Littérature scientifique sur le sujet « Somatosensory plasticity »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Somatosensory plasticity ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Somatosensory plasticity"

1

Kuehn, Esther, et Burkhard Pleger. « How Visual Body Perception Influences Somatosensory Plasticity ». Neural Plasticity 2018 (2018) : 1–12. http://dx.doi.org/10.1155/2018/7909684.

Texte intégral
Résumé :
The study of somatosensory plasticity offers unique insights into the neuronal mechanisms that underlie human adaptive and maladaptive plasticity. So far, little attention has been paid on the specific influence of visual body perception on somatosensory plasticity and learning in humans. Here, we review evidence on how visual body perception induces changes in the functional architecture of the somatosensory system and discuss the specific influence the social environment has on tactile plasticity and learning. We focus on studies that have been published in the areas of human cognitive and clinical neuroscience and refer to animal studies when appropriate. We discuss the therapeutic potential of socially mediated modulations of somatosensory plasticity and introduce specific paradigms to induce plastic changes under controlled conditions. This review offers a contribution to understanding the complex interactions between social perception and somatosensory learning by focusing on a novel research field: socially mediated sensory plasticity.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ma, Xiaofeng, et Nobuo Suga. « Augmentation of Plasticity of the Central Auditory System by the Basal Forebrain and/or Somatosensory Cortex ». Journal of Neurophysiology 89, no 1 (1 janvier 2003) : 90–103. http://dx.doi.org/10.1152/jn.00968.2001.

Texte intégral
Résumé :
Auditory conditioning (associative learning) or focal electric stimulation of the primary auditory cortex (AC) evokes reorganization (plasticity) of the cochleotopic (frequency) map of the inferior colliculus (IC) as well as that of the AC. The reorganization results from shifts in the best frequencies (BFs) and frequency-tuning curves of single neurons. Since the importance of the cholinergic basal forebrain for cortical plasticity and the importance of the somatosensory cortex and the corticofugal auditory system for collicular and cortical plasticity have been demonstrated, Gao and Suga proposed a hypothesis that states that the AC and corticofugal system play an important role in evoking auditory collicular and cortical plasticity and that auditory and somatosensory signals from the cerebral cortex to the basal forebrain play an important role in augmenting collicular and cortical plasticity. To test their hypothesis, we studied whether the amount and the duration of plasticity of both collicular and cortical neurons evoked by electric stimulation of the AC or by acoustic stimulation were increased by electric stimulation of the basal forebrain and/or the somatosensory cortex. In adult big brown bats ( Eptesicus fuscus), we made the following major findings. 1) Collicular and cortical plasticity evoked by electric stimulation of the AC is augmented by electric stimulation of the basal forebrain. The amount of augmentation is larger for cortical plasticity than for collicular plasticity. 2) Collicular and cortical plasticity evoked by AC stimulation is augmented by somatosensory cortical stimulation mimicking fear conditioning. The amount of augmentation is larger for cortical plasticity than for collicular plasticity. 3) Collicular and cortical plasticity evoked by both AC and basal forebrain stimulations is further augmented by somatosensory cortical stimulation. 4) A lesion of the basal forebrain tends to reduce collicular and cortical plasticity evoked by AC stimulation. The reduction is small and statistically insignificant for collicular plasticity but significant for cortical plasticity. 5) The lesion of the basal forebrain eliminates the augmentation of collicular and cortical plasticity that otherwise would be evoked by somatosensory cortical stimulation. 6) Collicular and cortical plasticity evoked by repetitive acoustic stimuli is augmented by basal forebrain and/or somatosensory cortical stimulation. However, the lesion of the basal forebrain eliminates the augmentation of collicular and cortical plasticity that otherwise would be evoked by somatosensory cortical stimulation. These findings support the hypothesis proposed by Gao and Suga.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Feldman, Daniel E., et Michael Brecht. « Map Plasticity in Somatosensory Cortex ». Science 310, no 5749 (3 novembre 2005) : 810–15. http://dx.doi.org/10.1126/science.1115807.

Texte intégral
Résumé :
Sensory maps in neocortex are adaptively altered to reflect recent experience and learning. In somatosensory cortex, distinct patterns of sensory use or disuse elicit multiple, functionally distinct forms of map plasticity. Diverse approaches—genetics, synaptic and in vivo physiology, optical imaging, and ultrastructural analysis—suggest a distributed model in which plasticity occurs at multiple sites in the cortical circuit with multiple cellular/synaptic mechanisms and multiple likely learning rules for plasticity. This view contrasts with the classical model in which the map plasticity reflects a single Hebbian process acting at a small set of cortical synapses.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Ohashi, Hiroki, Paul L. Gribble et David J. Ostry. « Somatosensory cortical excitability changes precede those in motor cortex during human motor learning ». Journal of Neurophysiology 122, no 4 (1 octobre 2019) : 1397–405. http://dx.doi.org/10.1152/jn.00383.2019.

Texte intégral
Résumé :
Motor learning is associated with plasticity in both motor and somatosensory cortex. It is known from animal studies that tetanic stimulation to each of these areas individually induces long-term potentiation in its counterpart. In this context it is possible that changes in motor cortex contribute to somatosensory change and that changes in somatosensory cortex are involved in changes in motor areas of the brain. It is also possible that learning-related plasticity occurs in these areas independently. To better understand the relative contribution to human motor learning of motor cortical and somatosensory plasticity, we assessed the time course of changes in primary somatosensory and motor cortex excitability during motor skill learning. Learning was assessed using a force production task in which a target force profile varied from one trial to the next. The excitability of primary somatosensory cortex was measured using somatosensory evoked potentials in response to median nerve stimulation. The excitability of primary motor cortex was measured using motor evoked potentials elicited by single-pulse transcranial magnetic stimulation. These two measures were interleaved with blocks of motor learning trials. We found that the earliest changes in cortical excitability during learning occurred in somatosensory cortical responses, and these changes preceded changes in motor cortical excitability. Changes in somatosensory evoked potentials were correlated with behavioral measures of learning. Changes in motor evoked potentials were not. These findings indicate that plasticity in somatosensory cortex occurs as a part of the earliest stages of motor learning, before changes in motor cortex are observed. NEW & NOTEWORTHY We tracked somatosensory and motor cortical excitability during motor skill acquisition. Changes in both motor cortical and somatosensory excitability were observed during learning; however, the earliest changes were in somatosensory cortex, not motor cortex. Moreover, the earliest changes in somatosensory cortical excitability predict the extent of subsequent learning; those in motor cortex do not. This is consistent with the idea that plasticity in somatosensory cortex coincides with the earliest stages of human motor learning.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Ostry, D. J., M. Darainy, A. A. G. Mattar, J. Wong et P. L. Gribble. « Somatosensory Plasticity and Motor Learning ». Journal of Neuroscience 30, no 15 (14 avril 2010) : 5384–93. http://dx.doi.org/10.1523/jneurosci.4571-09.2010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Wu, Calvin, Roxana A. Stefanescu, David T. Martel et Susan E. Shore. « Tinnitus : Maladaptive auditory–somatosensory plasticity ». Hearing Research 334 (avril 2016) : 20–29. http://dx.doi.org/10.1016/j.heares.2015.06.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Fox, Kevin, Helen Wallace et Stanislaw Glazewski. « Is there a thalamic component to experience–dependent cortical plasticity ? » Philosophical Transactions of the Royal Society of London. Series B : Biological Sciences 357, no 1428 (29 décembre 2002) : 1709–15. http://dx.doi.org/10.1098/rstb.2002.1169.

Texte intégral
Résumé :
Sensory deprivation and injury to the peripheral nervous system both induce plasticity in the somatosensory system of adult animals, but in different places. While injury induces plasticity at several locations within the ascending somatosensory pathways, sensory deprivation appears only to affect the somatosensory cortex. Experiments have been performed to detect experience–dependent plasticity in thalamic receptive fields, thalamic domain sizes and convergence of thalamic receptive fields onto cortical cells. So far, plasticity has not been detected with sensory deprivation paradigms that cause substantial cortical plasticity. Part of the reason for the lack of thalamic plasticity may lie in the synaptic properties of afferent systems to the thalamus. A second factor may lie in the differences in the organization of cortical and thalamic circuits. Many deprivation paradigms induce plasticity by decreasing phasic lateral inhibition. Since lateral inhibition appears to be far weaker in the thalamus than the cortex, sensory deprivation may not cause large enough imbalances in thalamic activity to induce plasticity in the thalamus.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Fox, Kevin. « Experience-dependent plasticity mechanisms for neural rehabilitation in somatosensory cortex ». Philosophical Transactions of the Royal Society B : Biological Sciences 364, no 1515 (27 novembre 2008) : 369–81. http://dx.doi.org/10.1098/rstb.2008.0252.

Texte intégral
Résumé :
Functional rehabilitation of the cortex following peripheral or central nervous system damage is likely to be improved by a combination of behavioural training and natural or therapeutically enhanced synaptic plasticity mechanisms. Experience-dependent plasticity studies in the somatosensory cortex have begun to reveal those synaptic plasticity mechanisms that are driven by sensory experience and might therefore be active during behavioural training. In this review the anatomical pathways, synaptic plasticity mechanisms and structural plasticity substrates involved in cortical plasticity are explored, focusing on work in the somatosensory cortex and the barrel cortex in particular.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Peng, Weiqin, Tiange Yang, Jiawei Yuan, Jianpeng Huang et Jianhua Liu. « Electroacupuncture-Induced Plasticity between Different Representations in Human Motor Cortex ». Neural Plasticity 2020 (14 août 2020) : 1–8. http://dx.doi.org/10.1155/2020/8856868.

Texte intégral
Résumé :
Somatosensory stimulation can effectively induce plasticity in the motor cortex representation of the stimulated body part. Specific interactions have been reported between different representations within the primary motor cortex. However, studies evaluating somatosensory stimulation-induced plasticity between different representations within the primary motor cortex are sparse. The purpose of this study was to investigate the effect of somatosensory stimulation on the modulation of plasticity between different representations within the primary motor cortex. Twelve healthy volunteers received both electroacupuncture (EA) and sham EA at the TE5 acupoint (located on the forearm). Plasticity changes in different representations, including the map volume, map area, and centre of gravity (COG) were evaluated by transcranial magnetic stimulation (TMS) before and after the intervention. EA significantly increased the map volume of the forearm and hand representations compared to those of sham EA and significantly reduced the map volume of the face representation compared to that before EA. No significant change was found in the map volume of the upper arm and leg representations after EA, and likewise, no significant changes in map area and COG were observed. These results suggest that EA functions as a form of somatosensory stimulation to effectively induce plasticity between different representations within the primary motor cortex, which may be related to the extensive horizontal intrinsic connectivity between different representations. The cortical plasticity induced by somatosensory stimulation might be purposefully used to modulate human cortical function.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Diamond, M., W. Huang et F. Ebner. « Laminar comparison of somatosensory cortical plasticity ». Science 265, no 5180 (23 septembre 1994) : 1885–88. http://dx.doi.org/10.1126/science.8091215.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Somatosensory plasticity"

1

Bender, Vanessa Anne. « Cannabinoid-dependent plasticity in rodent somatosensory cortex ». Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2006. http://wwwlib.umi.com/cr/ucsd/fullcit?p3221443.

Texte intégral
Résumé :
Thesis (Ph. D.)--University of California, San Diego, 2006.
Title from first page of PDF file (viewed September 18, 2006). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kiss, Zelma H. T. « Plasticity in the adult human somatosensory thalamus ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ35206.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Dolan, Sharron. « Plasticity in the adult rat somatosensory system following sensory deprivation ». Thesis, University of Stirling, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244606.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Al-Shahry, Fayz. « Changes in the somatosensory evoked potentials during recovery from stroke ». Thesis, University of Southampton, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241792.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Macchione, Silvia. « Topography of the perceptual improvement induced by repetitive somatosensory stimulation ». Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1302.

Texte intégral
Résumé :
Le toucher joue un rôle prépondérant dans notre vie quotidienne. Il est connu depuis longtemps que l’acuité tactile peut être améliorée par effet de la plasticité cérébrale, suite à entraînement. Une autre forme d’amélioration, indépendante de l’entraînement, peut être obtenue grâce à une simple stimulation mécanique d’une petite région de la peau, appelée stimulation somatosensorielle répétée (RSS). Avant de commencer ce travail de thèse, il avait été montré que la RSS pouvait améliorer l’acuité tactile localement (sur le doigt stimulé) et aussi à distance (sur le visage) mais la topographie de l’amélioration tactile, notamment sur les autres doigts, demeurait inconnue. Également, l’hypothèse d’appliquer la RSS sur une autre région du corps (notamment le visage) et vérifier ses effets à la fois locaux sur le visage, ainsi qu’à distance sur les doigts, n’avait jamais été investiguée. Le but de mon travail de thèse constituait donc à investiguer la topographie de l’amélioration tactile induite par RSS au sein d’une même et entre plusieurs régions du corps. Une première étude a révélé que la RSS d’un doigt est capable d’induire une amélioration tactile locale ainsi qu’à distance entre les deux mains. La deuxième étude a prouvé que la RSS d’une région du visage est capable d’induire une amélioration tactile locale ainsi qu’une amélioration tactile à distance sur la main. De plus, l’effet d’amélioration tactile entre la main et le visage est bidirectionnel. Dans leur ensemble, les données expérimentales constituent une contribution significative à l'étude de la topographie des changements tactiles induits par la RSS
Touch plays a fundamental role in our daily activities. It has long been known that, thanks to brain plasticity, tactile acuity can be improved following training. Another form of tactile improvement, independent from training, can be achieved through a simple mechanical stimulation of a small region of the skin, called repetitive somatosensory stimulation (RSS). RSS of a finger was well known to improve tactile acuity locally (on the stimulated finger) and also remotely (on the face). However, topography of tactile improvement, especially on other unstimulated fingers, was unknown. In addition, the hypothesis of applying the RSS to another body region (notably the face) and investigate the possible effects, both in face and fingers, was not explored. The aim of this work of thesis was therefore investigating the topography of the RSS-induced tactile improvement within and between body regions. One first study revealed that RSS of a finger induces tactile improvement both locally and remotely in fingers. The second study showed that, when applied on the face, RSS is able to induce tactile improvement both locally, on the face, and remotely, in the hand, demonstrating that the tactile improvement between the hand and the face is bidirectional. Overall, the experimental data I provide constitute a significant contribution to the study of the topography of RSS-induced tactile changes
Styles APA, Harvard, Vancouver, ISO, etc.
6

Michel, Niklas [Verfasser]. « Touch comes of Age - Maturational Plasticity in Somatosensory Mechanosensation / Niklas Michel ». Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2020. http://d-nb.info/1235756831/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kolasinski, James. « Assessing sensorimotor plasticity with multimodal magnetic resonance imaging ». Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:9fb9008b-e3e9-4883-8a08-d13a223d3ee5.

Texte intégral
Résumé :
The sensorimotor network receives a rich variety of somesthetic afferents and outputs considerable motor efferents, both of which drive experience-dependent plasticity in the system. It remains unclear to what extent subtle changes in somaesthesis and motor function extrinsic to the brain drive plasticity in the functional organisation and anatomy of the sensorimotor network. This thesis contains a series of multimodal MRI experiments to investigate how altered-use and disuse can induce plastic changes in the sensorimotor network of the human brain. In Chapter 3, a method of mapping digit somatotopy in primary somatosensory cortex at the single-subject level using 7.0 tesla fMRI was developed and applied for a study of healthy participants. Using a phase-encoding paradigm, digit representations were accurately mapped in under 10 minutes. These maps were reproducible over time and comparable to a standard block design. In Chapter 4, a further fMRI study assessed the potential for short-term reorganisation of digit representations in primary somatosensory cortex following a manipulation whereby the right index and right middle fingers were glued together for 24 hours. There was a marked shift in the cortical overlap of adjacent digits after the glued manipulation, not seen across an equivalent control period, providing strong evidence for short-term remapping of primary somatosensory cortex. In Chapter 5, a patient study investigated plasticity associated with chronic unilateral disuse of the upper limb. A cross-sectional comparison with control participants showed reduced grey matter density in the posterior right temporoparietal junction, and increased radial diffusivity in the white matter of the right superior longitudinal fasciculus, consistent with change in the right ventral attention network. A complementary longitudinal study in Chapter 6 investigated structural plasticity associated with rehabilitation of the disused limb. There were localised increases in grey matter density, notably in the right temporoparietal junction, further implicating a potential role for regions responsible for egocentric attention in regaining upper limb use. In Chapter 7, a further patient study investigated candidate predictive biomarkers at the sub-acute stage of stroke recovery, identifying CST-lesion cross-section and sensorimotor network strength as correlates of motor function, which warrant further study. The results of the studies presented in this thesis provide a novel insight into the nature and time frame of functional and structural plasticity associated with altered use and disuse. Further study of how subtle changes in our sensory and motor use shape the sensorimotor network is warranted, particularly in the context of disuse in non-neurological clinical populations.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Muret, Dolly-Anne. « On the limits of cortical somatosensory plasticity and their functional consequences : a novel form of cross-border plasticity ». Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10063/document.

Texte intégral
Résumé :
Le toucher a un rôle critique dans notre vie quotidienne pour saisir, manipuler des objets, ou simplement marcher. Les aires primaires somatosensorielles présentent la particularité d'être organisées somatotopiquement, donnant lieu au dénommé Homunculus. Alors que la plupart de notre surface corporelle est représentée suivant un ordre similaire à sa continuité physique, l'Homunculus présente une discontinuité majeure, la main et le visage étant représentés côte à côte. La frontière main-visage a été souvent utilisée comme un repère pour étudier l'une des particularités les plus fascinantes de notre cerveau, sa capacité de réorganisation. En particulier, la plasticité somatosensorielle a été trouvée capable de traverser la frontière main-visage suite à une privation d'afférences. Alors qu'il est connu depuis longtemps que l'augmentation des afférences conduit également à des changements corticaux souvent associés à des bénéfices perceptifs, la possibilité qu'une telle plasticité puisse traverser la frontière main-visage reste inexplorée. Le travail de ma thèse a pour but d'examiner cette question. Une première étude comportementale a révélé que le fait d'augmenter les afférences d'un doigt améliore non seulement l'acuité tactile de ce doigt, mais aussi du visage, suggérant un transfert de changements plastiques au travers de la frontière main-visage. Afin d'examiner ceci, deux études supplémentaires ont été réalisées en utilisant deux techniques complémentaires d'imagerie cérébrales, à savoir l'IRMf et la MEG. En adéquation avec nos hypothèses, une réorganisation des représentations de la main et du visage a été trouvée. Dans l'ensemble, ce travail révèle qu'une plasticité adaptative menant à des bénéfices perceptifs peut se propager sur de larges distances corticales, en particulier au-delà de la frontière main-visage, et par conséquent ouvre une nouvelle fenêtre d'investigation pouvant avoir un réel impact dans la promotion de rééducation
Touch plays a critical role in our daily life to grasp and manipulate objects, or simply walk. The primary somatosensory areas exhibit the striking feature of being somatotopically organized, giving rise to the so-called Homunculus. While most of our body surface is represented following an order similar to its physical continuity, the Homunculus displays a major discontinuity, the hand and the face being represented next to each other. The hand-face border has been widely used as a somatotopic hallmark to study one of the most fascinating features of our brain, its capacity for reorganization. Particularly, somatosensory plasticity was found to cross the hand-face border following deprivation of inputs. While it has long been known that increasing inputs also leads to cortical changes typically associated with perceptual benefits, whether such plasticity can cross the hand-face border remains unknown. My thesis work aimed to investigate this question. A first behavioural study revealed that increasing inputs to a finger improves not only the tactile acuity at this finger, but also at the face, suggesting a transfer of plastic changes across the hand-face border. To investigate this, two additional studies were performed using two complementary brain imaging techniques, namely high-field fMRI and MEG. In agreement with our hypotheses a reorganization of both hand and face representations was found. Altogether, this work reveals that adaptive plasticity leading to perceptual benefits can spread over large cortical distances, in particular across the hand-face border, and thus opens up a new window of investigation that may have a real impact in promoting rehabilitation
Styles APA, Harvard, Vancouver, ISO, etc.
9

Wen, Jing. « Experience-dependent plasticity of layer 2/3 circuits in developing somatosensory neocortex ». Research Showcase @ CMU, 2012. http://repository.cmu.edu/dissertations/121.

Texte intégral
Résumé :
Experience-dependent plasticity is the adaptability of brain circuits as a result of changes in neural activity, a phenomenon that has been proposed as the neural basis for important brain function in health and disease. The underlying mechanisms of experience-dependent plasticity can take different forms, depending on the organisms and brain areas under investigation. A better understanding of these mechanisms will help to interpret normal brain function as well as to guide therapies for neurological diseases. Mouse vibrissa system offers great experimental advantages to studying experience-dependent plasticity and the underlying molecular mechanisms at different levels. Using sensory experience paradigms of unbalanced whisker activity, we find that sensory experience induces rapid synaptic strengthening at excitatory synapses converged onto single layer 2/3 pyramidal neurons, although the plasticity at these synapses displays remarkable input specificity. Furthermore, we discover that recently potentiated layer 4-2/3 excitatory synapses are labile and subject to activity-dependent weakening in vitro. Calcium-permeable AMPARs (CP-AMPARs) that are sometimes associated with synaptic strengthening are not essential for activity-induced synaptic weakening. Finally, we demonstrate that ongoing sensory experience triggers distinct phases of synaptic plasticity, which are tightly correlated with changes in NMDAR properties and function. Taken together, the results from this thesis show distinct manifestations and mechanisms of how sensory experience modulates synaptic properties and neuronal function that may provide insights into information processing and coding in the neocortex.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Ceko, Marta. « The role of insula in somatosensory plasticity : MRI studies in human subjects ». Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=119591.

Texte intégral
Résumé :
The insula is an important cortical processing area for thin fiber somatosensory input, including nociceptive and thermal input. This thesis desribes a series of studies focusing on the human insular cortex, in which structural and functional MRI, together with psychophysical testing, were used to explore the relationship between brain changes and alterations in somatosensory processing and regulation. In Study 1, we reported insular gray matter (GM) changes in a unique patient lacking large-fiber somatosensory input (proprioception, discriminative touch), but with intact thin-fiber input projecting into insular cortex. The patient had increased cortical thickness and resting state connectivity of the insula compared to matched controls. In Study 2, we reported increases in insular GM volume, and white matter (WM) integrity and connectivity in long-term yoga practitioners, who had heightened pain tolerance compared to matched controls. In addition, we observed a positive correlation between insular GM and individual pain tolerance across yoga practitioners and controls. In Study 3, which was part of a larger investigation of age-related GM changes in chronic pain (fibromyalgia) patients, we observed insular GM increase in younger patients compared to matched controls, and this GM increase was inversely related to patients' experimental pain sensitivity. Further, the anterior insula of younger patients had relative to matched controls decreased resting state connectivity to a cortical area involved in processing of the emotional salience of painful stimuli. This thesis provides three novel contributions to our understanding of the insula. Study 1 revealed insular structural and functional correlates of loss of specific somatosensory fibers in humans, Study 2 provided the first evidence for the effects of yoga practice on brain structure in general and on insular GM in particular, and related these effects to pain tolerance, and Study 3 was the first study to directly investigate age-related effects of chronic pain on brain GM, and in particular on insular GM structure and functional connectivity. We interpret the observed insular GM enhancements across all three studies as being suggestive of adaptive plasticity related to a) compensatory use of thin-fiber input – most notably temperature – in lieu of abolished large-fiber sensations b) pain regulation, likely via increased intra-insular processing and c) increased pain regulation, likely via functional disengagement from a cortical salience processing network. This work has improved our understanding of the insula in somatosensory and notably pain processing, and could thus help guide future studies aimed at developing treatments for chronic pain.
L'insula est une aire corticale importante impliquée dans le traitement de l'input des fines fibres somato-sensorielles incluant l'input nociceptive et thermal. Cette thèse décrit une série d'études centrées sur le cortex insulaire humain dans lesquelles l'IRM structural et fonctionnel et l'évaluation psychophysique ont été utilisées pour explorer la relation entre les changements du cerveau et ceux liés au traitement somato-sensoriel et à sa régulation. Dans la première étude, nous décrivons les changements dans la matière grise (MG) de l'insula chez une patiente n'ayant pas d'input somato-sensoriel provenant des larges fibres (proprioception, touché discriminatif), mais ayant un input intact des fines fibres projetant au cortex insulaire. Lorsque comparée à un groupe apparié de sujets contrôle, cette patiente présentait une augmentation de l'épaisseur du cortex et de la connectivité insulaire à l'état de repos. Dans la deuxième étude, nous observons une augmentation du volume de MG insulaire ainsi que de l'intégrité et de la connectivité de la matière blanche (MB) insulaire chez des adeptes du yoga expérimentés présentant une augmentation de la tolérance à la douleur lorsque comparés au sujets d'un groupe contrôle apparié. Nous avons de plus observé une corrélation positive entre la MG insulaire et les résultats de tolérance à la douleur de l'ensemble des sujets (adeptes du yoga et groupe contrôle). Dans la troisième étude, qui représente l'examen des changements de MG liés à l'âge chez des patients souffrant de douleurs chronique (fibromyalgie), nous observons une augmentation de la MG insulaire chez les jeunes patientes comparativement aux sujets du groupe contrôle apparié. Cette augmentation de MG est inversement corrélée à la sensibilité des patientes à la douleur expérimentale. De plus, l'insula antérieure des jeunes patientes montre, lorsque comparée à celle des sujets du groupe contrôle, une diminution de la connectivité à l'état de repos à une aire corticale impliquée dans le traitement de l'aspect émotionnel des stimuli douloureux. Cette thèse apporte trois contributions nouvelles à notre compréhension de l'insula. L'étude 1 révèle les conséquences structurale et fonctionnelle liées à la perte de fibres nerveuses somato-sensorielles spécifiques chez l'humain. L'étude 2 apporte la première démonstration des effets de la pratique du yoga sur la MG insulaire et de sa relation avec la tolérance à la douleur et l'étude 3 est la première étude qui recherche directement les effets liés à l'âge de la douleur chronique sur la structure et la fonction de l'insula. Nous interprétons les augmentations observées de MG insulaire dans les trois études comme reflétant une plasticité d'adaptation liée a) à l'utilisation compensatoire de l'input des fines fibres nerveuses – notamment celles liées à la perception de la température – en remplacement des fibres de plus gros calibre; b) au contrôle de la douleur, probablement par l'augmentation du traitement intra-insulaire; et c) à l'augmentation du contrôle de la douleur, probablement via un désengagement fonctionnel d'un réseau cortical impliqué dans le traitement de la salliance. Ce travail a amélioré notre compréhension de l'implication de l'insula dans le traitement de l'information somato-sensorielle et douloureuse et pourrait aider à éclairer de futures études visant à développer des traitements contre la douleur chronique.
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Somatosensory plasticity"

1

Kiss, Zelma H. T. Plasticity in the adult human somatosensory thalamus. Ottawa : National Library of Canada = Bibliothèque nationale du Canada, 1998.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Yoshiaki, Iwamura, Rowe Mark et International Union of Physiological Sciences. Congress, dir. Somatosensory processing : From single neuron to brain imaging. Amsterdam : Harwood Academic Publishers, 2001.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Body in mind : A new look at the somatosensory cortices. Hauppauge, N.Y : Nova Science Publishers, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Snow, Peter J., et Peter Wilson. Plasticity in the Somatosensory System of Developing and Mature Mammals — The Effects of Injury to the Central and Peripheral Nervous System. Berlin, Heidelberg : Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75701-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Ebner, Ford F. Neural Plasticity in Adult Somatic Sensory-Motor Systems. Taylor & Francis Group, 2005.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Ebner, Ford F. Neural Plasticity in Adult Somatic Sensory-Motor Systems. Taylor & Francis Group, 2005.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ebner, Ford F. Neural Plasticity in Adult Somatic Sensory-Motor Systems. Taylor & Francis Group, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Neural plasticity in adult somatic sensory-motor systems. Boca Raton, FL : Taylor & Francis/CRC Press, 2005.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Wilson, Peter, et Peter J. Snow. Plasticity in the Somatosensory System of Developing and Mature Mammals (Progress in Sensory Physiology). Springer-Verlag Berlin and Heidelberg GmbH & Co. K, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Rowe, Mark, et Yoshiaki Iwamura. Somatosensory Processing : From Single Neuron to Brain Imaging. Taylor & Francis Group, 2001.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Somatosensory plasticity"

1

Snow, Peter J., et Peter Wilson. « Plasticity and the Somatosensory Thalamus ». Dans Plasticity in the Somatosensory System of Developing and Mature Mammals — The Effects of Injury to the Central and Peripheral Nervous System, 286–311. Berlin, Heidelberg : Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75701-3_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Snow, Peter J., et Peter Wilson. « Plasticity and the Somatosensory Cerebral Cortex ». Dans Plasticity in the Somatosensory System of Developing and Mature Mammals — The Effects of Injury to the Central and Peripheral Nervous System, 312–93. Berlin, Heidelberg : Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75701-3_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Pons, T. P., P. E. Garraghty et M. Mishkin. « Plasticity in Nonprimary Somatosensory Cortex of Adult Monkeys ». Dans Post-Lesion Neural Plasticity, 511–17. Berlin, Heidelberg : Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73849-4_45.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Norrsell, Ulf. « Plasticity and Functional Mutability of Somatosensory Pathways ». Dans Information Processing in the Somatosensory System, 265–74. London : Macmillan Education UK, 1991. http://dx.doi.org/10.1007/978-1-349-11597-6_19.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Woolf, Clifford J., et Stephen W. N. Thompson. « Slow Potentials, Receptive Field Plasticity and Pain ». Dans Information Processing in the Somatosensory System, 427–37. London : Macmillan Education UK, 1991. http://dx.doi.org/10.1007/978-1-349-11597-6_32.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Snow, Peter J., et Peter Wilson. « Plasticity in the Peripheral Somatosensory Nervous System ». Dans Plasticity in the Somatosensory System of Developing and Mature Mammals — The Effects of Injury to the Central and Peripheral Nervous System, 6–57. Berlin, Heidelberg : Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75701-3_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Campbell, James N., et Richard A. Meyer. « Plasticity of the Neural Events Related to Pain ». Dans Information Processing in the Somatosensory System, 439–51. London : Macmillan Education UK, 1991. http://dx.doi.org/10.1007/978-1-349-11597-6_33.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Feldman, Daniel E., Cara B. Allen et Tansu Celikel. « LTD, Spike Timing and Somatosensory Barrel Cortex Plasticity ». Dans Excitatory-Inhibitory Balance, 229–40. Boston, MA : Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0039-1_15.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Welker, W. « Comparative Study of Cerebellar Somatosensory Representations the Importance of Micromapping and Natural Stimulation ». Dans Cerebellum and Neuronal Plasticity, 109–18. Boston, MA : Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-0965-9_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Merzenich, Michael M., Xiaoqin Wang, Christian Xerri et Randolph Nudo. « Functional plasticity of cortical representations of the hand ». Dans Somesthesis and the Neurobiology of the Somatosensory Cortex, 249–69. Basel : Birkhäuser Basel, 1996. http://dx.doi.org/10.1007/978-3-0348-9016-8_21.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Somatosensory plasticity"

1

Sklar, E. « A simulation of somatosensory cortical map plasticity ». Dans 1990 IJCNN International Joint Conference on Neural Networks. IEEE, 1990. http://dx.doi.org/10.1109/ijcnn.1990.137924.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Dicke, U. « Postontogenetic short-term plasticity in the somatosensory system : a neural network model ». Dans 9th International Conference on Artificial Neural Networks : ICANN '99. IEE, 1999. http://dx.doi.org/10.1049/cp:19991100.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Novais, Aurea Maria Lago, et Renan Carvalho Castello Branco. « Mechanisms of Neuroplasticity After Pediatric Stroke : A Review ». Dans XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.241.

Texte intégral
Résumé :
Introduction: Stroke in childhood constitute a rare event and its incidence is increasing due to advances in neuroimaging.This study clarifies anatomic and molecular mechanisms involved in neuroplasticity after children stroke, demonstrating its specificities in motor,somatosensory and language habilities. Methods: We used database, from 2000 to march 2021,of SpringerLink,NEJM,PubMed, AHA (Stroke),Scielo,VHL and JAMA.The research was based in the keywords “neuplasticity”, “stroke” and “children”; 57 were selected including original articles, case reports and reviews, considering abstract according to the objective of the present study and methodologies that satisfy criterias of cientific valuation, considering p <0,005 as statistical significance. Results: Reduction of ipsilesional cortex and better prognosis between the ages of 1 and 6 years were observed. About motor function, it was found persistence of some perilesionais circuits, contralateral reorganization with increasing activation of suplementary motor area, unbalance of intrahemisferics inhibitory mechanisms, increase of excitability and changes in the concentration of N-acetyl-aspartate, choline, myo-inositol and creatine. Somatosensory skills presented limited plasticity. Contralesional alterations in arched fasciculi and temporoparietal area, circuit remodelation and compromissing of complex cognitive functions were observed for language habilites. Conclusion: Better outcomes in the ages of 1 to 6 years demonstrate the duality between early vulnerability and early plasticity. The plasticity of motor system demonstrates therapeutic targets and potencial rehabilitation markers; otherwise, the limited potencial of somatossensorial habilities indicates its premature determination. Language skills presented limited prognosis.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Bazley, F. A., A. H. All, N. V. Thakor et A. Maybhate. « Plasticity associated changes in cortical somatosensory evoked potentials following spinal cord injury in rats ». Dans 2011 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2011. http://dx.doi.org/10.1109/iembs.2011.6090564.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Wu, C. W. H. « Peripheral Somatosensory Stimulation Induced Cortical Plasticity and its Clinical Application on Functional Restoration in Chronic Stroke. » Dans 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. IEEE, 2005. http://dx.doi.org/10.1109/iembs.2005.1615658.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Pendyam, Sandeep, Dongbeom Kim, Gregory J. Quirk et Satish S. Nair. « Acquisition of Fear and Extinction in Lateral Amygdala : A Modeling Study ». Dans ASME 2010 Dynamic Systems and Control Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/dscc2010-4218.

Texte intégral
Résumé :
The lateral nucleus of amygdala (LA) is known to be a critical storage site for conditioned fear memory. Synaptic plasticity at auditory inputs to the dorsal LA (LAd) is critical for the formation and storage of auditory fear memories. Recent evidence suggests that two different cell populations (transient- and long-term plastic cells) are present in LAd and are responsible for fear learning. However, the mechanisms involved in the formation and storage of fear are not well understood. As an extension of previous work, a biologically realistic computational model of the LAd circuitry is developed to investigate these mechanisms. The network model consists of 52 LA pyramidal neurons and 13 interneurons. Auditory and somatosensory information reaches LA from both thalamic and cortical inputs. The model replicated the tone responses observed in the two LAd cell populations during conditioning and extinction. The model provides insights into the role of thalamic and cortical inputs in fear memory formation and storage.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie