Articles de revues sur le sujet « Soluble epoxide hydrolase subdomains »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Soluble epoxide hydrolase subdomains.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Soluble epoxide hydrolase subdomains ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Gupta, Nandita C., Catherine M. Davis, Jonathan W. Nelson, Jennifer M. Young et Nabil J. Alkayed. « Soluble Epoxide Hydrolase ». Arteriosclerosis, Thrombosis, and Vascular Biology 32, no 8 (août 2012) : 1936–42. http://dx.doi.org/10.1161/atvbaha.112.251520.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Sontakke, Pooja M., Suraj G. Malpani, Pooja R. Tange, MD Rayees Ahmad et Vishweshwar M. Dharashive. « Soluble Epoxide Hydrolase ». Asian Journal of Pharmaceutical Research and Development 12, no 2 (15 avril 2024) : 87–95. http://dx.doi.org/10.22270/ajprd.v12i2.1369.

Texte intégral
Résumé :
Epoxyeicosatrienoic acids (EETs) have numerous cardiovascular benefits, including vasodilation, anti-inflammatory actions, and anti-migratory effects on vascular smooth muscle cells. However, sEH, an enzyme that breaks down EETs into diols, limits these benefits. The development of sEH inhibitors (sEHIs), particularly those based on 1,3-disubstituted urea, has shown promise in enhancing the therapeutic properties of EETs. These inhibitors are antihypertensive and anti-inflammatory and can protect the heart, brain, and kidneys from damage. While there are still challenges to overcome, such as improving the drug-like properties of sEHIs and finding better ways to target specific tissues, the initiation of clinical trials for sEHIs highlights their potential as therapeutic agents.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Yu, Zhigang, Benjamin B. Davis, Christophe Morisseau, Bruce D. Hammock, Jean L. Olson, Deanna L. Kroetz et Robert H. Weiss. « Vascular localization of soluble epoxide hydrolase in the human kidney ». American Journal of Physiology-Renal Physiology 286, no 4 (avril 2004) : F720—F726. http://dx.doi.org/10.1152/ajprenal.00165.2003.

Texte intégral
Résumé :
Epoxyeicosatrienoic acids are cytochrome P-450 metabolites of arachidonic acid with multiple biological functions, including the regulation of vascular tone, renal tubular transport, cellular proliferation, and inflammation. Epoxyeicosatrienoic acids are converted by soluble epoxide hydrolase into the corresponding dihydroxyeicosatrienoic acids, and epoxyeicosatrienoic acid hydration is regarded as one mechanism whereby their biological effects are eliminated. Previous animal studies indicate that soluble epoxide hydrolase plays an important role in the regulation of renal eicosanoid levels and systemic blood pressure. To begin to elucidate the mechanism of these effects, we determined the cellular localization of soluble epoxide hydrolase in human kidney by examining biopsies taken from patients with a variety of non-end-stage renal diseases, as well as those without known renal disease. Immunohistochemical staining of acetone-fixed kidney biopsy samples revealed that soluble epoxide hydrolase was preferentially expressed in the renal vasculature with relatively low levels in the surrounding tubules. Expression of soluble epoxide hydrolase was evident in renal arteries of varying diameter and was localized mostly in the smooth muscle layers of the arterial wall. Western blot analysis and functional assays confirmed the expression of soluble epoxide hydrolase in the human kidney. There were no obvious differences in soluble epoxide hydrolase expression between normal and diseased human kidney tissue in the samples examined. Our results indicate that soluble epoxide hydrolase is present in the human kidney, being preferentially expressed in the renal vasculature, and support an essential role for this enzyme in renal hemodynamic regulation and its potential utility as a target for therapeutic intervention.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Borhan, Babak, A. Daniel Jones, Franck Pinot, David F. Grant, Mark J. Kurth et Bruce D. Hammock. « Mechanism of Soluble Epoxide Hydrolase ». Journal of Biological Chemistry 270, no 45 (10 novembre 1995) : 26923–30. http://dx.doi.org/10.1074/jbc.270.45.26923.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Wang, Yi-Xin Jim, Arzu Ulu, Le-Ning Zhang et Bruce Hammock. « Soluble Epoxide Hydrolase in Atherosclerosis ». Current Atherosclerosis Reports 12, no 3 (13 avril 2010) : 174–83. http://dx.doi.org/10.1007/s11883-010-0108-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Ma, Liang, Hailing Zhao, Meijie Yu, Yumin Wen, Tingting Zhao, Meihua Yan, Qian Liu et al. « Association of Epoxide Hydrolase 2 Gene Arg287Gln with the Risk for Primary Hypertension in Chinese ». International Journal of Hypertension 2020 (28 février 2020) : 1–7. http://dx.doi.org/10.1155/2020/2351547.

Texte intégral
Résumé :
Background. Epoxide hydrolase 2 (EPHX2) gene coding for soluble epoxide hydrolase is a potential candidate in the pathogenesis of hypertension. Objectives. We aimed to assess the association of a missense mutation, R287Q, in EPHX2 gene with primary hypertension risk and examine its association with enzyme activity of soluble epoxide hydrolase. Methods. This study involved 782 patients with primary hypertension and 458 healthy controls. Genotyping was done using TaqMan technique. Activity of soluble epoxide hydrolase fusion proteins was evaluated by the conversion of 11,12-EET to corresponding 11,12-DHET using ELISA kit. Results. After taking carriers of R287Q variant GG genotype as a reference, those with GA genotype had a significantly reduced risk of hypertension (adjusted odds ratio: 0.72, 95% confidence interval: 0.56 to 0.93, P = 0.013). Five significant risk factors were identified, including age, body mass index, total cholesterol, homocysteine, and R287Q variant. These five risk factors for hypertension were represented in a nomogram, with a descent prediction accuracy (C-index: 0.833, P<0.001). Enzyme activity of soluble epoxide hydrolase was significantly lower in the R287Q group than in the wild type group. Conclusions. We provide evidence that R287Q mutation in EPHX2 gene was associated with reduced risk of primary hypertension and low activity of soluble epoxide hydrolase.
Styles APA, Harvard, Vancouver, ISO, etc.
7

He, Xin, Wen-Yu Zhao, Bo Shao, Bao-Jing Zhang, Tian-Tian Liu, Cheng-Peng Sun, Hui-Lian Huang, Jia-Rong Wu, Jia-Hao Liang et Xiao-Chi Ma. « Natural soluble epoxide hydrolase inhibitors from Inula helenium and their interactions with soluble epoxide hydrolase ». International Journal of Biological Macromolecules 158 (septembre 2020) : 1362–68. http://dx.doi.org/10.1016/j.ijbiomac.2020.04.227.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Anita, Natasha Z., et Walter Swardfager. « Soluble Epoxide Hydrolase and Diabetes Complications ». International Journal of Molecular Sciences 23, no 11 (2 juin 2022) : 6232. http://dx.doi.org/10.3390/ijms23116232.

Texte intégral
Résumé :
Type 2 diabetes mellitus (T2DM) can result in microvascular complications such as neuropathy, retinopathy, nephropathy, and cerebral small vessel disease, and contribute to macrovascular complications, such as heart failure, peripheral arterial disease, and large vessel stroke. T2DM also increases the risks of depression and dementia for reasons that remain largely unclear. Perturbations in the cytochrome P450-soluble epoxide hydrolase (CYP-sEH) pathway have been implicated in each of these diabetes complications. Here we review evidence from the clinical and animal literature suggesting the involvement of the CYP-sEH pathway in T2DM complications across organ systems, and highlight possible mechanisms (e.g., inflammation, fibrosis, mitochondrial function, endoplasmic reticulum stress, the unfolded protein response and autophagy) that may be relevant to the therapeutic potential of the pathway. These mechanisms may be broadly relevant to understanding, preventing and treating microvascular complications affecting the brain and other organ systems in T2DM.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Bellevik, Stefan, Jiaming Zhang et Johan Meijer. « Brassica napus soluble epoxide hydrolase (BNSEH1) ». European Journal of Biochemistry 269, no 21 (17 octobre 2002) : 5295–302. http://dx.doi.org/10.1046/j.1432-1033.2002.03247.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Przybyla-Zawislak, Beata D., Punit K. Srivastava, Johana Vázquez-Matías, Harvey W. Mohrenweiser, Joseph E. Maxwell, Bruce D. Hammock, J. Alyce Bradbury, Ahmed E. Enayetallah, Darryl C. Zeldin et David F. Grant. « Polymorphisms in Human Soluble Epoxide Hydrolase ». Molecular Pharmacology 64, no 2 (17 juillet 2003) : 482–90. http://dx.doi.org/10.1124/mol.64.2.482.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Kramer, Jan, et Ewgenij Proschak. « Phosphatase activity of soluble epoxide hydrolase ». Prostaglandins & ; Other Lipid Mediators 133 (novembre 2017) : 88–92. http://dx.doi.org/10.1016/j.prostaglandins.2017.07.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Zhao, Ting-Ting, Binaya Wasti, Dan-Yan Xu, Li Shen, Jian-Qing Du et Shui-Ping Zhao. « Soluble epoxide hydrolase and ischemic cardiomyopathy ». International Journal of Cardiology 155, no 2 (mars 2012) : 181–87. http://dx.doi.org/10.1016/j.ijcard.2011.05.067.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Zhao, Wen-Yu, Xin-Yue Zhang, Mei-Rong Zhou, Xiang-Ge Tian, Xia Lv, Hou-Li Zhang, Sa Deng, Bao-Jing Zhang, Cheng-Peng Sun et Xiao-Chi Ma. « Natural soluble epoxide hydrolase inhibitors from Alisma orientale and their potential mechanism with soluble epoxide hydrolase ». International Journal of Biological Macromolecules 183 (juillet 2021) : 811–17. http://dx.doi.org/10.1016/j.ijbiomac.2021.04.187.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Draper, A. J., et B. D. Hammock. « Soluble epoxide hydrolase in rat inflammatory cells is indistinguishable from soluble epoxide hydrolase in rat liver ». Toxicological Sciences 50, no 1 (1 juillet 1999) : 30–35. http://dx.doi.org/10.1093/toxsci/50.1.30.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Nelson, Jonathan W., Rishi M. Subrahmanyan, Sol A. Summers, Xiangshu Xiao et Nabil J. Alkayed. « Soluble Epoxide Hydrolase Dimerization Is Required for Hydrolase Activity ». Journal of Biological Chemistry 288, no 11 (28 janvier 2013) : 7697–703. http://dx.doi.org/10.1074/jbc.m112.429258.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Klingler, Franca-Maria, Markus Wolf, Sandra Wittmann, Philip Gribbon et Ewgenij Proschak. « Bacterial Expression and HTS Assessment of Soluble Epoxide Hydrolase Phosphatase ». Journal of Biomolecular Screening 21, no 7 (10 juillet 2016) : 689–94. http://dx.doi.org/10.1177/1087057116637609.

Texte intégral
Résumé :
Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that possesses an epoxide hydrolase and lipid phosphatase activity (sEH-P) at two distinct catalytic domains. While the physiological role of the epoxide hydrolase domain is well understood, the consequences of the phosphatase activity remain unclear. Herein we describe the bacterial expression of the recombinant N-terminal domain of sEH-P and the development of a high-throughput screening protocol using a sensitive and commercially available substrate fluorescein diphosphate. The usability of the assay system was demonstrated and novel inhibitors of sEH-P were identified.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Otake, Shinya, Norihiro Ogawa, Yoshikazu Kitano, Keiji Hasumi et Eriko Suzuki. « Isoprene Side-chain of SMTP is Essential for Soluble Epoxide Hydrolase Inhibition and Cellular Localization ». Natural Product Communications 11, no 2 (février 2016) : 1934578X1601100. http://dx.doi.org/10.1177/1934578x1601100223.

Texte intégral
Résumé :
SMTPs, a family of natural small molecules that effectively treat ischemic stroke, are subject to clinical development. SMTPs enhance plasminogen activation and inhibit soluble epoxide hydrolase (sEH), leading to promotion of endogenous thrombolysis and anti-inflammation. The SMTP molecule consists of a tricyclic γ-lactam moiety, an isoprene side-chain, and an N-linked side-chain. Here, we investigate the yet-to-be-characterized function of the isoprene side-chain of SMTPs in sEH inhibition and cellular distribution. The results demonstrated that oxidative modification as well as truncation of the side-chain abolished epoxide hydrolase inhibition. The introduction of a terminal hydroxy group exceptionally unaffected epoxide hydrolase, but led to impaired cellular localization, resulting in diminution of cellular epoxide hydrolase inhibition. Thus, the isoprene side-chain of SMTP is an important pharmacophore for epoxide hydrolase inhibition and cellular localization.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Wang, Zhen-He, Benjamin B. Davis, De-Qian Jiang, Ting-Ting Zhao et Dan-Yan Xu. « Soluble Epoxide Hydrolase Inhibitors and Cardiovascular Diseases ». Current Vascular Pharmacology 11, no 1 (1 décembre 2012) : 105–11. http://dx.doi.org/10.2174/1570161111309010105.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Wang, Zhen-He, Benjamin B. Davis, De-Qian Jiang, Ting-Ting Zhao et Dan-Yan Xu. « Soluble Epoxide Hydrolase Inhibitors and Cardiovascular Diseases ». Current Vascular Pharmacology 11, no 1 (1 janvier 2013) : 105–11. http://dx.doi.org/10.2174/157016113804547593.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Simpkins, A. N., R. D. Rudic, S. Roy, H. J. Tsai, B. D. Hammock et J. D. Imig. « Soluble epoxide hydrolase inhibition modulates vascular remodeling ». American Journal of Physiology-Heart and Circulatory Physiology 298, no 3 (mars 2010) : H795—H806. http://dx.doi.org/10.1152/ajpheart.00543.2009.

Texte intégral
Résumé :
The soluble epoxide hydrolase enzyme (SEH) and vascular remodeling are associated with cardiovascular disease. Although inhibition of SEH prevents smooth muscle cell proliferation in vitro, the effects of SEH inhibition on vascular remodeling in vivo and mechanisms of these effects remain unclear. Herein we determined the effects of SEH antagonism in an endothelium intact model of vascular remodeling induced by flow reduction and an endothelium denuded model of vascular injury. We demonstrated that chronic treatment of spontaneously hypertensive stroke-prone rats with 12-(3-adamantan-1-yl-ureido) dodecanoic acid, an inhibitor of SEH, improved the increment of inward remodeling induced by common carotid ligation to a level that was comparable with normotensive Wistar Kyoto rats. Similarly, mice with deletion of the gene responsible for the production of the SEH enzyme (Ephx2−/−) demonstrated enhanced inward vascular remodeling induced by carotid ligation. However, the hyperplastic response induced by vascular injury that denudes the endothelium was unabated by SEH inhibition or Ephx2 gene deletion. These results suggest that SEH inhibition or Ephx2 gene deletion antagonizes neointimal formation in vivo by mechanisms that are endothelium dependent. Thus SEH inhibition may have therapeutic potential for flow-induced remodeling and neointimal formation.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Burmistrov, Vladimir, Christophe Morisseau, Dmitry Pitushkin, Dmitry Karlov, Robert R. Fayzullin, Gennady M. Butov et Bruce D. Hammock. « Adamantyl thioureas as soluble epoxide hydrolase inhibitors ». Bioorganic & ; Medicinal Chemistry Letters 28, no 13 (juillet 2018) : 2302–13. http://dx.doi.org/10.1016/j.bmcl.2018.05.024.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Shen, Hong C. « Soluble epoxide hydrolase inhibitors : a patent review ». Expert Opinion on Therapeutic Patents 20, no 7 (29 avril 2010) : 941–56. http://dx.doi.org/10.1517/13543776.2010.484804.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Qiu, Hong, Ning Li, Jun-Yan Liu, Todd R. Harris, Bruce D. Hammock et Nipavan Chiamvimonvat. « Soluble Epoxide Hydrolase Inhibitors and Heart Failure ». Cardiovascular Therapeutics 29, no 2 (24 février 2011) : 99–111. http://dx.doi.org/10.1111/j.1755-5922.2010.00150.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Hwang, Sung Hee, Hsing-Ju Tsai, Jun-Yan Liu, Christophe Morisseau et Bruce D. Hammock. « Orally Bioavailable Potent Soluble Epoxide Hydrolase Inhibitors ». Journal of Medicinal Chemistry 50, no 16 (août 2007) : 3825–40. http://dx.doi.org/10.1021/jm070270t.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Borhan, B., T. Mebrahtu, S. Nazarian, M. J. Kurth et B. D. Hammock. « Improved Radiolabeled Substrates for Soluble Epoxide Hydrolase ». Analytical Biochemistry 231, no 1 (octobre 1995) : 188–200. http://dx.doi.org/10.1006/abio.1995.1520.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Kim, Jang Hoon, Bui Huu Tai, Seo Young Yang, Ji Eun Kim, Sang Kyum Kim et Young Ho Kim. « Soluble Epoxide Hydrolase Inhibitory Constituents fromSelaginella tamariscina ». Bulletin of the Korean Chemical Society 36, no 1 (janvier 2015) : 300–304. http://dx.doi.org/10.1002/bkcs.10068.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Cronin, Annette, Martina Decker et Michael Arand. « Mammalian soluble epoxide hydrolase is identical to liver hepoxilin hydrolase ». Journal of Lipid Research 52, no 4 (7 janvier 2011) : 712–19. http://dx.doi.org/10.1194/jlr.m009639.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Serrano-Hervás, Eila, Marc Garcia-Borràs et Sílvia Osuna. « Exploring the origins of selectivity in soluble epoxide hydrolase from Bacillus megaterium ». Organic & ; Biomolecular Chemistry 15, no 41 (2017) : 8827–35. http://dx.doi.org/10.1039/c7ob01847a.

Texte intégral
Résumé :
Epoxide hydrolase (EH) enzymes catalyze the hydration of racemic epoxides to yield their corresponding vicinal diols. In this work, the Bacillus megaterium epoxide hydrolase (BmEH)-mediated hydrolysis of racemic styrene oxide (rac-SO) and its para-nitro styrene oxide (rac-p-NSO) derivative are computationally investigated using density functional theory (DFT).
Styles APA, Harvard, Vancouver, ISO, etc.
29

Hiesinger, Kerstin, Annika Schott, Jan S. Kramer, René Blöcher, Finja Witt, Sandra K. Wittmann, Dieter Steinhilber et al. « Design of Dual Inhibitors of Soluble Epoxide Hydrolase and LTA4 Hydrolase ». ACS Medicinal Chemistry Letters 11, no 3 (30 octobre 2019) : 298–302. http://dx.doi.org/10.1021/acsmedchemlett.9b00330.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Lorthioir, Aurelien, Dominique Guerrot, Robinson Joannides et Jeremy Bellien. « Diabetic CVD – Soluble Epoxide Hydrolase as A Target ». Cardiovascular & ; Hematological Agents in Medicinal Chemistry 10, no 3 (1 juillet 2012) : 212–22. http://dx.doi.org/10.2174/187152512802651042.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Anitha, K. N., et K. M. Geetha. « Soluble Epoxide Hydrolase : A Pharmaceutical Target for Inflammation ». Research Journal of Pharmacy and Technology 12, no 10 (2019) : 5113. http://dx.doi.org/10.5958/0974-360x.2019.00886.2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Imig, John D., Ludek Cervenka et Jan Neckar. « Epoxylipids and soluble epoxide hydrolase in heart diseases ». Biochemical Pharmacology 195 (janvier 2022) : 114866. http://dx.doi.org/10.1016/j.bcp.2021.114866.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

El-Sherbeni, Ahmed A., Rabia Bhatti, Fadumo A. Isse et Ayman O. S. El-Kadi. « Identifying simultaneous matrix metalloproteinases/soluble epoxide hydrolase inhibitors ». Molecular and Cellular Biochemistry 477, no 3 (24 janvier 2022) : 877–84. http://dx.doi.org/10.1007/s11010-021-04337-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Brenneis, Christian, Marco Sisignano, Ovidiu Coste, Kai Altenrath, Michael J. Fischer, Carlo Angioni, Ingrid Fleming et al. « Soluble Epoxide Hydrolase Limits Mechanical Hyperalgesia during Inflammation ». Molecular Pain 7 (janvier 2011) : 1744–8069. http://dx.doi.org/10.1186/1744-8069-7-78.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Hu, Jiong, Sarah Dziumbla, Jihong Lin, Sofia-Iris Bibli, Sven Zukunft, Julian de Mos, Khader Awwad et al. « Inhibition of soluble epoxide hydrolase prevents diabetic retinopathy ». Nature 552, no 7684 (décembre 2017) : 248–52. http://dx.doi.org/10.1038/nature25013.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Imig, John D. « Cardiovascular Therapeutic Aspects of Soluble Epoxide Hydrolase Inhibitors ». Cardiovascular Drug Reviews 24, no 2 (juin 2006) : 169–88. http://dx.doi.org/10.1111/j.1527-3466.2006.00169.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Nelson, Jonathan W., Anjali J. Das, Anthony P. Barnes et Nabil J. Alkayed. « Disrupting Dimerization Translocates Soluble Epoxide Hydrolase to Peroxisomes ». PLOS ONE 11, no 5 (20 mai 2016) : e0152742. http://dx.doi.org/10.1371/journal.pone.0152742.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Imig, John D. « Epigenetic soluble epoxide hydrolase regulation causes endothelial dysfunction ». Acta Physiologica 225, no 1 (26 octobre 2018) : e13203. http://dx.doi.org/10.1111/apha.13203.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Burmistrov, Vladimir, Christophe Morisseau, Kin Sing Stephen Lee, Diyala S. Shihadih, Todd R. Harris, Gennady M. Butov et Bruce D. Hammock. « Symmetric adamantyl-diureas as soluble epoxide hydrolase inhibitors ». Bioorganic & ; Medicinal Chemistry Letters 24, no 9 (mai 2014) : 2193–97. http://dx.doi.org/10.1016/j.bmcl.2014.03.016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Purba, Endang R., Ami Oguro et Susumu Imaoka. « Isolation and characterization of Xenopus soluble epoxide hydrolase ». Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1841, no 7 (juillet 2014) : 954–62. http://dx.doi.org/10.1016/j.bbalip.2014.03.010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Santos, Julia M., Jung-A. Park, Aby Joiakim, David A. Putt, Robert N. Taylor et Hyesook Kim. « The role of soluble epoxide hydrolase in preeclampsia ». Medical Hypotheses 108 (octobre 2017) : 81–85. http://dx.doi.org/10.1016/j.mehy.2017.07.033.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Imig, John D. « Epoxides and Soluble Epoxide Hydrolase in Cardiovascular Physiology ». Physiological Reviews 92, no 1 (janvier 2012) : 101–30. http://dx.doi.org/10.1152/physrev.00021.2011.

Texte intégral
Résumé :
Epoxyeicosatrienoic acids (EETs) are arachidonic acid metabolites that importantly contribute to vascular and cardiac physiology. The contribution of EETs to vascular and cardiac function is further influenced by soluble epoxide hydrolase (sEH) that degrades EETs to diols. Vascular actions of EETs include dilation and angiogenesis. EETs also decrease inflammation and platelet aggregation and in general act to maintain vascular homeostasis. Myocyte contraction and increased coronary blood flow are the two primary EET actions in the heart. EET cell signaling mechanisms are tissue and organ specific and provide significant evidence for the existence of EET receptors. Additionally, pharmacological and genetic manipulations of EETs and sEH have demonstrated a contribution for this metabolic pathway to cardiovascular diseases. Given the impact of EETs to cardiovascular physiology, there is emerging evidence that development of EET-based therapeutics will be beneficial for cardiovascular diseases.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Harris, Todd R., et Bruce D. Hammock. « Soluble epoxide hydrolase : Gene structure, expression and deletion ». Gene 526, no 2 (septembre 2013) : 61–74. http://dx.doi.org/10.1016/j.gene.2013.05.008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Cui, Zhen, Bochuan Li, Yanhong Zhang, Jinlong He, Xuelian Shi, Hui Wang, Yinjiao Zhao et al. « Inhibition of Soluble Epoxide Hydrolase Attenuates Bosutinib-Induced Blood Pressure Elevation ». Hypertension 78, no 5 (novembre 2021) : 1527–40. http://dx.doi.org/10.1161/hypertensionaha.121.17548.

Texte intégral
Résumé :
Endothelial cells play a critical role in maintaining homeostasis of vascular function, and endothelial activation is involved in the initial step of atherogenesis. Previously, we reported that Abl kinase mediates shear stress–induced endothelial activation. Bosutinib, a dual inhibitor of Src and Abl kinases, exerts an atheroprotective effect; however, recent studies have demonstrated an increase in the incidence of side effects associated with bosutinib, including increased arterial blood pressure (BP). To understand the effects of bosutinib on BP regulation and the mechanistic basis for novel treatment strategies against vascular dysfunction, we generated a line of mice conditionally lacking c-Abl in endothelial cells (endothelial cell- Abl KO ). Knockout mice and their wild-type littermates ( Abl f/f ) were orally administered a clinical dose of bosutinib, and their BP was monitored. Bosutinib treatment increased BP in both endothelial cell- Abl KO and Abl f/f mice. Furthermore, acetylcholine-evoked endothelium-dependent relaxation of the mesenteric arteries was impaired by bosutinib treatment. RNA sequencing of mesenteric arteries revealed that the CYP (cytochrome P450)-dependent metabolic pathway was involved in regulating BP after bosutinib treatment. Additionally, bosutinib treatment led to an upregulation of soluble epoxide hydrolase in the arteries and a lower plasma content of eicosanoid metabolites in the CYP pathway in mice. Treatment with 1-Trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea, a soluble epoxide hydrolase inhibitor, reversed the bosutinib-induced changes to the eicosanoid metabolite profile, endothelium-dependent vasorelaxation, and BP. Thus, the present study demonstrates that upregulation of soluble epoxide hydrolase mediates bosutinib-induced elevation of BP, independent of c-Abl. The addition of soluble epoxide hydrolase inhibitor in patients treated with bosutinib may aid in preventing vascular side effects.
Styles APA, Harvard, Vancouver, ISO, etc.
45

Horti, A. G., Y. Wang, I. Minn, X. Lan, J. Wang, R. C. Koehler, N. J. Alkayed, R. F. Dannals et M. G. Pomper. « 18F-FNDP for PET Imaging of Soluble Epoxide Hydrolase ». Journal of Nuclear Medicine 57, no 11 (14 juillet 2016) : 1817–22. http://dx.doi.org/10.2967/jnumed.116.173245.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Stapleton, Andrew, Jeffrey K. Beetham, Franck Pinot, Joan E. Garbarino, David R. Rockhold, Mendel Friedman, Bruce D. Hammock et William R. Belknap. « Cloning and expression of soluble epoxide hydrolase from potato ». Plant Journal 6, no 2 (août 1994) : 251–58. http://dx.doi.org/10.1046/j.1365-313x.1994.6020251.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

De Vivo, Marco, Bernd Ensing, Matteo Dal Peraro, German A. Gomez, David W. Christianson et Michael L. Klein. « Proton Shuttles and Phosphatase Activity in Soluble Epoxide Hydrolase ». Journal of the American Chemical Society 129, no 2 (janvier 2007) : 387–94. http://dx.doi.org/10.1021/ja066150c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Barbosa-Sicard, Eduardo, Timo Frömel, Benjamin Keserü, Ralf P. Brandes, Christophe Morisseau, Bruce D. Hammock, Thomas Braun, Marcus Krüger et Ingrid Fleming. « Inhibition of the Soluble Epoxide Hydrolase by Tyrosine Nitration ». Journal of Biological Chemistry 284, no 41 (24 août 2009) : 28156–63. http://dx.doi.org/10.1074/jbc.m109.054759.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Hu, J., S. Dziumbla, J. Lin, S. I. Bibli, K. Devraj, S. Liebner, H. P. Hammes, R. Popp et I. Fleming. « P377Inhibition of the soluble epoxide hydrolase attenuates diabetic retinopathy ». Cardiovascular Research 114, suppl_1 (1 avril 2018) : S96. http://dx.doi.org/10.1093/cvr/cvy060.286.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Hashimoto, Kenji. « Soluble epoxide hydrolase : a new therapeutic target for depression ». Expert Opinion on Therapeutic Targets 20, no 10 (24 août 2016) : 1149–51. http://dx.doi.org/10.1080/14728222.2016.1226284.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie