Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Solutions with exponential growth.

Articles de revues sur le sujet « Solutions with exponential growth »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Solutions with exponential growth ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Fattorini, H. O. « On the growth of solutions to second order differential equations in Banach spaces ». Proceedings of the Royal Society of Edinburgh : Section A Mathematics 101, no 3-4 (1985) : 237–52. http://dx.doi.org/10.1017/s0308210500020801.

Texte intégral
Résumé :
SynopsisWe obtain estimates for the exponential growth of the solutions to u″(t) = (A + ζ2I)u(t) in terms of the exponential growth of the solutions to u″(t) = Au(t), where ζ is an arbitrary complex number. Estimates in exponentially weighted L2 norms are also considered in Hilbert space.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Hang, Fengbo, et Fanghua Lin. « Exponential growth solutions of elliptic equations ». Acta Mathematica Sinica, English Series 15, no 4 (octobre 1999) : 525–34. http://dx.doi.org/10.1007/s10114-999-0084-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Popivanov, N., T. Popov et R. Scherer. « Singular solutions with exponential growth to Protter’s problems ». Siberian Advances in Mathematics 23, no 3 (juillet 2013) : 219–26. http://dx.doi.org/10.3103/s1055134413030073.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Lubinsky, Doron S., et Paul Nevai. « Sub-Exponential Growth of Solutions of Difference Equations ». Journal of the London Mathematical Society s2-46, no 1 (août 1992) : 149–60. http://dx.doi.org/10.1112/jlms/s2-46.1.149.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

SCHEUTZOW, MICHAEL. « EXPONENTIAL GROWTH RATES FOR STOCHASTIC DELAY DIFFERENTIAL EQUATIONS ». Stochastics and Dynamics 05, no 02 (juin 2005) : 163–74. http://dx.doi.org/10.1142/s0219493705001468.

Texte intégral
Résumé :
In this survey, we provide some tools to obtain estimates for the almost sure exponential growth rate of a stochastic delay differential equation (sdde) which fixes zero. In particular, we are interested in determining whether the solutions of a given sdde are exponentially stable (i.e. have a negative exponential growth rate) or not. We focus on equations without drift, which are a good testground to assess if a method is powerful enough to discriminate between stability and instability when a certain parameter (e.g. noise intensity) varies. The most powerful tool we provide is the method of Lyapunov functionals which is used to obtain upper bounds for p-th moment exponents for small (positive and negative) values of p.
Styles APA, Harvard, Vancouver, ISO, etc.
6

ZAIDI, A. A., et B. VAN BRUNT. « ASYMMETRICAL CELL DIVISION WITH EXPONENTIAL GROWTH ». ANZIAM Journal 63, no 1 (janvier 2021) : 70–83. http://dx.doi.org/10.1017/s1446181121000109.

Texte intégral
Résumé :
AbstractAn advanced pantograph-type partial differential equation, supplemented with initial and boundary conditions, arises in a model of asymmetric cell division. Methods for solving such problems are limited owing to functional (nonlocal) terms. The separation of variables entails an eigenvalue problem that involves a nonlocal ordinary differential equation. We discuss plausible eigenvalues that may yield nontrivial solutions to the problem for certain choices of growth and division rates of cells. We also consider the asymmetric division of cells with linear growth rate which corresponds to “exponential growth” and exponential rate of cell division, and show that the solution to the problem is a certain Dirichlet series. The distribution of the first moment of the biomass is shown to be unimodal.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Zaidi, Ali, et Bruce Van Brunt. « Asymmetrical cell division with exponential growth ». ANZIAM Journal 63 (30 juillet 2021) : 70–83. http://dx.doi.org/10.21914/anziamj.v63.16116.

Texte intégral
Résumé :
An advanced pantograph-type partial differential equation, supplemented with initial and boundary conditions, arises in a model of asymmetric cell division. Methods for solving such problems are limited owing to functional (nonlocal) terms. The separation of variables entails an eigenvalue problem that involves a nonlocal ordinary differential equation. We discuss plausible eigenvalues that may yield nontrivial solutions to the problem for certain choices of growth and division rates of cells. We also consider the asymmetric division of cells with linear growth rate which corresponds to "exponential growth” and exponential rate of cell division, and show that the solution to the problem is a certain Dirichlet series. The distribution of the first moment of the biomass is shown to be unimodal. doi:10.1017/S1446181121000109
Styles APA, Harvard, Vancouver, ISO, etc.
8

ZHANG, ZHITAO, MARTA CALANCHI et BERNHARD RUF. « ELLIPTIC EQUATIONS IN ℝ2 WITH ONE-SIDED EXPONENTIAL GROWTH ». Communications in Contemporary Mathematics 06, no 06 (décembre 2004) : 947–71. http://dx.doi.org/10.1142/s0219199704001549.

Texte intégral
Résumé :
We consider elliptic equations in bounded domains Ω⊂ℝ2 with nonlinearities which have exponential growth at +∞ (subcritical and critical growth, respectively) and linear growth λ at -∞, with λ>λ1, the first eigen value of the Laplacian. We prove that such equations have at least two solutions for certain forcing terms; one solution is negative, the other one is sign-changing. Some critical groups and Morse index of these solutions are given. Also the case λ<λ1 is considered.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Benameur, Jamel, et Mongi Blel. « Asymptotic Study of the 2D-DQGE Solutions ». Journal of Function Spaces 2014 (2014) : 1–6. http://dx.doi.org/10.1155/2014/538374.

Texte intégral
Résumé :
We study the regularity of the solutions of the surface quasi-geostrophic equation with subcritical exponent1/2<α≤1. We prove that if the initial data is small enough in the critical spaceH˙2-2α(R2), then the regularity of the solution is of exponential growth type with respect to time and itsH˙2-2α(R2)norm decays exponentially fast. It becomes then infinitely differentiable with respect to time and has value in all homogeneous Sobolev spacesH˙s(R2)fors≥2-2α. Moreover, we give some general properties of the global solutions.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Alves, Claudianor O., et Sérgio H. M. Soares. « Nodal solutions for singularly perturbed equations with critical exponential growth ». Journal of Differential Equations 234, no 2 (mars 2007) : 464–84. http://dx.doi.org/10.1016/j.jde.2006.12.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

TAN, ZHONG, et FEI FANG. « NONTRIVIAL SOLUTIONS FOR N-LAPLACIAN EQUATIONS WITH SUB-EXPONENTIAL GROWTH ». Analysis and Applications 11, no 03 (mai 2013) : 1350005. http://dx.doi.org/10.1142/s021953051350005x.

Texte intégral
Résumé :
Let Ω be a bounded domain in RNwith smooth boundary ∂Ω. In this paper, the following Dirichlet problem for N-Laplacian equations (N > 1) are considered: [Formula: see text] We assume that the nonlinearity f(x, t) is sub-exponential growth. In fact, we will prove the mapping f(x, ⋅): LA(Ω) ↦ LÃ(Ω) is continuous, where LA(Ω) and LÃ(Ω) are Orlicz spaces. Applying this result, the compactness conditions would be obtained. Hence, we may use Morse theory to obtain existence of nontrivial solutions for problem (N).
Styles APA, Harvard, Vancouver, ISO, etc.
12

Souza, Manassés, Uberlandio Batista Severo et Thiago Luiz do Rêgo. « Nodal solutions for fractional elliptic equations involving exponential critical growth ». Mathematical Methods in the Applied Sciences 43, no 6 (10 janvier 2020) : 3650–72. http://dx.doi.org/10.1002/mma.6145.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Binyamini, Gal. « Bezout-type theorems for differential fields ». Compositio Mathematica 153, no 4 (13 mars 2017) : 867–88. http://dx.doi.org/10.1112/s0010437x17007035.

Texte intégral
Résumé :
We prove analogs of the Bezout and the Bernstein–Kushnirenko–Khovanskii theorems for systems of algebraic differential conditions over differentially closed fields. Namely, given a system of algebraic conditions on the first $l$ derivatives of an $n$-tuple of functions, which admits finitely many solutions, we show that the number of solutions is bounded by an appropriate constant (depending singly-exponentially on $n$ and $l$) times the volume of the Newton polytope of the set of conditions. This improves a doubly-exponential estimate due to Hrushovski and Pillay. We illustrate the application of our estimates in two diophantine contexts: to counting transcendental lattice points on algebraic subvarieties of semi-abelian varieties, following Hrushovski and Pillay; and to counting the number of intersections between isogeny classes of elliptic curves and algebraic varieties, following Freitag and Scanlon. In both cases we obtain bounds which are singly-exponential (improving the known doubly-exponential bounds) and which exhibit the natural asymptotic growth with respect to the degrees of the equations involved.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Liu, Jian-Guo, et Robert Strain. « Global stability for solutions to the exponential PDE describing epitaxial growth ». Interfaces and Free Boundaries 21, no 1 (9 mai 2019) : 61–86. http://dx.doi.org/10.4171/ifb/417.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Price, Brock C., et Xiangsheng Xu. « Strong solutions to a fourth order exponential PDE describing epitaxial growth ». Journal of Differential Equations 306 (janvier 2022) : 220–50. http://dx.doi.org/10.1016/j.jde.2021.10.034.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Tarsi, Cristina. « Uniqueness of positive solutions of nonlinear elliptic equations with exponential growth ». Proceedings of the Royal Society of Edinburgh : Section A Mathematics 133, no 6 (décembre 2003) : 1409–20. http://dx.doi.org/10.1017/s0308210500003012.

