Articles de revues sur le sujet « Somniosus Microcephalus »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Somniosus Microcephalus.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Somniosus Microcephalus ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

MacNeil, M. A., B. C. McMeans, N. E. Hussey, P. Vecsei, J. Svavarsson, K. M. Kovacs, C. Lydersen et al. « Biology of the Greenland shark Somniosus microcephalus ». Journal of Fish Biology 80, no 5 (avril 2012) : 991–1018. http://dx.doi.org/10.1111/j.1095-8649.2012.03257.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Yano, K., J. D. Stevens et L. J. V. Compagno. « Distribution, reproduction and feeding of the Greenland shark Somniosus (Somniosus) microcephalus, with notes on two other sleeper sharks, Somniosus (Somniosus) pacificus and Somniosus (Somniosus) antarcticus ». Journal of Fish Biology 70, no 2 (février 2007) : 374–90. http://dx.doi.org/10.1111/j.1095-8649.2007.01308.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Russo, Roberta, Daniela Giordano, Gianluca Paredi, Francesco Marchesani, Lisa Milazzo, Giovanna Altomonte, Pietro Del Canale et al. « The Greenland shark Somniosus microcephalus—Hemoglobins and ligand-binding properties ». PLOS ONE 12, no 10 (12 octobre 2017) : e0186181. http://dx.doi.org/10.1371/journal.pone.0186181.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Nielsen, Julius, Rasmus B. Hedeholm, Arve Lynghammar, Leon M. McClusky, Bjørn Berland, John F. Steffensen et Jørgen S. Christiansen. « Assessing the reproductive biology of the Greenland shark (Somniosus microcephalus) ». PLOS ONE 15, no 10 (7 octobre 2020) : e0238986. http://dx.doi.org/10.1371/journal.pone.0238986.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Augustine, Starrlight, Konstadia Lika et Sebastiaan A. L. M. Kooijman. « Comment on the ecophysiology of the Greenland shark, Somniosus microcephalus ». Polar Biology 40, no 12 (5 juillet 2017) : 2429–33. http://dx.doi.org/10.1007/s00300-017-2154-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Carter, Anthony M., et Hiroaki Soma. « Viviparity in the longest-living vertebrate, the Greenland shark (Somniosus microcephalus) ». Placenta 97 (août 2020) : 26–28. http://dx.doi.org/10.1016/j.placenta.2020.05.014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Бородавкина, М. В., Н. В. Чернова et Н. А. Чекменева. « О новых случаях регистрации гренландской полярной акулы Somniosus microcephalus в Карском море ». Вопросы ихтиологии 59, no 4 (2019) : 487–91. http://dx.doi.org/10.1134/s0042875219030020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Cotronei, Salvatore, Karla Pozo, Ondřej Audy, Petra Přibylová et Simonetta Corsolini. « Contamination Profile of DDTs in the Shark Somniosus microcephalus from Greenland Seawaters ». Bulletin of Environmental Contamination and Toxicology 101, no 1 (29 mai 2018) : 7–13. http://dx.doi.org/10.1007/s00128-018-2371-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Strid, Anna, Christoffer Bruhn, Ed Sverko, Jörundur Svavarsson, Gregg Tomy et Åke Bergman. « Brominated and chlorinated flame retardants in liver of Greenland shark (Somniosus microcephalus) ». Chemosphere 91, no 2 (avril 2013) : 222–28. http://dx.doi.org/10.1016/j.chemosphere.2012.12.059.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Borodavkina, M. V., N. V. Chernova et N. A. Chekmeneva. « About New Findings of the Greenland Shark Somniosus microcephalus in the Kara Sea ». Journal of Ichthyology 59, no 4 (juillet 2019) : 623–27. http://dx.doi.org/10.1134/s0032945219030020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Nielsen, J., R. B. Hedeholm, J. Heinemeier, P. G. Bushnell, J. S. Christiansen, J. Olsen, C. B. Ramsey et al. « Eye lens radiocarbon reveals centuries of longevity in the Greenland shark (Somniosus microcephalus) ». Science 353, no 6300 (11 août 2016) : 702–4. http://dx.doi.org/10.1126/science.aaf1703.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Herbert, N. A., P. V. Skov, B. Tirsgaard, P. G. Bushnell, R. W. Brill, C. Harvey Clark et J. F. Steffensen. « Blood O2 affinity of a large polar elasmobranch, the Greenland shark Somniosus microcephalus ». Polar Biology 40, no 11 (20 juin 2017) : 2297–305. http://dx.doi.org/10.1007/s00300-017-2142-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Strid, Anna, Hrönn Jörundsdóttir, Olaf Päpke, Jörundur Svavarsson et Åke Bergman. « Dioxins and PCBs in Greenland shark (Somniosus microcephalus) from the North-East Atlantic ». Marine Pollution Bulletin 54, no 9 (septembre 2007) : 1514–22. http://dx.doi.org/10.1016/j.marpolbul.2007.04.018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Nielsen, Julius, Rasmus B. Hedeholm, Malene Simon et John F. Steffensen. « Distribution and feeding ecology of the Greenland shark (Somniosus microcephalus) in Greenland waters ». Polar Biology 37, no 1 (10 octobre 2013) : 37–46. http://dx.doi.org/10.1007/s00300-013-1408-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Hussey, Nigel E., Aurelie Cosandey-Godin, Ryan P. Walter, Kevin J. Hedges, Melanie VanGerwen-Toyne, Amanda N. Barkley, Steven T. Kessel et Aaron T. Fisk. « Juvenile Greenland sharks Somniosus microcephalus (Bloch & ; Schneider, 1801) in the Canadian Arctic ». Polar Biology 38, no 4 (6 novembre 2014) : 493–504. http://dx.doi.org/10.1007/s00300-014-1610-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Walter, Ryan P., Denis Roy, Nigel E. Hussey, Björn Stelbrink, Kit M. Kovacs, Christian Lydersen, Bailey C. McMeans et al. « Origins of the Greenland shark (Somniosus microcephalus ) : Impacts of ice-olation and introgression ». Ecology and Evolution 7, no 19 (8 septembre 2017) : 8113–25. http://dx.doi.org/10.1002/ece3.3325.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Ferrando, S., L. Gallus, L. Ghigliotti, M. Vacchi, J. Nielsen, J. S. Christiansen et E. Pisano. « Gross morphology and histology of the olfactory organ of the Greenland shark Somniosus microcephalus ». Polar Biology 39, no 8 (23 décembre 2015) : 1399–409. http://dx.doi.org/10.1007/s00300-015-1862-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Lydersen, Christian, Aaron T. Fisk et Kit M. Kovacs. « A review of Greenland shark (Somniosus microcephalus) studies in the Kongsfjorden area, Svalbard Norway ». Polar Biology 39, no 11 (29 avril 2016) : 2169–78. http://dx.doi.org/10.1007/s00300-016-1949-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Ferrando, S., L. Gallus, L. Ghigliotti, M. Vacchi, A. Amaroli, J. Nielsen, J. S. Christiansen et E. Pisano. « Anatomy of the olfactory bulb in Greenland shark Somniosus microcephalus (Bloch & ; Schneider, 1801) ». Journal of Applied Ichthyology 33, no 2 (8 février 2017) : 263–69. http://dx.doi.org/10.1111/jai.13303.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Anthoni, Uffe, Carsten Christophersen, Lone Gram, Niels H. Nielsen et Per Nielsen. « Poisonings from flesh of the Greenland shark Somniosus microcephalus may be due to trimethylamine ». Toxicon 29, no 10 (janvier 1991) : 1205–12. http://dx.doi.org/10.1016/0041-0101(91)90193-u.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Leclerc, Lisa-Marie, Christian Lydersen, Tore Haug, Kevin A. Glover, Aaron T. Fisk et Kit M. Kovacs. « Greenland sharks (Somniosus microcephalus) scavenge offal from minke (Balaenoptera acutorostrata) whaling operations in Svalbard (Norway) ». Polar Research 30, no 1 (janvier 2011) : 7342. http://dx.doi.org/10.3402/polar.v30i0.7342.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Harvey-Clark, Chris J., Jeffrey J. Gallant et John H. Batt. « Vision and its Relationship to Novel Behaviour in St. Lawrence River Greenland Sharks, Somniosus microcephalus ». Canadian Field-Naturalist 119, no 3 (1 juillet 2005) : 355. http://dx.doi.org/10.22621/cfn.v119i3.145.

Texte intégral
Résumé :
Rarely observed Greenland Sharks, Somniosus microcephalus, were recorded at shallow depths by divers employing underwater video in the St. Lawrence River, in association with a seasonal concentration of Capelin (Mallotus villosus) in May-June 2003. We recorded unique proximity-induced display motor patterns in these sharks, which have not been recorded in underwater observations of Arctic Greenland Sharks. Arctic sharks have a high incidence of blindness due to an ocular copepod parasite, Ommatokoita elongata. The absence of parasite-induced blindness in St. Lawrence Greenland Sharks, in contrast to endemic blindness in the Arctic population, may allow sharks in this region to more readily visually recognize the presence of conspecifics and potential prey. Improved visual acuity may therefore allow St. Lawrence River sharks to express a different behavioural repertoire than Arctic sharks, with resulting changes in intra- and inter-specific aggression and predatory behaviour.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Fujiwara, Yoshihiro, Yasuyuki Matsumoto, Takumi Sato, Masaru Kawato et Shinji Tsuchida. « First record of swimming speed of the Pacific sleeper shark Somniosus pacificus using a baited camera array ». Journal of the Marine Biological Association of the United Kingdom 101, no 2 (mars 2021) : 457–64. http://dx.doi.org/10.1017/s0025315421000321.

Texte intégral
Résumé :
AbstractThe Pacific sleeper shark Somniosus pacificus is one of the largest predators in deep Suruga Bay, Japan. A single individual of the sleeper shark (female, ~300 cm in total length) was observed with two baited camera systems deployed simultaneously on the deep seafloor in the bay. The first arrival was recorded 43 min after the deployment of camera #1 on 21 July 2016 at a depth of 609 m. The shark had several remarkable features, including the snout tangled in a broken fishing line, two torn anteriormost left-gill septums, and a parasitic copepod attached to each eye. The same individual appeared at camera #2, which was deployed at a depth of 603 m, ~37 min after it disappeared from camera #1 view. Finally, the same shark returned to camera #1 ~31 min after leaving camera #2. The distance between the two cameras was 436 m, and the average groundspeed and waterspeed of the shark were 0.21 and 0.25 m s−1, respectively, which were comparable with those of the Greenland shark Somniosus microcephalus (0.22–0.34 m s−1) exhibiting the slowest comparative swimming speed among fish species adjusted for size. The ambient water temperature of the Pacific sleeper shark was 5.3 °C, which is considerably higher than that of the Greenland shark (~2 °C). Such a low swimming speed might be explained by the ‘visual interactions hypothesis’, but it is not a consequence of the negative effects of cold water on their locomotor organs.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Ademollo, N., L. Patrolecco, J. Rauseo, J. Nielsen et S. Corsolini. « Bioaccumulation of nonylphenols and bisphenol A in the Greenland shark Somniosus microcephalus from the Greenland seawaters ». Microchemical Journal 136 (janvier 2018) : 106–12. http://dx.doi.org/10.1016/j.microc.2016.11.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Santaquiteria, Aintzane, Julius Nielsen, Terje Klemetsen, Nils P. Willassen et Kim Præbel. « The complete mitochondrial genome of the long-lived Greenland shark (Somniosus microcephalus) : characterization and phylogenetic position ». Conservation Genetics Resources 9, no 3 (31 janvier 2017) : 351–55. http://dx.doi.org/10.1007/s12686-016-0676-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

McMeans, Bailey C., Michael T. Arts et Aaron T. Fisk. « Impacts of food web structure and feeding behavior on mercury exposure in Greenland Sharks (Somniosus microcephalus) ». Science of The Total Environment 509-510 (mars 2015) : 216–25. http://dx.doi.org/10.1016/j.scitotenv.2014.01.128.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Corsolini, Simonetta, Stefania Ancora, Nicola Bianchi, Giacomo Mariotti, Claudio Leonzio et Jørgen S. Christiansen. « Organotropism of persistent organic pollutants and heavy metals in the Greenland shark Somniosus microcephalus in NE Greenland ». Marine Pollution Bulletin 87, no 1-2 (octobre 2014) : 381–87. http://dx.doi.org/10.1016/j.marpolbul.2014.07.021.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Molde, Kristine, Tomasz M. Ciesielski, Aaron T. Fisk, Christian Lydersen, Kit M. Kovacs, Eugen G. Sørmo et Bjørn M. Jenssen. « Associations between vitamins A and E and legacy POP levels in highly contaminated Greenland sharks (Somniosus microcephalus) ». Science of The Total Environment 442 (janvier 2013) : 445–54. http://dx.doi.org/10.1016/j.scitotenv.2012.10.012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Stokesbury, Michael J. W., Chris Harvey-Clark, Jeffrey Gallant, Barbara A. Block et Ransom A. Myers. « Movement and environmental preferences of Greenland sharks (Somniosus microcephalus) electronically tagged in the St. Lawrence Estuary, Canada ». Marine Biology 148, no 1 (21 juillet 2005) : 159–65. http://dx.doi.org/10.1007/s00227-005-0061-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Fisk, AT, C. Lydersen et KM Kovacs. « Archival pop-off tag tracking of Greenland sharks Somniosus microcephalus in the High Arctic waters of Svalbard, Norway ». Marine Ecology Progress Series 468 (14 novembre 2012) : 255–65. http://dx.doi.org/10.3354/meps09962.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

McMeans, Bailey C., Michael T. Arts, Christian Lydersen, Kit M. Kovacs, Haakon Hop, Stig Falk-Petersen et Aaron T. Fisk. « The role of Greenland sharks (Somniosus microcephalus) in an Arctic ecosystem : assessed via stable isotopes and fatty acids ». Marine Biology 160, no 5 (22 février 2013) : 1223–38. http://dx.doi.org/10.1007/s00227-013-2174-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Strid, Anna, Ioannis Athanassiadis, Maria Athanasiadou, Jörundur Svavarsson, Olaf Päpke et Åke Bergman. « Neutral and phenolic brominated organic compounds of natural and anthropogenic origin in northeast Atlantic Greenland shark (Somniosus microcephalus) ». Environmental Toxicology and Chemistry 29, no 12 (1 octobre 2010) : 2653–59. http://dx.doi.org/10.1002/etc.330.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Cosandey-Godin, Aurelie, Elias Teixeira Krainski, Boris Worm et Joanna Mills Flemming. « Applying Bayesian spatiotemporal models to fisheries bycatch in the Canadian Arctic ». Canadian Journal of Fisheries and Aquatic Sciences 72, no 2 (février 2015) : 186–97. http://dx.doi.org/10.1139/cjfas-2014-0159.

Texte intégral
Résumé :
Understanding and reducing the incidence of accidental bycatch, particularly for vulnerable species such as sharks, is a major challenge for contemporary fisheries management. Here we establish integrated nested Laplace approximations (INLA) and stochastic partial differential equations (SPDE) as two powerful tools for modelling patterns of bycatch through time and space. These novel, computationally fast approaches are applied to fit zero-inflated hierarchical spatiotemporal models to Greenland shark (Somniosus microcephalus) bycatch data from the Baffin Bay Greenland halibut (Reinhardtius hippoglossoides) gillnet fishery. Results indicate that Greenland shark bycatch is clustered in space and time, varies significantly from year to year, and there are both tractable factors (number of gillnet panels, total Greenland halibut catch) and physical features (bathymetry) leading to the high incidence of Greenland shark bycatch. Bycatch risk could be reduced by limiting access to spatiotemporal hotspots or by establishing a maximum number of panels per haul. Our method explicitly models the spatiotemporal correlation structure inherent in bycatch data at a very reasonable computational cost, such that the forecasting of bycatch patterns and simulating conservation strategies becomes more accessible.
Styles APA, Harvard, Vancouver, ISO, etc.
34

McMeans, Bailey C., Jörundur Svavarsson, Susan Dennard et Aaron T. Fisk. « Diet and resource use among Greenland sharks (Somniosus microcephalus) and teleosts sampled in Icelandic waters, using δ13C, δ15N, and mercury ». Canadian Journal of Fisheries and Aquatic Sciences 67, no 9 (septembre 2010) : 1428–38. http://dx.doi.org/10.1139/f10-072.

Texte intégral
Résumé :
Stable carbon (δ13C) and nitrogen (δ15N) isotopes and total mercury (Hg) were used to investigate diet and resource use among Greenland sharks ( Somniosus microcephalus ) and 14 teleosts inhabiting Icelandic waters. Greenland shark stomachs contained 11 of the teleosts sampled, along with other fishes and marine mammal tissues. Teleost resource use ranged from pelagic (e.g., Argentina silus ) to benthic (e.g., Anarhichas lupus ) based on δ13C, and relative trophic positions (TP, based on δ15N) ranged from 3.0 ( Mallotus villosus ) to 3.8 (e.g., Brosme brosme ). Greenland shark δ13C indicated feeding on benthic and pelagic resources, with a high input of pelagic carbon, and δ15N indicated a relative TP of 4.3. Log[Hg] increased with δ15N (i.e., TP) from teleosts to Greenland sharks and was higher in offshore vs. inshore teleosts. Linear regressions revealed that log[Hg] was better described by both δ15N and δ13C-assigned resource use than by δ15N alone. Hg was useful for supporting the TPs suggested by δ15N, and the higher Hg in offshore fishes could help explain the high Hg of Greenland sharks. Results from this study demonstrated the potential use of Hg as a dietary tracer in marine fishes.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Gallant, Jeffrey J., Marco A. Rodriguez, Michael J. W. Stokesbury et Chris Harvey-Clark. « Influence of Environmental Variables on the Diel Movements of the Greenland Shark (Somniosus microcephalus) in the St. Lawrence Estuary ». Canadian Field-Naturalist 130, no 1 (1 janvier 2016) : 1. http://dx.doi.org/10.22621/cfn.v130i1.1784.

Texte intégral
Résumé :
The geographic distribution of the Greenland Shark (Somniosus microcephalus) extends from the Arctic Ocean to the North Atlantic Ocean. However, little is known about the habitat of this species, as it is generally found at great depths or in the High Arctic. In the St. Lawrence Estuary, Greenland Sharks undertake diel vertical movements into shallow water (≤ 30 m), but the reasons for these movements are unknown. To test the hypothesis that environmental variables drive the movements of this shark in the St. Lawrence Estuary, eight Greenland Sharks were tagged with acoustic telemetry transmitters during the summer of 2005. Three environmental factors, temperature, light, and tides, were associated with their movements. Movement patterns indicate a preference for deep, cold water during daylight hours and shallow, warmer water during the night. Ascending into shallow water mostly coincided with darkness and high tide. This improved understanding of the spatio-temporal distributionof the Greenland Shark will allow for assessment of the risk to these sharks from commercial fisheries, as occurs in the Greenland Halibut (Reinhardtius hippoglossoides) longline fishery. In addition, temperature-driven behavioural patterns may change as the thermal structure of the water column shifts due to global warming.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Steeves, Holly N., Bailey Mcmeans, Chris Field, Connie Stewart, Michael T. Arts, Aaron T. Fisk, Christian Lydersen, Kit M. Kovacs et M. Aaron Macneil. « Non-parametric analysis of the spatio-temporal variability in the fatty-acid profiles among Greenland sharks ». Journal of the Marine Biological Association of the United Kingdom 98, no 3 (28 octobre 2016) : 627–33. http://dx.doi.org/10.1017/s002531541600148x.

Texte intégral
Résumé :
Shifting prey distributions due to global warming are expected to generate dramatic ecosystem-wide changes in trophic structure within Arctic marine ecosystems. Yet a relatively poor understanding of contemporary Arctic food webs makes it difficult to predict the consequences of such changes for Arctic predators. Doing so requires quantitative approaches that can track contemporary changes in predator diets through time, using accurate, well-defined methods. Here we use fatty acids (FA) to quantify differences in consumer diet using permutational multivariate analysis of variance tests that characterize spatial and temporal changes in consumer FA signatures. Specifically we explore differences in Greenland shark (Somniosus microcephalus) FA to differentiate their potential trophic role between Svalbard, Norway and Cumberland Sound, Canada. Greenland shark FA signatures revealed significant inter-annual differences, probably driven by varying seal and Greenland halibut responses to environmental conditions such as the NAO, bottom temperature, and annual sea-ice extent. Uncommon FA were also found to play an important role in driving spatial and temporal differences in Greenland shark FA profiles. Our statistical approach should facilitate quantification of changing consumer diets across a range of marine ecosystems.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Davis, Brendal, David L. VanderZwaag, Aurelie Cosandey-Godin, Nigel E. Hussey, Steven T. Kessel et Boris Worm. « The Conservation of the Greenland Shark (Somniosus microcephalus) : Setting Scientific, Law, and Policy Coordinates for Avoiding a Species at Risk ». Journal of International Wildlife Law & ; Policy 16, no 4 (octobre 2013) : 300–330. http://dx.doi.org/10.1080/13880292.2013.805073.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

McMeans, Bailey C., Michael T. Arts et Aaron T. Fisk. « Similarity between predator and prey fatty acid profiles is tissue dependent in Greenland sharks (Somniosus microcephalus) : Implications for diet reconstruction ». Journal of Experimental Marine Biology and Ecology 429 (novembre 2012) : 55–63. http://dx.doi.org/10.1016/j.jembe.2012.06.017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Corsolini, Simonetta, Karla Pozo et Jørgen S. Christiansen. « Legacy and emergent POPs in the marine fauna of NE Greenland with special emphasis on the Greenland shark Somniosus microcephalus ». Rendiconti Lincei 27, S1 (5 juillet 2016) : 201–6. http://dx.doi.org/10.1007/s12210-016-0541-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Grant, Scott M., Jenna G. Munden et Kevin J. Hedges. « Effects of monofilament nylon versus braided multifilament nylon gangions on catch rates of Greenland shark (Somniosus microcephalus) in bottom set longlines ». PeerJ 8 (3 décembre 2020) : e10407. http://dx.doi.org/10.7717/peerj.10407.

Texte intégral
Résumé :
The Greenland shark (Somniosus microcephalus) is the main bycatch species in established and exploratory inshore longline fisheries for Greenland halibut (Reinhardtius hippoglossoides) on the east coast of Baffin Island, Canada. Bycatch and entanglement in longline gear has at times been substantial and post-release survival is questionable when Greenland sharks are released with trailing fishing gear. This study investigated the effect of the type of fishing line used in the gangion and gangion breaking strength on catch rates of Greenland shark and Greenland halibut in bottom set longlines. Circle (size 14/0, 0° offset) hooks were used throughout the study. Behavior of captured sharks, mode of capture (i.e., jaw hook and/or entanglement), level of entanglement in longline gear, time required to disentangle sharks and biological information (sex, body length and health status) were recorded. Catch rates of Greenland shark were independent of monofilament nylon gangion breaking strength and monofilament gangions captured significantly fewer Greenland sharks than the traditional braided multifilament nylon gangion. Catch rates and body size of Greenland halibut did not differ significantly between gangion treatments. Although most (84%) of the Greenland sharks were hooked by the jaw, a high percentage (76%) were entangled in the mainline. The mean length of mainline entangled around the body and/or caudal peduncle and caudal fin was 28.7 m. Greenland sharks exhibited cannibalistic behavior with 15% of captured sharks cannibalized. All remaining sharks were alive and survived the disentanglement process which can be attributed to their lethargic behavior and lack of resistance when hauled to the surface. Thus, as a conservation measure fishers should be encouraged to remove trailing fishing gear prior to release. Our results are used to demonstrate benefits to the fishing industry with regard to an overall reduction in the period of time to disentangle sharks and damage to fishing gear by switching from braided multifilament to monofilament gangions in Greenland halibut longline fisheries.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Rusyaev, S. M., et A. M. Orlov. « Bycatches of the greenland shark Somniosus microcephalus (Squaliformes, Chondrichthyes) in the barents sea and the adjacent waters under bottom trawling data ». Journal of Ichthyology 53, no 1 (janvier 2013) : 111–15. http://dx.doi.org/10.1134/s0032945213010128.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Chernova, N. V., E. V. Smirnova et E. V. Raskhozheva. « First record of the Greenland shark Somniosus microcephalus (Squaliformes : Somniosidae) in the Siberian Arctic with notes on its distribution and biology ». Journal of Ichthyology 55, no 6 (novembre 2015) : 827–35. http://dx.doi.org/10.1134/s0032945215060053.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Lu, Zhe, Aaron T. Fisk, Kit M. Kovacs, Christian Lydersen, Melissa A. McKinney, Gregg T. Tomy, Bruno Rosenburg, Bailey C. McMeans, Derek C. G. Muir et Charles S. Wong. « Temporal and spatial variation in polychlorinated biphenyl chiral signatures of the Greenland shark (Somniosus microcephalus) and its arctic marine food web ». Environmental Pollution 186 (mars 2014) : 216–25. http://dx.doi.org/10.1016/j.envpol.2013.12.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Campana, Steven E., Aaron T. Fisk et A. Peter Klimley. « Movements of Arctic and northwest Atlantic Greenland sharks ( Somniosus microcephalus ) monitored with archival satellite pop-up tags suggest long-range migrations ». Deep Sea Research Part II : Topical Studies in Oceanography 115 (mai 2015) : 109–15. http://dx.doi.org/10.1016/j.dsr2.2013.11.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Borucinska, J. D., G. W. Benz et H. E. Whiteley. « Ocular lesions associated with attachment of the parasitic copepod Ommatokoita elongata (Grant) to corneas of Greenland sharks, Somniosus microcephalus (Bloch & ; Schneider) ». Journal of Fish Diseases 21, no 6 (novembre 1998) : 415–22. http://dx.doi.org/10.1046/j.1365-2761.1998.00122.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Hussey, Nigel E., Jack Orr, Aaron T. Fisk, Kevin J. Hedges, Steven H. Ferguson et Amanda N. Barkley. « Mark report satellite tags (mrPATs) to detail large-scale horizontal movements of deep water species : First results for the Greenland shark (Somniosus microcephalus) ». Deep Sea Research Part I : Oceanographic Research Papers 134 (avril 2018) : 32–40. http://dx.doi.org/10.1016/j.dsr.2018.03.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Mc Nicholl, Darcy G., Les N. Harris, Tracey Loewen, Peter May, Lilian Tran, Russell Akeeagok, Kevin Methuen et al. « Noteworthy occurrences among six marine species documented with community engagement in the Canadian Arctic ». Animal Migration 8, no 1 (1 janvier 2021) : 74–83. http://dx.doi.org/10.1515/ami-2020-0113.

Texte intégral
Résumé :
Abstract Arctic marine ecosystems are changing, one aspect of which appears to be distributional expansions of sub-arctic species. For Arctic marine systems, there is limited occurrence information for many species, especially those found in restricted habitats (e.g., ice-covered, far north, or deep-water). Increasing observations through on-going Fisheries and Oceans Canada (DFO) community-based monitoring programs (e.g., Arctic Coast, Cambridge Bay Arctic Char stock assessment, Arctic Salmon, and Kugluktuk coastal surveys), community observation networks, and local media have augmented opportunities to document new occurrences of marine fishes. Combined data from historical records and contemporary observations at the local scale can then delineate these among three types of occurrences: gradual distributional expansion, episodic vagrants, and rare endemics. Here we document nine occurrences of unusual sightings across six fish species (Pink Salmon Oncorhynchus gorbuscha, Bering Wolffish Anarhichas orientalis, Greenland Shark Somniosus microcephalus, Broad Whitefish Coregonus nasus, Banded Gunnel Pholis fasciata and Salmon Shark Lamna ditropis) from six northern Canadian communities and classify the nature of each observation as rare, vagrant, or expanding distributions. Uniting scientific and local observations represents a novel approach to monitor distributional changes suitable for a geographically large but sparsely populated area such as the Canadian Arctic. The new occurrences are important for discerning the potential effects of the presence of these species in Arctic ecosystems. These observations more broadly will build on our understanding of northern biodiversity change associated with warming Arctic environments.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Grant, Scott M., Rennie Sullivan et Kevin J. Hedges. « Greenland shark (Somniosus microcephalus) feeding behavior on static fishing gear, effect of SMART (Selective Magnetic and Repellent-Treated) hook deterrent technology, and factors influencing entanglement in bottom longlines ». PeerJ 6 (17 mai 2018) : e4751. http://dx.doi.org/10.7717/peerj.4751.

Texte intégral
Résumé :
The Greenland Shark (Somniosus microcephalus) is the most common bycatch in the Greenland halibut (Reinhardtius hippoglossoides) bottom longline fishery in Cumberland Sound, Canada. Historically, this inshore fishery has been prosecuted through the ice during winter but winter storms and unpredictable landfast ice conditions since the mid-1990s have led to interest in developing a summer fishery during the ice-free season. However, bycatch of Greenland shark was found to increase substantially with 570 sharks captured during an experimental Greenland halibut summer fishery (i.e., mean of 6.3 sharks per 1,000 hooks set) and mortality was reported to be about 50% due in part to fishers killing sharks that were severely entangled in longline gear. This study investigated whether the SMART (Selective Magnetic and Repellent-Treated) hook technology is a practical deterrent to Greenland shark predation and subsequent bycatch on bottom longlines. Greenland shark feeding behavior, feeding kinematics, and variables affecting entanglement/disentanglement and release are also described. The SMART hook failed to deter Greenland shark predation, i.e., all sharks were captured on SMART hooks, some with more than one SMART hook in their jaw. Moreover, recently captured Greenland sharks did not exhibit a behavioral response to SMART hooks. In situ observations of Greenland shark feeding show that this species uses a powerful inertial suction mode of feeding and was able to draw bait into the mouth from a distance of 25–35 cm. This method of feeding is suggested to negate the potential deterrent effects of electropositive metal and magnetic alloy substitutions to the SMART hook technology. The number of hooks entangled by a Greenland shark and time to disentangle and live-release a shark was found to increase with body length.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Folkins, Margaret H., Scott M. Grant et Philip Walsh. « A feasibility study to determine the use of baited pots in Greenland halibut (Reinhardtius hippoglossoides) fisheries, supported by the use of underwater video observations ». PeerJ 9 (4 janvier 2021) : e10536. http://dx.doi.org/10.7717/peerj.10536.

Texte intégral
Résumé :
High incidental catches of Greenland shark (Somniosus microcephalus) in Nunavut’s Greenland halibut (Reinhardtius hippoglossoides) fishery has led to studies on the feasibility of capturing Greenland halibut with baited pots. In this study, catch rates among six experimental pots are compared. In addition to this, underwater video observations of Greenland halibut interacting with two of these experimental pot types are quantified in order to help provide recommendations on future pot designs. Catch rates of Greenland halibut differed among pots with different entrance mesh types, and none of the pots produced substantial amounts of bycatch. Strings of pots were deployed within a narrow corridor between baited gillnets targeting Greenland halibut, which may have affected catch results. Video observations revealed Greenland halibut entangled by their teeth significantly more often in entrance funnels constructed with 50 mm than with 19 mm clear monofilament netting and the entrance rate was 45% higher with the 19 mm netting. Greenland halibut that successfully entered a pot repeatedly became entangled by their teeth in 58 mm netting used in the side and end panels and in a horizontal panel used to separate the pot into a lower and upper chamber. The majority (80%) of Greenland halibut were observed to approach a pot against the current. The downstream entrance was aligned with the current in 52% of the observed Greenland halibut approaches. Seventy percent of entry attempts and 67% of successful entries occurred when fish approached against the current and when the entrance was aligned with the current. These observations lead to recommendations that future studies consider developing a four entrance pot to ensure an entrance is always aligned with bottom currents. Based on these observations of entanglements, it is recommended to use 19 mm clear monofilament netting in the entrance funnel, 100 mm polyethylene netting in the exterior panels, and 19 mm polypropylene netting in the horizontal panel when targeting Greenland halibut. Three Greenland sharks were observed interacting with the pots in the video sets, but none were captured or damaged the pots during the potting experiments, providing validity to the use of pots to mitigate the capture of Greenland shark in Nunavut territorial waters.
Styles APA, Harvard, Vancouver, ISO, etc.
50

« Somniosus microcephalus ». CABI Compendium CABI Compendium (7 janvier 2022). http://dx.doi.org/10.1079/cabicompendium.63666.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie