Littérature scientifique sur le sujet « Solar simulation and experimentation »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Solar simulation and experimentation ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Solar simulation and experimentation"
Ghabuzyan, Levon, Kevin Pan, Arianna Fatahi, Jim Kuo et Christopher Baldus-Jeursen. « Thermal Effects on Photovoltaic Array Performance : Experimentation, Modeling, and Simulation ». Applied Sciences 11, no 4 (5 février 2021) : 1460. http://dx.doi.org/10.3390/app11041460.
Texte intégralKareem, M. W., Khairul Habib et S. I. Gilani. « Lumped Components Modeling of Double Pass Solar Collector with Porous Matrixes ». Applied Mechanics and Materials 465-466 (décembre 2013) : 216–20. http://dx.doi.org/10.4028/www.scientific.net/amm.465-466.216.
Texte intégralSuresh Babu, G., B. Prem Charan et T. Murali Krishna. « Performance Analysis of SPV Module Using Solar PVTR System ». International Journal of Engineering & ; Technology 7, no 3.3 (21 juin 2018) : 68. http://dx.doi.org/10.14419/ijet.v7i3.3.14488.
Texte intégralT R, Mohan Kumar, P. V. Srihari et M. S. Krupashankara. « Simulation and Optimization of Coating thickness for Absorptance and Reflectance in Multilayered Thin Films ». International Journal of ChemTech Research 13, no 4 (2020) : 364–73. http://dx.doi.org/10.20902/ijctr.2019.130405.
Texte intégralChenchireddy, Kalagotla, Khammampati R. Sreejyothi, Podishetti Ganesh, Gatla Uday Kiran, Chilukuri Shiva et Banoth Nithish Kumar. « Fundamental frequency switching strategies of a seven level hybrid cascaded H-bridge multilevel inverter ». International Journal of Applied Power Engineering (IJAPE) 13, no 2 (1 juin 2024) : 263. http://dx.doi.org/10.11591/ijape.v13.i2.pp263-268.
Texte intégralOrdaz Castillo, Job, Hector D. Garcia-Lara, Nilda Gabriela Trejo-Luna et Santos Mendez-Diaz. « An open-loop control algorithm for improved tracking in a heliostat ». Renewable energy, biomass & ; sustainability 6, no 1 (11 avril 2024) : 50–56. http://dx.doi.org/10.56845/rebs.v6i1.90.
Texte intégralHarmim, A., M. Boukar, M. Amar et Aek Haida. « Simulation and experimentation of an integrated collector storage solar water heater designed for integration into building facade ». Energy 166 (janvier 2019) : 59–71. http://dx.doi.org/10.1016/j.energy.2018.10.069.
Texte intégralOuédraogo, Salifou, Thierry S. M. Ky, Amadou Konfé, Sié Kam et D. Joseph Bathiébo. « Expérimentation et analyse thermique d’un concentrateur hémisphérique stationnaire sous les conditions climatiques à Ouagadougou, Burkina Faso ». Journal de Physique de la SOAPHYS 2, no 1b (5 mars 2021) : C20A04–1—C20A04–1. http://dx.doi.org/10.46411/jpsoaphys.2020.01.04.
Texte intégralReveles-Miranda, María, Diego Sánchez-Flórez, José Cruz-Chan, Eduardo Ordoñez-López, Manuel Flota-Bañuelos et Daniella Pacheco-Catalán. « The Control Scheme of the Multifunction Inverter for Power Factor Improvement ». Energies 11, no 7 (26 juin 2018) : 1662. http://dx.doi.org/10.3390/en11071662.
Texte intégralGokhale, Hrishikesh, et Lochan Chaudhari. « Eco-Friendly and Renewable Power Generation from Heat Using Thermophotovoltaic Technology ». ECS Transactions 107, no 1 (24 avril 2022) : 14641–54. http://dx.doi.org/10.1149/10701.14641ecst.
Texte intégralThèses sur le sujet "Solar simulation and experimentation"
Fasquelle, Thomas. « Modélisation et caractérisation expérimentale d’une boucle solaire cylindro-parabolique intégrant un stockage de type thermocline ». Thesis, Perpignan, 2017. http://www.theses.fr/2017PERP0040/document.
Texte intégralLike other renewable energy technologies, concentrated solar power (CSP) suffers from resource intermittence. Thermocline technology is a promising solution to decrease cost of thermal energy storage in CSP plants. Thermocline behavior has thoroughly been studied in the past years and its behavior is considered well known. However no study treated of thermocline tanks integrated in CSP plants. Thus, the impact of the varying outlet temperature of the thermocline storage has not been assessed yet. This work aims to fill this lack of knowledge by studying a mini parabolic trough power plant integrating a thermocline tank as storage.First, the compatibility between the heat transfer fluid of the plant (synthetic oil) and various potential filler materials (Cofalit, coal fly ash bricks, alumina) of the storage tank is verified. Then, some performance studies are performed on the three main components of the power plant (energy storage tank, solar collectors, steam generator). Finally, the behavior of the whole system is assessed, with a focus on the impact of the varying fluid temperature at the outlet of the thermocline tank on the other components.It has been shown that, with a proper sizing and an appropriate control strategy, thermocline technology induces very low decrease of the solar power plant performance in comparison to the conventional two tank technology (maximum 3-4% of electrical power production difference)
Koninck, Corentin. « Procédés solaires basse température pour la désinfection d'eau de surface ». Electronic Thesis or Diss., Perpignan, 2024. https://theses.hal.science/tel-04867589.
Texte intégralDifficulties in accessing drinking water affect the daily lives of 2 billion people, and represent a major problem to be solved. The 6th Sustainable Development Goal, set by the United Nations, aims to promote universal access to drinking water by developing sanitation and potabilization facilities in urban areas, and in isolated sites. The latter are characterized by the absence of energy networks, the scarcity of qualified technical personnel and the difficulty of transporting raw materials. The development of decentralized, sustainable, energy-independent processes meets the need to treat water against microbiological pollution, the cause of many deaths worldwide. Two processes, using low-temperature solar thermal energy as an energy source, and based respectively on the principle of water pasteurization and membrane ultrafiltration, are being designed, tested and modelled. The aim of this project is to demonstrate the feasibility of disinfecting surface water on the scale of small decentralized communities, using energy supplied by standard flat-plate thermal collectors. Depending on irradiation conditions, the solar pasteurization process developed can treat daily volumes of between 800 and 1000 L per collector unit (2 m2 surface area). Specific solar energy consumption, optimized through the use of a high-performance heat exchanger positioned on the open treatment loop, varies between 12 and 15 kWhsol.m-3. It operates completely autonomously with the sun, using a passive control system. The ultrafiltration process is based on two innovations: (i) the production of the mechanical energy required to operate the membrane system by an organic Rankine thermodynamic cycle whose heat input is supplied by a solar collector; (ii) the use of mechanical energy to pump and pressurize the water by actuating a double-acting cylinder. The technical feasibility of the process has been verified, with specific energy consumption fluctuating between 5 and 10 kWhsol.m-3. In both cases, modelling is carried out and validated on the basis of experimental results. By coupling the two technologies, it is possible to generate the permeate required for drinking water, and to disinfect the concentrate using the pasteurization process. This disinfection system combines energy efficiency with zero waste
Yang, Clara Chih-Chieh. « Web dynamics : modeling, simulation, and experimentation ». Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/38153.
Texte intégralCukalovic, Boris. « MIT integrated microelectronics device experimentation and simulation iLab ». Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/36776.
Texte intégralIncludes bibliographical references (p. 57-58).
We developed the MIT Integrated Microelectronics Device Experimentation and Simulation iLab, a new online laboratory that combines and significantly upgrades the capabilities of two existing online microelectronics labs: WebLab, a device characterization lab, and WebLabSim, a device simulation lab. The new integrated tool allows users to simultaneously run experiments on actual devices and simulations on the virtual ones, as well as to compare the results of the two. In order to achieve this, we considerably extended the capabilities of the original clients. We added the ability to graph the results of multiple experiments and simulations simultaneously, on top of each other, which allows for much easier comparison. We also added the ability to load, view and graph the results of experiments and simulations that were ran at any point in the past, even when the corresponding lab configurations are no longer available. Our hope is that this new integrated iLab will enrich microelectronics teaching and learning by allowing students to compare real life device behavior with theoretical expectations.
by Boris Cukalovic.
M.Eng.
Z'Graggen, Andreas. « Solar gasification of carbonaceous materials : reactor design, modeling and experimentation / ». kostenfrei, 2008. http://e-collection.ethbib.ethz.ch/view/eth:30596.
Texte intégralJin, Qiang. « SimGest : A simulation experimentation environment and a program generator for interactive simulation ». Thesis, University of Ottawa (Canada), 1994. http://hdl.handle.net/10393/6844.
Texte intégralLeidig, Jonathan Paul. « Epidemiology Experimentation and Simulation Management through Scientific Digital Libraries ». Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/28759.
Texte intégralPh. D.
Wagner, Albert W. « Electrochemical facilitated transport : a study in synthesis, simulation and experimentation ». Diss., Virginia Tech, 1995. http://hdl.handle.net/10919/39106.
Texte intégralSchunk, Lothar Oliver. « Solar thermal dissociation of zinc oxide : reaction kinetics, reactor design, experimentation, and modeling / ». Zürich : ETH, 2008. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=18041.
Texte intégralXu, Yijia. « A SIMULATION PLATFORM FOR EXPERIMENTATION AND EVALUATION OF DISTRIBUTED-COMPUTING SYSTEMS ». Diss., Tucson, Arizona : University of Arizona, 2005. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu%5Fetd%5F1229%5F1%5Fm.pdf&type=application/pdf.
Texte intégralLivres sur le sujet "Solar simulation and experimentation"
Mabie, Kevin T. Solar simulation laboratory description and manual. Monterey, Calif : Naval Postgraduate School, 1985.
Trouver le texte intégralB, Moldwin M., Akasofu Syun-Ichi et United States. National Aeronautics and Space Administration., dir. Simulation of January 1-7, 1978 events. [Washington, DC : National Aeronautics and Space Administration, 1987.
Trouver le texte intégralPerers, Bengt. Simulation and evaluation methods for solar energy systems. Stockholm, Sweden : Swedish Council for Building Research, 1990.
Trouver le texte intégralYamaguchi, Masafumi, et Laurentiu Fara. Advanced solar cell materials, technology, modeling, and simulation. Hershey PA : Engineering Science Reference, 2012.
Trouver le texte intégralDutré, W. L. A European transient simulation model for thermal solar systems, EMGP2. Dordrecht, Holland : D. Reidel Pub. Co. for the Commission of the European Communities, 1985.
Trouver le texte intégralBabin, Thomas S. Designing a new factory with manufacturing simulation and planned experimentation. Reading, Mass : Addison-Wesley, 1993.
Trouver le texte intégralDutré, W. L. Simulation of water based thermal solar systems : EURSOL, an interactive program. Dordrecht : Kluwer Academic Publishers, 1991.
Trouver le texte intégralEngler, Kevin P. Animal-related computer simulation programs for use in education and research. Beltsville, Md : National Agricultural Library, 1989.
Trouver le texte intégralThornton, Mark Edward. Object-orientated simulation of passive solar energy use in buildings. Birmingham : University of Birmingham, 1997.
Trouver le texte intégralBerube, R. H. Learning electronics communications through experimentation using Electronics workbench multisim. Upper Saddle River, N.J : Prentice Hall, 2002.
Trouver le texte intégralChapitres de livres sur le sujet "Solar simulation and experimentation"
Greasley, Andrew. « Experimentation ». Dans Simulation Modelling, 241–57. London : Routledge, 2022. http://dx.doi.org/10.4324/9781003124092-18.
Texte intégralGreasley, Andrew. « Experimentation ». Dans Simulation Modelling, 281–97. London : Routledge, 2022. http://dx.doi.org/10.4324/9781003124092-22.
Texte intégralFilzmoser, Michael. « Experimentation ». Dans Simulation of Automated Negotiation, 115–31. Vienna : Springer Vienna, 2010. http://dx.doi.org/10.1007/978-3-7091-0133-9_5.
Texte intégralRobinson, Stewart. « Experimentation : Obtaining Accurate Results ». Dans Simulation, 166–99. London : Macmillan Education UK, 2014. http://dx.doi.org/10.1007/978-1-137-32803-8_9.
Texte intégralÖren, Tuncer, Paul K. Davis, Rhys Goldstein, Azam Khan, Laurent Capocchi, Maâmar El-Amine Hamri, Navonil Mustafee et al. « Simulation as Experimentation ». Dans Simulation Foundations, Methods and Applications, 77–119. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-11085-6_3.
Texte intégralRobinson, Stewart. « Experimentation : Searching the Solution Space ». Dans Simulation, 200–240. London : Macmillan Education UK, 2014. http://dx.doi.org/10.1007/978-1-137-32803-8_10.
Texte intégralBirta, Louis G., et Gilbert Arbez. « Experimentation and Output Analysis ». Dans Modelling and Simulation, 241–66. London : Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-2783-3_7.
Texte intégralBirta, Louis G., et Gilbert Arbez. « Experimentation and Output Analysis ». Dans Modelling and Simulation, 235–79. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18869-6_7.
Texte intégralEwald, Roland. « Experimentation Methodology ». Dans Automatic Algorithm Selection for Complex Simulation Problems, 203–46. Wiesbaden : Vieweg+Teubner Verlag, 2012. http://dx.doi.org/10.1007/978-3-8348-8151-9_7.
Texte intégralGriffith, Daniel A. « Simulation Experimentation in Spatial Analysis ». Dans Advanced Studies in Theoretical and Applied Econometrics, 225–60. Dordrecht : Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2758-2_9.
Texte intégralActes de conférences sur le sujet "Solar simulation and experimentation"
Adhau, S. P., R. M. Moharil, V. S. Rajguru et Mrunmayee Gujar Pradhan. « Study and Analysis of Solar Photo Voltaic Modules with Real Time Experimentation on Solar Simulator/Solar Emulator ». Dans 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET). IEEE, 2022. http://dx.doi.org/10.1109/icecet55527.2022.9872753.
Texte intégralFrederickson, Lee, Mario Leoni et Fletcher Miller. « Carbon Particle Generation and Lab-Scale Small Particle Heat Exchange Receiver Experimentation and Modeling ». Dans ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/es2014-6640.
Texte intégralBharambe, Ganesh, A. M. Patil, Sandip Kale, Kumar Digambar Sapate et Prakash Dabeer. « Simulation of Heat Flux Between Two Parallel Metal Plates With Thermic Fluid as a Media ». Dans ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-53449.
Texte intégralHossei, Hamideh, et Kyoung-hee Kim. « Circuit Connection Reconfiguration Of Partially Shaded BIPV Systems, A Solution For Power Loss Reduction ». Dans 111th ACSA Annual Meeting Proceedings. ACSA Press, 2023. http://dx.doi.org/10.35483/acsa.am.111.7.
Texte intégralSchunk, L. O., P. Haeberling, S. Wepf, D. Wuillemin, A. Meier et A. Steinfeld. « A Rotary Receiver-Reactor for the Solar Thermal Dissociation of Zinc Oxide ». Dans ASME 2007 Energy Sustainability Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/es2007-36078.
Texte intégralTerres, Hilario, Sandra Chavez, Raymundo Lopez, Arturo Lizardi et Araceli Lara. « Evaluation of Heating Process of Apple, Eggplant, Zucchini and Potato by Means of Their Thermal Properties ». Dans ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/ht2016-7140.
Texte intégralFong, Tessa. « Erosion Experimentation in Solar Power Systems ». Dans C3E Poster Competition for the US C3E Symposium, online/virtual, December 8-9 2020. US DOE, 2020. http://dx.doi.org/10.2172/1754990.
Texte intégralHunter, D'Mark, et Dale Joachim. « DF Experimentation through Parametric Simulation ». Dans 2006 International Conference on Computer Engineering and Systems. IEEE, 2006. http://dx.doi.org/10.1109/icces.2006.320430.
Texte intégralKruger, Daniela, Carsten Buschmann et Stefan Fischer. « Solar powered sensor network design and experimentation ». Dans 2009 6th International Symposium on Wireless Communication Systems (ISWCS 2009). IEEE, 2009. http://dx.doi.org/10.1109/iswcs.2009.5285339.
Texte intégralCheu, Darrell S., Thomas E. Adams et Shripad T. Revankar. « Derivation of Critical Parameters of Betavoltaics ». Dans 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-81109.
Texte intégralRapports d'organisations sur le sujet "Solar simulation and experimentation"
Kelly, David, Garth Heutel, Juan Moreno-Cruz et Soheil Shayegh. Solar Geoengineering, Learning, and Experimentation. Cambridge, MA : National Bureau of Economic Research, février 2021. http://dx.doi.org/10.3386/w28442.
Texte intégralFikus, John. Global Information Enterprise Simulation (GIESIM) Joint Tactical Information Distribution Systems Simulation Experimentation. Fort Belvoir, VA : Defense Technical Information Center, août 2005. http://dx.doi.org/10.21236/ada438999.
Texte intégralPatel, Lekha, John Zenker, Christian Pattyn, Pierce Warburton, Kurtis Shuler, Lucas McMichael, Peter Blossey et al. Pluminate : Quantifying aerosol injection behavior from simulation, experimentation and observations. Office of Scientific and Technical Information (OSTI), novembre 2023. http://dx.doi.org/10.2172/2430132.
Texte intégralSanz, Asier`. Numerical simulation tools for PVT collectors and systems. IEA SHC Task 60, septembre 2020. http://dx.doi.org/10.18777/ieashc-task60-2020-0006.
Texte intégralTaveres-Cachat, Ellika Ellika, Roel C. G. M. Loonen, Johannes Eisenlohr, Francesco Goia et Christoph Maurer. Report on Simulation Models of Solar Envelope Components. Sous la direction de Christoph Maurer. IEA SHC Task 56, décembre 2019. http://dx.doi.org/10.18777/ieashc-task56-2019-0002.
Texte intégralEllis, Abraham, Michael Robert Behnke et Ryan Thomas Elliott. Generic solar photovoltaic system dynamic simulation model specification. Office of Scientific and Technical Information (OSTI), octobre 2013. http://dx.doi.org/10.2172/1177082.
Texte intégralKolb, G., D. Neary, M. Ringham et T. Greenlee. Dynamic simulation of a molten-salt solar receiver. Office of Scientific and Technical Information (OSTI), mars 1989. http://dx.doi.org/10.2172/6346050.
Texte intégralWu, S. T. Simulation of Ionospheric Response to Solar Distribution Mechanisms. Fort Belvoir, VA : Defense Technical Information Center, mai 2003. http://dx.doi.org/10.21236/ada416358.
Texte intégralGagnon, Colleen M., et William K. Stevens. Use of Modeling and Simulation (M&S) in Support of Joint Command and Control Experimentation : Naval Simulation System (NSS) Support to Fleet Battle Experiments. Fort Belvoir, VA : Defense Technical Information Center, janvier 1999. http://dx.doi.org/10.21236/ada461113.
Texte intégralConcepcion, Ricky James, et Ryan Thomas Elliott. Dynamic Simulation over Long Time Periods with 100% Solar Generation. Office of Scientific and Technical Information (OSTI), décembre 2015. http://dx.doi.org/10.2172/1233624.
Texte intégral