Texte intégral
Résumé :
By combining a technique inspired to the theory of sublinear elliptic equations with the Emden-Fowler inversion technique of Atkinson and Peletier, we obtain uniqueness of positive solutions of the following equation where B ⊂ Rn is the ball of radius one, λ > 0 and 1 < ϑ ≤ 2.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Squassina, Marco, et Cristina Tarsi. « Multiple solutions for quasilinear elliptic problems¶in ℝ2 with exponential growth ». manuscripta mathematica 106, no 3 (novembre 2001) : 315–37. http://dx.doi.org/10.1007/pl00005886.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Chi, H., H. Poorkarimi, J. Wiener et S. M. Shah. « On the exponential growth of solutions to non-linear hyperbolic equations ». International Journal of Mathematics and Mathematical Sciences 12, no 3 (1989) : 539–45. http://dx.doi.org/10.1155/s0161171289000670.

Texte intégral
Résumé :
Existence-uniqueness theorems are proved for continuous solutions of some classes of non-linear hyperbolic equations in bounded and unbounded regions. In case of unbounded region, certain conditions ensure that the solution cannot grow to infinity faster than exponentially.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Liu, Yanjun, et Chungen Liu. « Ground state solution and multiple solutions to elliptic equations with exponential growth and singular term ». Communications on Pure & ; Applied Analysis 19, no 5 (2020) : 2819–38. http://dx.doi.org/10.3934/cpaa.2020123.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

KAREV, GEORGY P. « DYNAMICS OF INHOMOGENEOUS POPULATIONS AND GLOBAL DEMOGRAPHY MODELS ». Journal of Biological Systems 13, no 01 (mars 2005) : 83–104. http://dx.doi.org/10.1142/s0218339005001410.

Texte intégral
Résumé :
The dynamic theory of inhomogeneous populations developed during the last decade predicts several essential new dynamic regimes applicable even to the well-known, simple population models. We show that, in an inhomogeneous population with a distributed reproduction coefficient, the entire initial distribution of the coefficient should be used to investigate real population dynamics. In the general case, neither the average rate of growth nor the variance or any finite number of moments of the initial distribution is sufficient to predict the overall population growth. We developed methods for solving the heterogeneous models and explored the dynamics of the total population size together with the reproduction coefficient distribution. We show that, typically, there exists a phase of "hyper-exponential" growth that precedes the well-known exponential phase of population growth in a free regime. The developed formalism is applied to models of global demography and the problem of "population explosion" predicted by the known hyperbolic formula of world population growth. We prove here that the hyperbolic formula presents an exact solution to the Malthus model with an exponentially distributed reproduction coefficient and that "population explosion" is a corollary of certain implicit unrealistic assumptions. Alternative models of world population growth are derived; they show a notable phenomenon, a transition from protracted hyperbolical growth (the phase of "hyper-exponential" development) to the brief transitional phase of exponential growth and, subsequently, to stabilization. The model solutions are consistent with real data and produce relatively accurate forecasts.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Zhou, Shaobo. « Almost Surely Exponential Stability of Numerical Solutions for Stochastic Pantograph Equations ». Abstract and Applied Analysis 2014 (2014) : 1–9. http://dx.doi.org/10.1155/2014/751209.

Texte intégral
Résumé :
Our effort is to develop a criterion on almost surely exponential stability of numerical solution to stochastic pantograph differential equations, with the help of the discrete semimartingale convergence theorem and the technique used in stable analysis of the exact solution. We will prove that the Euler-Maruyama (EM) method can preserve almost surely exponential stability of stochastic pantograph differential equations under the linear growth conditions. And the backward EM method can reproduce almost surely exponential stability for highly nonlinear stochastic pantograph differential equations. A highly nonlinear example is provided to illustrate the main theory.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Abou-Senna, Amr, et Boping Tian. « Almost Sure Exponential Stability of Numerical Solutions for Stochastic Pantograph Differential Equations with Poisson Jumps ». Mathematics 10, no 17 (1 septembre 2022) : 3137. http://dx.doi.org/10.3390/math10173137.

Texte intégral
Résumé :
The stability analysis of the numerical solutions of stochastic models has gained great interest, but there is not much research about the stability of stochastic pantograph differential equations. This paper deals with the almost sure exponential stability of numerical solutions for stochastic pantograph differential equations interspersed with the Poisson jumps by using the discrete semimartingale convergence theorem. It is shown that the Euler–Maruyama method can reproduce the almost sure exponential stability under the linear growth condition. It is also shown that the backward Euler method can reproduce the almost sure exponential stability of the exact solution under the polynomial growth condition and the one-sided Lipschitz condition. Additionally, numerical examples are performed to validate our theoretical result.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Ma, Weijun, Wei Liu, Quanxin Zhu et Kaibo Shi. « Dynamics of the Exponential Population Growth System with Mixed Fractional Brownian Motion ». Complexity 2021 (30 décembre 2021) : 1–18. http://dx.doi.org/10.1155/2021/5079147.

Texte intégral
Résumé :
This paper examines the dynamics of the exponential population growth system with mixed fractional Brownian motion. First, we establish some useful lemmas that provide powerful tools for studying the stochastic differential equations with mixed fractional Brownian motion. We offer some explicit expressions and numerical characteristics such as mathematical expectation and variance of the solutions of the exponential population growth system with mixed fractional Brownian motion. Second, we propose two sufficient and necessary conditions for the almost sure exponential stability and the k th moment exponential stability of the solution of the constant coefficient exponential population growth system with mixed fractional Brownian motion. Furthermore, we conduct some large deviation analysis of this mixed fractional population growth system. To the best of the authors’ knowledge, this is the first paper to investigate how the Hurst index affects the exponential stability and large deviations in the biological population system. It is interesting that the phenomenon of large deviations always occurs for addressed system when 1 / 2 < H < 1 . Moreover, several numerical simulations are reported to show the effectiveness of the proposed approach.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Georgiades, Evripides, Michael J. S. Lowe et Richard V. Craster. « Leaky wave characterisation using spectral methods ». Journal of the Acoustical Society of America 152, no 3 (septembre 2022) : 1487–97. http://dx.doi.org/10.1121/10.0013897.

Texte intégral
Résumé :
Leaky waves are an important class of waves, particularly for guiding waves along structures embedded within another medium; a mismatch in wavespeeds often leads to leakage of energy from the waveguide, or interface, into the medium, which consequently attenuates the guided wave. The accurate and efficient identification of theoretical solutions for leaky waves is a key requirement for the choices of modes and frequencies required for non-destructive evaluation inspection techniques. We choose a typical situation to study: an elastic waveguide with a fluid on either side. Historically, leaky waves are identified via root-finding methods that have issues with conditioning, or numerical methods that struggle with the exponential growth of solutions at infinity. By building upon a spectral collocation method, we show how it can be adjusted to find exponentially growing solutions, i.e., leaky waves, leading to an accurate, fast, and efficient identification of their dispersion properties. The key concept required is a mapping, in the fluid region, that allows for exponential growth of the physical solution at infinity, whilst the mapped numerical setting decays. We illustrate this by studying leaky Lamb waves in an elastic waveguide immersed between two different fluids and verify this using the commercially available software disperse.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Omaba, McSylvester Ejighikeme. « Moment bounds for a class of stochastic nonlinear fractional Volterra integral equations of the second kind ». International Journal of ADVANCED AND APPLIED SCIENCES 9, no 8 (août 2022) : 152–57. http://dx.doi.org/10.21833/ijaas.2022.08.019.

Texte intégral
Résumé :
This paper studies and compares the second moment (Energy growth) bounds for solutions to a class of stochastic fractional Volterra integral equations of the second kind, under some Lipschitz continuity conditions on the parameters. The result shows that both solutions exhibit exponential growth but at different rates. The existence and uniqueness of the mild solutions are established via the Banach fixed point theorem.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Bartłomiejczyk, Agnieszka, et Henryk Leszczyński. « Existence of solutions with exponential growth for nonlinear differential-functional parabolic equations ». Annales Polonici Mathematici 111, no 3 (2014) : 309–26. http://dx.doi.org/10.4064/ap111-3-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Figueiredo, Giovany M., et Vicenţiu D. Rădulescu. « Positive solutions of the prescribed mean curvature equation with exponential critical growth ». Annali di Matematica Pura ed Applicata (1923 -) 200, no 5 (1 mars 2021) : 2213–33. http://dx.doi.org/10.1007/s10231-021-01077-7.

Texte intégral
Résumé :
AbstractIn this paper, we are concerned with the problem $$\begin{aligned} -\text{ div } \left( \displaystyle \frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = f(u) \ \text{ in } \ \Omega , \ \ u=0 \ \text{ on } \ \ \partial \Omega , \end{aligned}$$ - div ∇ u 1 + | ∇ u | 2 = f ( u ) in Ω , u = 0 on ∂ Ω , where $$\Omega \subset {\mathbb {R}}^{2}$$ Ω ⊂ R 2 is a bounded smooth domain and $$f:{\mathbb {R}}\rightarrow {\mathbb {R}}$$ f : R → R is a superlinear continuous function with critical exponential growth. We first make a truncation on the prescribed mean curvature operator and obtain an auxiliary problem. Next, we show the existence of positive solutions of this auxiliary problem by using the Nehari manifold method. Finally, we conclude that the solution of the auxiliary problem is a solution of the original problem by using the Moser iteration method and Stampacchia’s estimates.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Soave, Nicola, et Alessandro Zilio. « Entire solutions with exponential growth for an elliptic system modelling phase separation ». Nonlinearity 27, no 2 (17 janvier 2014) : 305–42. http://dx.doi.org/10.1088/0951-7715/27/2/305.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Rebiai, Belgacem, et Saïd Benachour. « Global classical solutions for reaction–diffusion systems with nonlinearities of exponential growth ». Journal of Evolution Equations 10, no 3 (5 mars 2010) : 511–27. http://dx.doi.org/10.1007/s00028-010-0059-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Figueiredo, Giovany M., et Vicenţiu D. Rădulescu. « Nonhomogeneous equations with critical exponential growth and lack of compactness ». Opuscula Mathematica 40, no 1 (2020) : 71–92. http://dx.doi.org/10.7494/opmath.2020.40.1.71.

Texte intégral
Résumé :
We study the existence and multiplicity of positive solutions for the following class of quasilinear problems \[-\operatorname{div}(a(|\nabla u|^{p})| \nabla u|^{p-2}\nabla u)+V(\epsilon x)b(|u|^{p})|u|^{p-2}u=f(u) \qquad\text{ in } \mathbb{R}^N,\] where \(\epsilon\) is a positive parameter. We assume that \(V:\mathbb{R}^N \to \mathbb{R}\) is a continuous potential and \(f:\mathbb{R}\to\mathbb{R}\) is a smooth reaction term with critical exponential growth.
Styles APA, Harvard, Vancouver, ISO, etc.
31

Han, Haegyeong, et Hwajoon Kim. « The Solution of Exponential Growth and Exponential Decay by Using Laplace Transform ». International Journal of Difference Equations 15, no 2 (30 décembre 2020) : 191–95. http://dx.doi.org/10.37622/ijde/15.2.2020.191-195.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Shvets, Vadim, et Boris Zeide. « Investigating parameters of growth equations ». Canadian Journal of Forest Research 26, no 11 (1 novembre 1996) : 1980–90. http://dx.doi.org/10.1139/x26-224.

Texte intégral
Résumé :
Two differential forms of growth equations, called the power decline, or PD form, and the exponential decline, or ED form, generate classic growth equations (such as the logistic, Chapman–Richards, Korf) and many other integral forms. Having a full range of these integral solutions allows us to classify them, establish requirements to their parameters, and relate these parameters and initial values (starting age and tree size). Comparisons with data confirm theoretical results. Some applications of the results are discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Deng, Shengbing, et Junwei Yu. « On a class of singular Hamiltonian Choquard-type elliptic systems with critical exponential growth ». Journal of Mathematical Physics 63, no 12 (1 décembre 2022) : 121501. http://dx.doi.org/10.1063/5.0110352.

Texte intégral
Résumé :
In this paper, using the Moser functions and linking theorem, we study the existence of solutions for a class of Hamiltonian Choquard-type elliptic systems in the plane with exponential growth involving singular weights.
Styles APA, Harvard, Vancouver, ISO, etc.
34

sci, Chong Wang. « Existence of Nontrivial Weak Solutions to Quasi-linear Elliptic Equations with Exponential Growth ». Journal of Partial Differential Equations 26, no 1 (juin 2013) : 25–38. http://dx.doi.org/10.4208/jpde.v26.n1.3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Lam, Nguyen, et Guozhen Lu. « Existence of nontrivial solutions to Polyharmonic equations with subcritical and critical exponential growth ». Discrete & ; Continuous Dynamical Systems - A 32, no 6 (2012) : 2187–205. http://dx.doi.org/10.3934/dcds.2012.32.2187.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Liao, Fangfang, et Xiaoping Wang. « Ground state solutions for Schrödinger–Poisson system with critical exponential growth in R2 ». Applied Mathematics Letters 120 (octobre 2021) : 107340. http://dx.doi.org/10.1016/j.aml.2021.107340.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Zennir, Khaled. « Exponential growth of solutions with Lp -norm of a nonlinear viscoelastic hyperbolic equation ». Journal of Nonlinear Sciences and Applications 06, no 04 (10 novembre 2013) : 252–62. http://dx.doi.org/10.22436/jnsa.006.04.03.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

de Freitas, Luciana R. « Multiplicity of solutions for a class of quasilinear equations with exponential critical growth ». Nonlinear Analysis : Theory, Methods & ; Applications 95 (janvier 2014) : 607–24. http://dx.doi.org/10.1016/j.na.2013.10.010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Li, Qin, et Zuodong Yang. « Multiple solutions for N-Kirchhoff type problems with critical exponential growth in RN ». Nonlinear Analysis : Theory, Methods & ; Applications 117 (avril 2015) : 159–68. http://dx.doi.org/10.1016/j.na.2015.01.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Song, Hongxue, Caisheng Chen et Qinglun Yan. « Infinitely many solutions for quasilinear Schrödinger equation with critical exponential growth in RN ». Journal of Mathematical Analysis and Applications 439, no 2 (juillet 2016) : 575–93. http://dx.doi.org/10.1016/j.jmaa.2016.03.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Sugimura, Kunihiko. « Existence of infinitely many solutions for a perturbed elliptic equation with exponential growth ». Nonlinear Analysis : Theory, Methods & ; Applications 22, no 3 (février 1994) : 277–93. http://dx.doi.org/10.1016/0362-546x(94)90020-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Chen, Caisheng, et Hongxue Song. « Soliton solutions for quasilinear Schrödinger equation with critical exponential growth in ℝ N ». Applications of Mathematics 61, no 3 (18 mai 2016) : 317–37. http://dx.doi.org/10.1007/s10492-016-0134-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Li, Shuoshuo, Zifei Shen et Minbo Yang. « Multiplicity of solutions for a nonlocal nonhomogeneous elliptic equation with critical exponential growth ». Journal of Mathematical Analysis and Applications 475, no 2 (juillet 2019) : 1685–713. http://dx.doi.org/10.1016/j.jmaa.2019.03.039.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Chen, Sitong, et Xianhua Tang. « Axially symmetric solutions for the planar Schrödinger-Poisson system with critical exponential growth ». Journal of Differential Equations 269, no 11 (novembre 2020) : 9144–74. http://dx.doi.org/10.1016/j.jde.2020.06.043.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Pucci, Patrizia, et Letizia Temperini. « (p,Q) systems with critical singular exponential nonlinearities in the Heisenberg group ». Open Mathematics 18, no 1 (27 novembre 2020) : 1423–39. http://dx.doi.org/10.1515/math-2020-0108.

Texte intégral
Résumé :
Abstract The paper deals with the existence of solutions for (p,Q) coupled elliptic systems in the Heisenberg group, with critical exponential growth at infinity and singular behavior at the origin. We derive existence of nonnegative solutions with both components nontrivial and different, that is solving an actual system, which does not reduce into an equation. The main features and novelties of the paper are the presence of a general coupled critical exponential term of the Trudinger-Moser type and the fact that the system is set in {{\mathbb{H}}}^{n} .
Styles APA, Harvard, Vancouver, ISO, etc.
46

Hall, A. J., et G. C. Wake. « Functional differential equations determining steady size distributions for populations of cells growing exponentially ». Journal of the Australian Mathematical Society. Series B. Applied Mathematics 31, no 4 (avril 1990) : 434–53. http://dx.doi.org/10.1017/s0334270000006779.

Texte intégral
Résumé :
AbstractA population of cells growing and dividing often goes through a phase of exponential growth of numbers, during which the size distribution remains steady. In this paper we study the function differential equation governing this steady size distribution in the particular case where the individual cells themselves are growing exponentially in size. A series solution is obtained for the case where the probability of cell division is proportional to any positive power of the cell size, and a method for finding closed-form solutions for a more general class of cell division functions is developed.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Abdel-Rehim, E. A. « The time evolution of the large exponential and power population growth and their relation to the discrete linear birth-death process ». Electronic Research Archive 30, no 7 (2022) : 2487–509. http://dx.doi.org/10.3934/era.2022127.

Texte intégral
Résumé :
<abstract><p>The Feller exponential population growth is the continuous analogues of the classical branching process with fixed number of individuals. In this paper, I begin by proving that the discrete birth-death process, $ M/M/1 $ queue, could be mathematically modelled by the same Feller exponential growth equation via the Kolmogorov forward equation. This equation mathematically formulates the classical Markov chain process. The non-classical linear birth-death growth equation is studied by extending the first-order time derivative by the Caputo time fractional operator, to study the effect of the memory on this stochastic process. The approximate solutions of the models are numerically studied by implementing the finite difference method and the fourth order compact finite difference method. The stability of the difference schemes are studied by using the Matrix method. The time evolution of these approximate solutions are compared for different values of the time fractional orders. The approximate solutions corresponding to different values of the birth and death rates are also compared.</p></abstract>
Styles APA, Harvard, Vancouver, ISO, etc.
48

Fang, Fei, et Chao Ji. « The cone Moser–Trudinger inequalities and applications ». Asymptotic Analysis 120, no 3-4 (30 octobre 2020) : 273–99. http://dx.doi.org/10.3233/asy-191588.

Texte intégral
Résumé :
In this paper, we first study the cone Moser–Trudinger inequalities and their best exponents on both bounded and unbounded domains R + 2 . Then, using the cone Moser–Trudinger inequalities, we study the asymptotic behavior of Cerami sequences and the existence of weak solutions to the nonlinear equation − Δ B u = f ( x , u ) , in x ∈ int ( B ) , u = 0 , on ∂ B , where Δ B is an elliptic operator with conical degeneration on the boundary x 1 = 0, and the nonlinear term f has the subcritical exponential growth or the critical exponential growth.
Styles APA, Harvard, Vancouver, ISO, etc.
49

HUUSKO, JUHA-MATTI. « LOCALISATION OF LINEAR DIFFERENTIAL EQUATIONS IN THE UNIT DISC BY A CONFORMAL MAP ». Bulletin of the Australian Mathematical Society 93, no 2 (15 octobre 2015) : 260–71. http://dx.doi.org/10.1017/s0004972715001070.

Texte intégral
Résumé :
We obtain lower bounds for the growth of solutions of higher order linear differential equations, with coefficients analytic in the unit disc of the complex plane, by localising the equations via conformal maps and applying known results for the unit disc. As an example, we study equations in which the coefficients have a certain explicit exponential growth at one point on the boundary of the unit disc and consider the iterated $M$-order of solutions.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Chaves, M., J. L. Vazquez et M. Walias. « Optimal existence and uniqueness in a nonlinear diffusion–absorption equation with critical exponents ». Proceedings of the Royal Society of Edinburgh : Section A Mathematics 127, no 2 (1997) : 217–42. http://dx.doi.org/10.1017/s0308210500023623.

Texte intégral
Résumé :
We study the existence and uniqueness of non-negative solutions of the nonlinear parabolic equationposed in Q = RN × (0, ∞) with general initial data u(x, 0) = u0(x) ≧ 0. We find optimal exponential growth conditions for existence of solutions. Similar conditions apply for uniqueness, but the growth rate is different. Such conditions strongly depart from the linear case m = 1, ut = Δu – u, and also from the purely diffusive case ut = Δum.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie