Thèses sur le sujet « Somatosensory plasticity »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 31 meilleures thèses pour votre recherche sur le sujet « Somatosensory plasticity ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
Bender, Vanessa Anne. « Cannabinoid-dependent plasticity in rodent somatosensory cortex ». Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2006. http://wwwlib.umi.com/cr/ucsd/fullcit?p3221443.
Texte intégralTitle from first page of PDF file (viewed September 18, 2006). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references.
Kiss, Zelma H. T. « Plasticity in the adult human somatosensory thalamus ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ35206.pdf.
Texte intégralDolan, Sharron. « Plasticity in the adult rat somatosensory system following sensory deprivation ». Thesis, University of Stirling, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244606.
Texte intégralAl-Shahry, Fayz. « Changes in the somatosensory evoked potentials during recovery from stroke ». Thesis, University of Southampton, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241792.
Texte intégralMacchione, Silvia. « Topography of the perceptual improvement induced by repetitive somatosensory stimulation ». Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1302.
Texte intégralTouch plays a fundamental role in our daily activities. It has long been known that, thanks to brain plasticity, tactile acuity can be improved following training. Another form of tactile improvement, independent from training, can be achieved through a simple mechanical stimulation of a small region of the skin, called repetitive somatosensory stimulation (RSS). RSS of a finger was well known to improve tactile acuity locally (on the stimulated finger) and also remotely (on the face). However, topography of tactile improvement, especially on other unstimulated fingers, was unknown. In addition, the hypothesis of applying the RSS to another body region (notably the face) and investigate the possible effects, both in face and fingers, was not explored. The aim of this work of thesis was therefore investigating the topography of the RSS-induced tactile improvement within and between body regions. One first study revealed that RSS of a finger induces tactile improvement both locally and remotely in fingers. The second study showed that, when applied on the face, RSS is able to induce tactile improvement both locally, on the face, and remotely, in the hand, demonstrating that the tactile improvement between the hand and the face is bidirectional. Overall, the experimental data I provide constitute a significant contribution to the study of the topography of RSS-induced tactile changes
Michel, Niklas [Verfasser]. « Touch comes of Age - Maturational Plasticity in Somatosensory Mechanosensation / Niklas Michel ». Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2020. http://d-nb.info/1235756831/34.
Texte intégralKolasinski, James. « Assessing sensorimotor plasticity with multimodal magnetic resonance imaging ». Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:9fb9008b-e3e9-4883-8a08-d13a223d3ee5.
Texte intégralMuret, Dolly-Anne. « On the limits of cortical somatosensory plasticity and their functional consequences : a novel form of cross-border plasticity ». Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10063/document.
Texte intégralTouch plays a critical role in our daily life to grasp and manipulate objects, or simply walk. The primary somatosensory areas exhibit the striking feature of being somatotopically organized, giving rise to the so-called Homunculus. While most of our body surface is represented following an order similar to its physical continuity, the Homunculus displays a major discontinuity, the hand and the face being represented next to each other. The hand-face border has been widely used as a somatotopic hallmark to study one of the most fascinating features of our brain, its capacity for reorganization. Particularly, somatosensory plasticity was found to cross the hand-face border following deprivation of inputs. While it has long been known that increasing inputs also leads to cortical changes typically associated with perceptual benefits, whether such plasticity can cross the hand-face border remains unknown. My thesis work aimed to investigate this question. A first behavioural study revealed that increasing inputs to a finger improves not only the tactile acuity at this finger, but also at the face, suggesting a transfer of plastic changes across the hand-face border. To investigate this, two additional studies were performed using two complementary brain imaging techniques, namely high-field fMRI and MEG. In agreement with our hypotheses a reorganization of both hand and face representations was found. Altogether, this work reveals that adaptive plasticity leading to perceptual benefits can spread over large cortical distances, in particular across the hand-face border, and thus opens up a new window of investigation that may have a real impact in promoting rehabilitation
Wen, Jing. « Experience-dependent plasticity of layer 2/3 circuits in developing somatosensory neocortex ». Research Showcase @ CMU, 2012. http://repository.cmu.edu/dissertations/121.
Texte intégralCeko, Marta. « The role of insula in somatosensory plasticity : MRI studies in human subjects ». Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=119591.
Texte intégralL'insula est une aire corticale importante impliquée dans le traitement de l'input des fines fibres somato-sensorielles incluant l'input nociceptive et thermal. Cette thèse décrit une série d'études centrées sur le cortex insulaire humain dans lesquelles l'IRM structural et fonctionnel et l'évaluation psychophysique ont été utilisées pour explorer la relation entre les changements du cerveau et ceux liés au traitement somato-sensoriel et à sa régulation. Dans la première étude, nous décrivons les changements dans la matière grise (MG) de l'insula chez une patiente n'ayant pas d'input somato-sensoriel provenant des larges fibres (proprioception, touché discriminatif), mais ayant un input intact des fines fibres projetant au cortex insulaire. Lorsque comparée à un groupe apparié de sujets contrôle, cette patiente présentait une augmentation de l'épaisseur du cortex et de la connectivité insulaire à l'état de repos. Dans la deuxième étude, nous observons une augmentation du volume de MG insulaire ainsi que de l'intégrité et de la connectivité de la matière blanche (MB) insulaire chez des adeptes du yoga expérimentés présentant une augmentation de la tolérance à la douleur lorsque comparés au sujets d'un groupe contrôle apparié. Nous avons de plus observé une corrélation positive entre la MG insulaire et les résultats de tolérance à la douleur de l'ensemble des sujets (adeptes du yoga et groupe contrôle). Dans la troisième étude, qui représente l'examen des changements de MG liés à l'âge chez des patients souffrant de douleurs chronique (fibromyalgie), nous observons une augmentation de la MG insulaire chez les jeunes patientes comparativement aux sujets du groupe contrôle apparié. Cette augmentation de MG est inversement corrélée à la sensibilité des patientes à la douleur expérimentale. De plus, l'insula antérieure des jeunes patientes montre, lorsque comparée à celle des sujets du groupe contrôle, une diminution de la connectivité à l'état de repos à une aire corticale impliquée dans le traitement de l'aspect émotionnel des stimuli douloureux. Cette thèse apporte trois contributions nouvelles à notre compréhension de l'insula. L'étude 1 révèle les conséquences structurale et fonctionnelle liées à la perte de fibres nerveuses somato-sensorielles spécifiques chez l'humain. L'étude 2 apporte la première démonstration des effets de la pratique du yoga sur la MG insulaire et de sa relation avec la tolérance à la douleur et l'étude 3 est la première étude qui recherche directement les effets liés à l'âge de la douleur chronique sur la structure et la fonction de l'insula. Nous interprétons les augmentations observées de MG insulaire dans les trois études comme reflétant une plasticité d'adaptation liée a) à l'utilisation compensatoire de l'input des fines fibres nerveuses – notamment celles liées à la perception de la température – en remplacement des fibres de plus gros calibre; b) au contrôle de la douleur, probablement par l'augmentation du traitement intra-insulaire; et c) à l'augmentation du contrôle de la douleur, probablement via un désengagement fonctionnel d'un réseau cortical impliqué dans le traitement de la salliance. Ce travail a amélioré notre compréhension de l'implication de l'insula dans le traitement de l'information somato-sensorielle et douloureuse et pourrait aider à éclairer de futures études visant à développer des traitements contre la douleur chronique.
Sun, Liting. « Investigation of plasticity in somatosensory processing following early life adverse events or nerve injury ». Thesis, University of Edinburgh, 2012. http://hdl.handle.net/1842/9606.
Texte intégralMarcano-Reik, Amy Jo. « Sleep-related activity and recovery of function in the somatosensory cortex during early development ». Diss., University of Iowa, 2011. https://ir.uiowa.edu/etd/2743.
Texte intégralChappell, Tyson. « The long-term teratogenic effect of prenatal alcohol exposure on the somatosensory and motor cortex of rats ». View the abstract Download the full-text PDF version, 2007. http://etd.utmem.edu/ABSTRACTS/2007-013-Chappell-index.htm.
Texte intégralTitle from title page screen (viewed on February 29, 2008). Research advisor: Robert S. Waters, Ph.D. Document formatted into pages (xix, 179 p. : ill.). Vita. Abstract. Includes bibliographical references (p. 152-178).
Gunner, Georgia. « Sensory Deprivation Induces Microglial Synapse Engulfment ». eScholarship@UMMS, 2021. https://escholarship.umassmed.edu/gsbs_diss/1148.
Texte intégralBradley, Claire. « The first steps of cortical somatosensory and nociceptive processing in humans : anatomical generators, functional plasticity, contribution to sensory memory and modulation by cortical stimulation ». Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10213.
Texte intégralThe somatosensory system participates in both non-nociceptive and nociceptive information Processing. In this thesis work, we model and characterize the electrical activity of the operculo-insular cortex within non-painful and nociceptive networks, using non-invasive electrophysiological recordings in humans. Validity of the modeled response to a nociceptive stimulus was evaluated by comparing it to intra-cranial recordings in epileptic patients, revealing excellent concordance. We went on to use this model to determine whether a technique of non-invasive cortical stimulation currently used to relieve neuropathic pain (motor cortex magnetic stimulation) was able to modulate acute nociceptive processing in healthy participants. We show that this intervention is not more efficacious than placebo stimulation in blocking nociception. This raises questions regarding the mechanisms of action of this technique in patients, which might implicate a modulation of pain perception at a higher level of processing. Finally, we attempted to stimulate the operculo-insular cortex directly, using three different methods. Low-frequency intra-cortical stimulation in epileptic, transcranial magnetic stimulation (TMS) of the same region in healthy participants and multipolar transcranial electrical stimulation (tDCS).Altogether, the studies presented here show how a non-invasive approach in humans allows characterising and modulating the activity of the operculo-insular cortex. While this region might be an interesting target for future treatment of drug-resistant pain, its stimulation in patients would require further investigation of parameters and procedures
BERNARDI, NICOLO' FRANCESCO. « Mental practice : rehearsal strategies and sensorimotor outcomes ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2013. http://hdl.handle.net/10281/41783.
Texte intégralGatica, Tossi Mario [Verfasser], Hubert R. [Gutachter] Dinse et Martin [Gutachter] Tegenthoff. « The role of stimulus timing parameters in passively induced plasticity of the human somatosensory system / Mario Gatica Tossi ; Gutachter : Hubert R. Dinse, Martin Tegenthoff ; International Graduate School of Neuroscience ». Bochum : Ruhr-Universität Bochum, 2012. http://d-nb.info/1211174573/34.
Texte intégralDelcour, Maxime. « Développement d'un modèle animal de paralysie cérébrale : basé sur l'ischémie prénatale et l'expérience sensorimotrice anormale ». Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4744/document.
Texte intégralCerebral palsy (CP) corresponds to various motor, sensory and cognitive disorders related to white matter damage (i.e. periventricular leucomalacia, PVL) often occurring after perinatal hypoxic-ischemic events. To reproduce PVL in rodents, we used a prenatal ischemia (PI) that induces white and gray matter damage. The ischemic rats exhibit visual-spatial cognitive deficits and hyperactivity, as observed in patients with CP, related to lesions of entorhinal, prefrontal and cingular cortices. Only mild locomotor disorders are induced by PI, associated to signs of spasticity, along with anatomical and functional degradation in the primary somatosensory cortex (S1), while the primary motor cortex (M1) remains unchanged. Thus, PI recapitulates the main symptoms found in children born preterm. Abnormal spontaneous movements (i.e. general movements) observed in infants who develop CP later on suggest that abnormal sensorimotor experience during maturation is key in the development of this catastrophic disease. The combination of a sensorimotor restriction (SMR) and PI in animal induces fewer cognitive deficits but still hyperactivity. Such a combination leads to severe postural and motor disorders, and spasticity, associated with musculoskeletal pathologies, as observed in patients with CP. In addition to motor disorders, drastic topographical disorganization of cortical maps in S1 and M1 suggest a major dysfunction of sensorimotor loops
Conde, Ruiz Virginia. « The role of network interactions in timing-dependent plasticity within the human motor cortex induced by paired associative stimulation ». Doctoral thesis, Universitätsbibliothek Leipzig, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-129770.
Texte intégralDetorakis, Georgios. « Plasticité corticale, champs neuronaux dynamiques et auto-organisation ». Phd thesis, Université de Lorraine, 2013. http://tel.archives-ouvertes.fr/tel-00879910.
Texte intégralGUIDALI, GIACOMO. « Cross-modal plasticity in sensory-motor cortices and non-invasive brain stimulation techniques : new ways to explore and modulate brain plasticity ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2021. http://hdl.handle.net/10281/306484.
Texte intégralIn the present doctoral thesis, I have explored whether Hebbian learning may rule the functioning of cross-modal and sensory-motor networks of the human brain. To this aim, during my doctorate, I have developed and tested two novel Paired Associative Stimulation (PAS) protocols, a class of non-invasive brain stimulation techniques in which a peripheral, sensory, stimulation is repeatedly paired with a Transcranial Magnetic Stimulation (TMS) pulse to induce Hebbian associative plasticity. The two PAS protocols presented in my thesis target sensory-motor networks with mirror functioning, exploiting a visuo-tactile (cross-modal PAS), and a visuo-motor pathway (mirror PAS), respectively. In the first chapter of the present work, after a brief introduction to the concept of Hebbian associative plasticity, I will provide an exhaustive review of PAS protocols targeting sensory-motor systems, proposing a classification in three macro-categories: within-system, cross-systems, and cortico-cortical protocols, according to the characteristics of the paired stimulations. In the second chapter, I will describe the principal properties of the Mirror Neuron System (MNS) also considering its cross-modal (i.e., visuo-tactile) characteristics and the plastic mechanisms that are been hypothesize at the ground of the development of mirror neurons’ matching properties. In the third chapter, I will introduce the cross-modal PAS (cm-PAS), a novel cross-systems PAS developed to exploit the visuo-tactile mirroring properties of the primary somatosensory cortex (S1) to induce Hebbian associative plasticity in such primary sensory region. In a series of three experiments, timing dependency (Experiment 1), cortical (Experiment 2), and visual specificity (Experiment 3) of the protocol have been tested, by measuring changes in participants’ tactile acuity. In Experiment 3, also possible neurophysiological changes within S1 has been assessed, recording somatosensory-evoked potentials (SEP). Then, in a fourth experiment, cm-PAS timing dependency has been further investigated, testing the hypothesis that anticipatory, predictive-like, mechanisms within S1 may play a central role in the effectiveness of the protocol. In the fourth chapter, a second cross-systems PAS will be introduced: the mirror PAS (m-PAS) which exploits visuo-motor mirroring properties of the human brain. Differently from the cm-PAS, this second protocol targets visuo-motor integration within the MNS and aims at induce a novel, atypical, motor resonance phenomena (assessed recording motor-evoked potentials – MEPs) following Hebbian learning. In three experiments, timing dependency (Experiment 1), visual (Experiment 2), and cortical specificity (Experiment 3) of the protocol have been tested. Furthermore, in the third experiment, the behavioral effects of the m-PAS are explored, using an imitative compatibility task exploiting automatic imitation phenomenon. Finally, in the conclusive chapter, I will discuss theoretical, methodological, and clinical outcomes and future perspectives that arise from these two protocols and the related results.
Del, Grosso Veronica. « Cortical microvessels and the tripartite synapse in chronic pain studied with synchrotron radiation ». Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAS034/document.
Texte intégralChronic pain (CP) is a complex sensory disorder characterized by structural changes, i.e. severe anatomical rearrangements of somatosensory cortex, and functional changes, i.e. anomalies in network functional connectivity and in information transmission at the level of thalamo-cortical circuit. From the structural point of view, within each cortical module, a morpho-functional unit can be recognized, also called neuro-glial-vascular unit, where the glial cells represent the bridging structures allowing for the transfer of metabolites and oxygen to neurons. Namely, the functional dependency between neuronal and vascular elements, largely explored by 3D confocal microscopy and two photon microscopy, has expanded the concept of synaptic space to a more complex form, indicated as “tripartite synapse”, where besides the presence of the pre- and post- synaptic neurons, a glial component is added facing on the microvascular context. Due to this dependency it appears, thus, correct to analyse the cortical microscopical effects of the macroscopical picture. Novel studies by our group have recently investigated CP origin and evolution in experimental CP rat models (Seltzer) through microstructural and functional analyses focused both on the cortical neuronal substrate and the blood micromorphological and vasculodynamic properties. The 3D microarchitecture of cortical vascular network has been revealed by means of synchrotron X-ray micro Computed Tomography (CT) at the ID17 and ID16A beamlines (ESRF, Grenoble) and the TOMCAT beamline (SLS, Villigen). A subsequent morphometric analysis of the 3D vascular network has been implemented by means of skeletonization and spatial graph transformation. Then, a comparative study “Neuropathic vs Control”, based on the estimated vascular network properties (number of vessels, branch points, skeleton segments and vessel diameter), showed evident changes in cortical microvascular compartments: a widespread increase of blood microvessels and capillaries in the investigated regions (the somatosensory [SSI] cortical area) has been found in all CP rats. In parallel, a reduced mean value of vessel diameter in all CP rats prove that capillaries and small microvessels are predominantly interested by these angiogenetic events. By investigating the time evolution of the neogenesis, it appears strongly present since the first stage of the neuropathy (2 weeks), fading away, but still present, during the last time stage considered (6 months). In addition, an increased maximum blood flow, sustained by the vascular network, has been found in CP condition, indicating that CP vascular networks are compatible with an enriched blood flow sustained by the promoted novel angiogenesis. These results from micro- and nano-tomography have been further confirmed also by immunofluorescence microscopy analysis: CP samples have shown the positivity to three markers of vascular neo-genesis (VEGFR1, VEGFR2 and VWF). In parallel, to functionally analyse the genesis and the evolution of the thalamo-cortical circuits in CP conditions, the neural activity has been recorded by means of 32-microelectrode matrices implanted in the brain, simultaneously receiving signals from the VPL thalamic nucleus and the SS1 cortex. All the CP groups show connectivity disorders exhibited also by the evolution of the network topology from “Modules and Hubs” to a “random” network organisation where the intra-community and inter-community functional connections decrease. These results clearly confirm how the neuronal dynamics is strictly linked to the vascular activity: the cortical microvessel neo-genetic events in CP are strongly correlated to the functional anomalies in neuronal network dynamic. The microvascular involvement in CP opens a new way of interpretation of CP disease, not only recognized as sensory pathology, but also as a neurological disease where neuronal and vascular connectivity networks are extensively involved in the whole system
Morissette, Josee. « Plasticity in mammalian somatosensory cerebellar maps ». Thesis, 1996. https://thesis.library.caltech.edu/4469/1/Morissette_j_1996.pdf.
Texte intégralMichel, Niklas. « Touch comes of Age - Maturational Plasticity in Somatosensory Mechanosensation ». Doctoral thesis, 2019. http://hdl.handle.net/21.11130/00-1735-0000-0005-144D-F.
Texte intégralSweetnam-Holmes, Danielle. « Diabetes impairs cortical map plasticity and functional recovery following ischemic stroke ». Thesis, 2011. http://hdl.handle.net/1828/3739.
Texte intégralGraduate
Walz, Corinna Gabriele [Verfasser]. « Developmental plasticity at glutamatergic synapses in mouse somatosensory cortex / vorgelegt von Corinna Gabriele Walz ». 2008. http://d-nb.info/989205274/34.
Texte intégralTai-Hsiang, Liao, et 廖泰翔. « Effects of Additional Somatosensory Inputs on Use-Dependent Plasticity of Human Motor Cortex:A TMS Mapping Study ». Thesis, 2006. http://ndltd.ncl.edu.tw/handle/32005001814585364807.
Texte intégral長庚大學
復健科學研究所
94
It is established that the primary motor cortex (MI) possesses the ability to reorganize after motor skill training or altering somatosensory inputs. However, information regarding how somatosensory stimulation optimizing use-dependent plasticity of MI were inconclusive. The purpose of this study was to investigate the effects of additional somatosensory inputs with concurrent motor practice in developing isolated control of hand movement and to observe its effect on promoting motor cortex reorganization. Eighteen healthy adults were recruited and assigned randomly to 3 different training groups. Each participant received either somatosensory stimulation alone (SS), motor practice alone (MP), or motor practice combined with somatosensory stimulation (MP+SS). Participants was observed at 2 pre-training sessions, after a 15-minute training session for 3 consecutive days and a retest session 1 day after training has completed. Outcome measures included the isolated control ability of the fifth finger abduction , maximal velocity and acceleration of the fifth finger abduction via motion analysis, and motor map parameters of abductor digiti minimi (ADM) muscle, resting motor threshold, map areas, volume and center of gravity, via the transcranial magnetic stimulation technique. Both the MP+SS and the MP groups showed similar improvements in the isolated control ability of the fifth finger abduction in the end of training but no training effect was observed for SS group. Whereas, the MP+SS group demonstrated better training effect than the MP group after the first day of training (p=.021). In addition, over the course of training, the cortical map areas and volume of ADM both increased significantly in MP and MP+SS groups while SS group increased map areas only. However, the MP+SS group resulted in faster, larger and longer changes than all other groups. According to the findings of this study we concluded that additional somatosensory inputs with concurrent motor practice can enhance use-dependent plasticity and promote early acquisition of motor skill.
Clary, Rachel Cecelia. « Dynamics of touch-receptor plasticity in the mammalian peripheral nervous system ». Thesis, 2020. https://doi.org/10.7916/d8-3peb-6737.
Texte intégralFarhoomand, Farnoosh. « Sensory-evoked activity in somatosensory cortex as a model to probe cortical plasticity in a mouse model of Rett syndrome ». Thesis, 2021. http://hdl.handle.net/1828/13330.
Texte intégralGraduate
Σταυρινού, Μαρία. « Μελέτη της βραχύχρονης πλαστικότητας του σωματοαισθητικού φλοιού του ανθρώπου μέσω χωροχρονικού εντοπισμού των μαγνητικών δίπολων σε ηλεκτρική διέγερση των δακτύλων ». Thesis, 2006. http://nemertes.lis.upatras.gr/jspui/handle/10889/1197.
Texte intégralThe adult primary somatosensory cortex (SI) exhibits a detailed topographic organization of the hand and fingers, which undergoes plastic reorganizational changes following modifications of the sensory input. Although the spatial properties of these changes have been extensively investigated, little is known about their temporal dynamics. The current PhD thesis, contributes exactly to this field: to the study of plastic changes in time frame of 6 hours with consecutive Magnetoencephalographic measurements every hour. The inspiration for the protocol came from the finger webbing paradigm first employed to study adult human representational plasticity. In this paradigm of finger webbing, 4 fingers are temporarily webbed together, hence modifying their sensory feedback, for about 6 hours. We used Magnetoencephalography, a non invasive technique to study magnetic fields of the human brain, in order to measure changes in the hand representation in SI, before, during, and after finger webbing for this time frame of 6 hours. Cortical sources representing the index and little finger were localized using electric current stimulation and with the Equivalent Current Dipole method for all the recording sessions. Our results showed a decrease in the Euclidean distance (ED) between the cortical sources of the index and small finger 30 min after webbing, followed by an increase lasting for about 2 h after webbing, which was followed by a return toward baseline values. These results provide a unique frame in which the different representational changes occur, merging previous findings that were only apparently controversial, in which either increases or decreases in ED were reported after sensory manipulation for relatively long or short duration, respectively. Moreover, these observations further confirm that the mechanisms that underlie cortical reorganization are extremely rapid in their expression and, for the first time, show how brain reorganization occurs over time.
Labbé, Sara. « Les effets de la stimulation électrique transcrânienne à courant direct appliquée au cortex somatosensoriel primaire sur la perception vibrotactile ». Thèse, 2015. http://hdl.handle.net/1866/13119.
Texte intégralTranscranial direct-current stimulation (tDCS) is a non-invasive neuromodulation technique which aims to modify cortical excitability using large surface-area electrodes. tDCS is thought to increase (anodal, a-tDCS) or decrease (cathodal, c-tDCS) cortical excitability. At present, there is no consensus as to whether tDCS to primary somatosensory cortex (S1) modifies somatosensory perception. This study examined vibrotactile perception (frequency, 20 Hz, various amplitude) on the middle finger before, during and after contralateral S1 tDCS (a-, c- and sham, s-). The experiments tested our shift-gain hypothesis which predicted that a-tDCS would decrease vibrotactile detection and discrimination thresholds (leftward shift of the stimulus-response function with increased gain/slope), while c-tDCS would increase thresholds (shift to right; decreased gain). The results showed that weak, a-tDCS (1 mA, 20 min), compared to sham, led to a reduction in both thresholds during the application of the stimulation in a majority of subjects. These effects persisted after the end of a-tDCS, but were absent 30 min later. Cathodal tDCS, vs sham, had no effect on detection thresholds; in contrast, there was a decrease in discrimination threshold during but not after c-tDCS. The results thus supported our hypothesis, but only for anodal stimulation. Our observation that enhanced vibrotactile perception outlasts, albeit briefly, the period of a-tDCS is encouraging. Future experiments should determine whether repeated sessions of a-tDCS can produce longer lasting improvements. If yes, clinical applications could be envisaged, e.g. to apply a-tDCS to S1 in conjunction with retraining of sensory function post-stroke.