be designed. This would complete the ProxiClust pipeline for the large datasets
Ortmann, Mark [Verfasser]. « Combinatorial Algorithms for Graph Sparsification / Mark Ortmann ». Konstanz : Bibliothek der Universität Konstanz, 2017. http://d-nb.info/1173616438/34.
Texte intégralDi, Jinchao. « Gene Co-expression Network Mining Using Graph Sparsification ». The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1367583964.
Texte intégralMachimada, Machaiah Chittiappa <1993>. « Graph Sparsification and Semi-Supervised Learning : an Experimental Study ». Master's Degree Thesis, Università Ca' Foscari Venezia, 2021. http://hdl.handle.net/10579/19404.
Texte intégralWang, Guan. « STREAMING HYPERGRAPH PARTITION FOR MASSIVE GRAPHS ». Kent State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=kent1385097649.
Texte intégralAsathulla, Mudabir Kabir. « A Sparsification Based Algorithm for Maximum-Cardinality Bipartite Matching in Planar Graphs ». Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/88080.
Texte intégralMS
Wang, Nan. « A Framework of Transforming Vertex Deletion Algorithm to Edge Deletion Algorithm ». University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1504878748832156.
Texte intégralChakeri, Alireza. « Scalable Unsupervised Learning with Game Theory ». Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/6616.
Texte intégralLiang, Weifa, et wliang@cs anu edu au. « Designing Efficient Parallel Algorithms for Graph Problems ». The Australian National University. Department of Computer Science, 1997. http://thesis.anu.edu.au./public/adt-ANU20010829.114536.
Texte intégralChapitres de livres sur le sujet "Sparsification de graphe"
Ahmed, Reyan, Keaton Hamm, Stephen Kobourov, Mohammad Javad Latifi Jebelli, Faryad Darabi Sahneh et Richard Spence. « Multi-priority Graph Sparsification ». Dans Lecture Notes in Computer Science, 1–12. Cham : Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-34347-6_1.
Texte intégralGollub, Tim, et Benno Stein. « Unsupervised Sparsification of Similarity Graphs ». Dans Studies in Classification, Data Analysis, and Knowledge Organization, 71–79. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10745-0_7.
Texte intégralEscolano, Francisco, Manuel Curado, Silvia Biasotti et Edwin R. Hancock. « Shape Simplification Through Graph Sparsification ». Dans Graph-Based Representations in Pattern Recognition, 13–22. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58961-9_2.
Texte intégralEades, Peter, Quan Nguyen et Seok-Hee Hong. « Drawing Big Graphs Using Spectral Sparsification ». Dans Lecture Notes in Computer Science, 272–86. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73915-1_22.
Texte intégralAhn, Kook Jin, Sudipto Guha et Andrew McGregor. « Spectral Sparsification in Dynamic Graph Streams ». Dans Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 1–10. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40328-6_1.
Texte intégralLaeuchli, Jesse. « Fast Community Detection with Graph Sparsification ». Dans Advances in Knowledge Discovery and Data Mining, 291–304. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47426-3_23.
Texte intégralUpadhyay, Jalaj. « Random Projections, Graph Sparsification, and Differential Privacy ». Dans Advances in Cryptology - ASIACRYPT 2013, 276–95. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-42033-7_15.
Texte intégralAhn, Kook Jin, et Sudipto Guha. « Graph Sparsification in the Semi-streaming Model ». Dans Automata, Languages and Programming, 328–38. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02930-1_27.
Texte intégralHossain, Tanvir, Khaled Mohammed Saifuddin, Muhammad Ifte Khairul Islam, Farhan Tanvir et Esra Akbas. « Tackling Oversmoothing in GNN via Graph Sparsification ». Dans Lecture Notes in Computer Science, 161–79. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-70371-3_10.
Texte intégralJambulapati, Arun, Sushant Sachdeva, Aaron Sidford, Kevin Tian et Yibin Zhao. « Eulerian Graph Sparsification by Effective Resistance Decomposition ». Dans Proceedings of the 2025 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 1607–50. Philadelphia, PA : Society for Industrial and Applied Mathematics, 2025. https://doi.org/10.1137/1.9781611978322.50.
Texte intégralActes de conférences sur le sujet "Sparsification de graphe"
Hashemi, Mohammad, Shengbo Gong, Juntong Ni, Wenqi Fan, B. Aditya Prakash et Wei Jin. « A Comprehensive Survey on Graph Reduction : Sparsification, Coarsening, and Condensation ». Dans Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California : International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/891.
Texte intégralGong, Zheng, Guifeng Wang, Ying Sun, Qi Liu, Yuting Ning, Hui Xiong et Jingyu Peng. « Beyond Homophily : Robust Graph Anomaly Detection via Neural Sparsification ». Dans Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California : International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/234.
Texte intégralHuang, Guoquan, Michael Kaess et John J. Leonard. « Consistent sparsification for graph optimization ». Dans 2013 European Conference on Mobile Robots (ECMR). IEEE, 2013. http://dx.doi.org/10.1109/ecmr.2013.6698835.
Texte intégralMazuran, Mladen, Tipaldi Gian Diego, Spinello Luciano et Wolfram Burgard. « Nonlinear Graph Sparsification for SLAM ». Dans Robotics : Science and Systems 2014. Robotics : Science and Systems Foundation, 2014. http://dx.doi.org/10.15607/rss.2014.x.040.
Texte intégralParchas, Panos, Nikolaos Papailiou, Dimitris Papadias et Francesco Bonchi. « Uncertain Graph Sparsification (Extended Abstract) ». Dans 2019 IEEE 35th International Conference on Data Engineering (ICDE). IEEE, 2019. http://dx.doi.org/10.1109/icde.2019.00265.
Texte intégralSpielman, Daniel A., et Nikhil Srivastava. « Graph sparsification by effective resistances ». Dans the 40th annual ACM symposium. New York, New York, USA : ACM Press, 2008. http://dx.doi.org/10.1145/1374376.1374456.
Texte intégralSatuluri, Venu, Srinivasan Parthasarathy et Yiye Ruan. « Local graph sparsification for scalable clustering ». Dans the 2011 international conference. New York, New York, USA : ACM Press, 2011. http://dx.doi.org/10.1145/1989323.1989399.
Texte intégralFung, Wai Shing, Ramesh Hariharan, Nicholas J. A. Harvey et Debmalya Panigrahi. « A general framework for graph sparsification ». Dans the 43rd annual ACM symposium. New York, New York, USA : ACM Press, 2011. http://dx.doi.org/10.1145/1993636.1993647.
Texte intégralWu, Hang-Yang, et Yi-Ling Chen. « Graph Sparsification with Generative Adversarial Network ». Dans 2020 IEEE International Conference on Data Mining (ICDM). IEEE, 2020. http://dx.doi.org/10.1109/icdm50108.2020.00172.
Texte intégralCharalambides, Neophytos, et Alfred O. Hero. « Graph Sparsification by Approximate matrix Multiplication ». Dans 2023 IEEE Statistical Signal Processing Workshop (SSP). IEEE, 2023. http://dx.doi.org/10.1109/ssp53291.2023.10208048.
Texte intégral