Littérature scientifique sur le sujet « Solar Cells - Semiconductor Nanocrystals »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Solar Cells - Semiconductor Nanocrystals ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Solar Cells - Semiconductor Nanocrystals"

1

Milliron, Delia J., Ilan Gur et A. Paul Alivisatos. « Hybrid Organic–Nanocrystal Solar Cells ». MRS Bulletin 30, no 1 (janvier 2005) : 41–44. http://dx.doi.org/10.1557/mrs2005.8.

Texte intégral
Résumé :
AbstractRecent results have demonstrated that hybrid photovoltaic cells based on a blend of inorganic nanocrystals and polymers possess significant potential for low-cost, scalable solar power conversion. Colloidal semiconductor nanocrystals, like polymers, are solution processable and chemically synthesized, but possess the advantageous properties of inorganic semiconductors such as a broad spectral absorption range and high carrier mobilities. Significant advances in hybrid solar cells have followed the development of elongated nanocrystal rods and branched nanocrystals, which enable more effective charge transport. The incorporation of these larger nanostructures into polymers has required optimization of blend morphology using solvent mixtures. Future advances will rely on new nanocrystals, such as cadmium telluride tetrapods, that have the potential to enhance light absorption and further improve charge transport. Gains can also be made by incorporating application-specific organic components, including electroactive surfactants which control the physical and electronic interactions between nanocrystals and polymer.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Etgar, Lioz. « Semiconductor Nanocrystals as Light Harvesters in Solar Cells ». Materials 6, no 2 (4 février 2013) : 445–59. http://dx.doi.org/10.3390/ma6020445.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Govindraju, S., N. Ntholeng, K. Ranganathan, M. J. Moloto, L. M. Sikhwivhilu et N. Moloto. « The Effect of Structural Properties of Cu2Se/Polyvinylcarbazole Nanocomposites on the Performance of Hybrid Solar Cells ». Journal of Nanomaterials 2016 (2016) : 1–8. http://dx.doi.org/10.1155/2016/9592189.

Texte intégral
Résumé :
It has been said that substitution of fullerenes with semiconductor nanocrystals in bulk heterojunction solar cells can potentially increase the power conversion efficiencies (PCE) of these devices far beyond the 10% mark. However new semiconductor nanocrystals other than the potentially toxic CdSe and PbS are necessary. Herein we report on the synthesis of Cu2Se nanocrystals and their incorporation into polyvinylcarbazole (PVK) to form polymer nanocomposites for use as active layers in hybrid solar cells. Nearly monodispersed 4 nm Cu2Se nanocrystals were synthesized using the conventional colloidal synthesis. Varying weight % of these nanocrystals was added to PVK to form polymer nanocomposites. The 10% polymer nanocomposite showed retention of the properties of the pure polymer whilst the 50% resulted in a complete breakdown of the polymeric structure as evident from the FTIR, TGA, and SEM. The lack of transport channels in the 50% polymer nanocomposite solar cell resulted in a device with no photoresponse whilst the 10% polymer nanocomposite resulted in a device with an open circuit voltage of 0.50 V, a short circuit current of 7.34 mA/cm2, and a fill factor of 22.28% resulting in a PCE of 1.02%.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kamat, Prashant V. « Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters ». Journal of Physical Chemistry C 112, no 48 (18 octobre 2008) : 18737–53. http://dx.doi.org/10.1021/jp806791s.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Vigil, Elena. « Nanostructured Solar Cells ». Key Engineering Materials 444 (juillet 2010) : 229–54. http://dx.doi.org/10.4028/www.scientific.net/kem.444.229.

Texte intégral
Résumé :
Novel types of solar cells based on nanostructured materials are intensively studied because of their prospective applications and interesting new working principle – essentially due to the nanomaterials used They have evolved from dye sensitized solar cells (DSSC) in the quest to improve their behavior and characteristics. Their nanocrystals (ca. 10-50 nm) do not generally show the confinement effect present in quantum dots of size ca. 1-10nm where electron wave functions are strongly confined originating changes in the band structure. Nonetheless, the nanocrystalline character of the semiconductor used determines a different working principle; which is explained, although it is not completely clear so far,. Different solid nanostructured solar cells are briefly reviewed together with research trends. Finally, the influence of the photoelectrode electron-extracting contact is analyzed.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Hoang, Son, Ahsan Ashraf, Matthew D. Eisaman, Dmytro Nykypanchuk et Chang-Yong Nam. « Enhanced photovoltaic performance of ultrathin Si solar cells via semiconductor nanocrystal sensitization : energy transfer vs. optical coupling effects ». Nanoscale 8, no 11 (2016) : 5873–83. http://dx.doi.org/10.1039/c5nr07932b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Abulikemu, Mutalifu, Silvano Del Gobbo, Dalaver H. Anjum, Mohammad Azad Malik et Osman M. Bakr. « Colloidal Sb2S3nanocrystals : synthesis, characterization and fabrication of solid-state semiconductor sensitized solar cells ». Journal of Materials Chemistry A 4, no 18 (2016) : 6809–14. http://dx.doi.org/10.1039/c5ta09546h.

Texte intégral
Résumé :
Antimony sulfide nanocrystals of various shapes and different phases are synthesized using a colloidal hot-injection method, and the as-prepared nanocrystals are used as a light harvesting material in photovoltaic devices.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Svrcek, Vladimir. « (Invited) Atmospheric Plasmas Synthesized Nanocrystals with Quantum Confinement and Quantum Hybrids in Photovoltaics ». ECS Meeting Abstracts MA2022-02, no 19 (9 octobre 2022) : 889. http://dx.doi.org/10.1149/ma2022-0219889mtgabs.

Texte intégral
Résumé :
Nanocrystals share lot of advantages of organics namely scalable and controlled synthesis, an ability to be processed in solution while additionally retaining the broadband absorption and superior transport properties of traditional photovoltaic semiconductors. Nanocrystal solar cells have the potential to considerably increase the maximum attainable thermodynamic conversion efficiency (> 50%). Nanocrystal solution-processed can be used in solar cell structure not only as an absorber but also as electron and hole transport layer where the HOMO and LUMO levels can be efficiently controlled by size and/or plasma induced surface engineering directly in colloidal solution. Solution-processed and surface engineered nanocrystals with quantum confinement can be then further used to fabricate new class of quantum hybrids when blended for instance with polymers or perovskites and serves as absorbing and/or e-h transporting material. In this presentation, we overview the atmospheric plasma-based approaches to synthesis and surface engineering of nanocrystals with quantum confinement. We will compare surface engineering by fs laser processing in liquid solutions and synthesis of nanocrystals with strong quantum confinement by atmospheric plasmas. Moreover, to understand the thermal stability of nanocrystals observed experimentally, we calculate the cohesive and the formation energies of nanocrystals by means of first-principle calculations. Finally, we overview our recent progress in integration of surface engineered nanocrystal as a quantum hybrids incorporated within perovskites solar cells.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Choi, Seong Jae, Dong Kee Yi, Jae-Young Choi, Jong-Bong Park, In-Yong Song, Eunjoo Jang, Joo In Lee et al. « Spatial Control of Quantum Sized Nanocrystal Arrays onto Silicon Wafers ». Journal of Nanoscience and Nanotechnology 7, no 12 (1 décembre 2007) : 4285–93. http://dx.doi.org/10.1166/jnn.2007.884.

Texte intégral
Résumé :
Monolayer arrays of monodispersed nanocrystals (<10 nm) onto three dimensional (3D) substrates have considerable potential for various engineering applications such as highly integrated memory devices, solar cells, biosensors and photo and electro luminescent displays because of their highly integrated features with nanocrystal homogeneity. However, most reports on nanocrystal arrays have focused on two dimensional (2D) flat substrates, and the production of wafer-scale monolayer arrays is still challenging. Here we address the feasibility of arraying nanocrystal monolayers in wafer-scale onto 3D substrates. We present both metal (Pd) and semiconductor (CdSe) nanocrystals arrayed in monolayer onto trenched silicon wafers (4 inch diameter) using a facile electrostatic adsorption scheme. In particular, CdSe nanocrystal arrays in the trench well showed superior luminescent efficiency compared to those onto the protruded trench flat, due to the densely arrayed CdSe nanocrystals in the vertical direction. Furthermore, the surface coverage controllability was investigated using a 2D silicon substrate. Our approach can be applied to generate highly efficient displays, memory chips and integrated sensing devices.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Yalin, Brandon, Andreas C. Liapis, Matthew D. Eisaman, Dmytro Nykypanchuk et Chang-Yong Nam. « Optical simulation of ultimate performance enhancement in ultrathin Si solar cells by semiconductor nanocrystal energy transfer sensitization ». Nanoscale Advances 3, no 4 (2021) : 991–96. http://dx.doi.org/10.1039/d0na00835d.

Texte intégral
Résumé :
A theoretical framework combining transfer matrix method simulation and energy transfer (ET) calculation reveals critical device design guidelines for developing efficient ultrathin Si solar cells sensitized by semiconductor nanocrystals (NCs).
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Solar Cells - Semiconductor Nanocrystals"

1

Yuan, Chunze. « The Study of II-VI Semiconductor Nanocrystals Sensitized Solar Cells ». Licentiate thesis, KTH, Teoretisk kemi och biologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-93752.

Texte intégral
Résumé :
Semiconductor nanocrystals, also referred to as quantum dots (QDs), have been the focus of great scientific and technological efforts in solar cells, as a result of their advantages of low-cost, photostability, high molar extinction coefficients and size-dependent optical properties. Due to the multi-electron generation effect, the theoretically maximum efficiency of quantum dots-sensitized solar cells (QDSCs) is as high as 44%, which is much higher than that of dye-sensitized solar cells (DSCs). Thus QDSCs have a clear potential to overtake the efficiency of all other kinds of solar cells. In recent years, the efficiency of QDSCs has been improved very quickly to around 5%. It is however still much lower than that of DSCs. The low efficiency is mostly caused by the high electron loss between electrolyte and electrodes and the lack of an efficient electrolyte. In this thesis, we have been working to enhance the performance of QDSCs with II-VI group nanocrystals by increasing the electron injection efficiency from QDs to TiO2 and developing new redox couples in electrolyte. To increase the electron injection, firstly, colloidal ZnSe/CdS type-II QDs were synthesized and applied for QDSCs for the first time, whose photoelectron and photohole are located on CdS shell and ZnSe core, respectively. The spatial separation between photoelectron and photohole can effectively enhance the charge extraction efficiency, facilitating electron injection, and also effectively expand the absorption spectrum. All these characteristics contribute to the high photon to current conversion efficiency. Furthermore, a comparison between the performances of ZnSe/CdS and CdS/ZnSe QDs shows that the electron distribution is important for the electron injection of the QDs in QDSCs. Secondly, colloidal CdS/CdSe quantum rods (QRs) were applied to a quantum rod-sensitized solar cell (QRSCs) that showed a higher electron injection efficiency than analogous QDSCs. It is concluded that reducing the carrier confinement dimensions of nanocrystals can improve electron injection efficiency of nanocrystal sensitized solar cells. In this thesis, two types of organic electrolytes based McMT-/BMT and TMTU/TMTU-TFO were used for QDSCs. By reducing the charge recombination between the electrolyte and counter electrode, fill factor (FF) of these QDSCs was significantly improved. At the same time, the photovoltages of the QDSCs were remarkably increased. As a result, the overall conversion efficiency of QDSCs based on the new electrolytes was much higher than that with a commonly used inorganic electrolyte. In addition, CdS QDSCs on NiO photoelectrode were studied which shows a n-type photovoltaic performance. This performance is attributed to the formation of a thin Cd metal film before CdS QDs formation on NiO. Since the CB edge of CdS sits between the Fermi level and the CB edge of Cd metal, a much strong electron transfer between Cd and CdS QD is obtained, resulting in the observed n-type photovoltaic performance of these CdS/NiO QDSCs.
QC 20120425
Styles APA, Harvard, Vancouver, ISO, etc.
2

Razgoniaeva, Natalia Razgoniaeva. « Photochemical energy conversion in metal-semiconductor hybrid nanocrystals ». Bowling Green State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1465822519.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Cattley, Christopher Andrew. « Quaternary nanocrystal solar cells ». Thesis, University of Oxford, 2016. http://ora.ox.ac.uk/objects/uuid:977e0f75-e597-4c7a-8f72-6a26031f8f0b.

Texte intégral
Résumé :
This thesis studies quaternary chalcogenide nanocrystals and their photovoltaic applications. A temperature-dependent phase change between two distinct crystallographic phases of stoichiometric Cu2ZnSnS4 is investigated through the development of a one pot synthesis method. Characterisation of the Cu2ZnSnS4 nanocrystals was performed using absorption spectroscopy, transmission electron microscopy (TEM) and powder X-ray diffraction (XRD). An investigation was conducted into the effects of using hexamethyldisilathiane (a volatile sulphur precursor) in the nucleation of small (<7nm), mono-dispersed and solution-stable quaternary Cu2ZnSnS4 nanocrystals. A strategy to synthesize high quality thermodynamically stable kesterite Cu2ZnSnS4 nanocrystals is established, which subsequently enabled the systematic study of Cu2ZnSnS4 nanocrystal formation mechanisms, using optical characterization, XRD, TEM and Raman spectroscopy. Further studies employed scanning transmission electron microscopy (STEM) energy dispersive x-ray (EDX) mapping to examine the elemental spatial distributions of Cu2ZnSnS4 nanocrystals, in order to analyse their compositional uniformity. In addition, the stability of nanocrystals synthesised using alternative ligands is investigated using Fourier transform infrared spectroscopy, without solution based ligand substitution protocol is used to replace aliphatic reaction ligands with short, aromatic pyridine ligands in order to further improve Cu2ZnSnS4 colloid stability. A layer-by-layer spin coating method is developed to fabricate a semiconductor heterojunction, using CdS as an n-type window, which is utilised to investigate the photovoltaic properties of Cu2ZnSnS4 nanocrystals. Finally, three novel passivation techniques are investigated, in order to optimise the optoelectronic properties of the solar cells to the point where a power conversion efficiency (PCE) of 1.00±0.04% is achieved. Although seemingly modest when compared to the performance of leading devices (PCE>12%) this represents one of the highest obtained for a Cu2ZnSnS4 nanocrystal solar cell, fabricated completely under ambient conditions at low temperatures.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Nemitz, Ian R. « Synthesis of Nanoscale Semiconductor Heterostructures for Photovoltaic Applications ». Bowling Green State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1277087935.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Li, Guangru. « Nanostructured materials for optoelectronic devices ». Thesis, University of Cambridge, 2016. https://www.repository.cam.ac.uk/handle/1810/263671.

Texte intégral
Résumé :
This thesis is about new ways to experimentally realise materials with desired nano-structures for solution-processable optoelectronic devices such as solar cells and light-emitting diodes (LEDs), and examine structure-performance relationships in these devices. Short exciton diffusion length limits the efficiency of most exciton-based solar cells. By introducing nano-structured architectures to solar cells, excitons can be separated more effectively, leading to an enhancement of the cell’s power conversion efficiency. We use diblock copolymer lithography combined with solvent-vapour-assisted imprinting to fabricate nano-structures with 20-80 nm feature sizes. We demonstrate nanostructured solar cell incorporating the high-performance polymer PBDTTT-CT. Furthermore, we demonstrated the patterning of singlet fission materials, including a TIPS-pentacene solar cell based on ZnO nanopillars. Recently perovskites have emerged as a promising semiconductor for optoelectronic applications. We demonstrate a perovskite light-emitting diode that employs perovskite nanoparticles embedded in a dielectric polymer matrix as the emissive layer. The emissive layer is spin-coated from perovskite precursor/polymer blend solution. The resultant polymer-perovskite composites effectively block shunt pathways within the LED, thus leading to an external quantum efficiency of 1.2%, one order of magnitude higher than previous reports. We demonstrate formations of stably emissive perovskite nanoparticles in an alumina nanoparticle matrix. These nanoparticles have much higher photoluminescence quantum efficiency (25%) than bulk perovskite and the emission is found to be stable over several months. Finally, we demonstrate a new vapour-phase crosslinking method to construct full-colour perovskite nanocrystal LEDs. With detailed structural and compositional analysis we are able to pinpoint the aluminium-based crosslinker that resides between the nanocrystals, which enables remarkably high EQE of 5.7% in CsPbI3 LEDs.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Wong, Henry Mo Pun. « Semiconducting nanocrystals for hybrid solar cells ». Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613367.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ehrler, Bruno. « Nanocrystalline solar cells ». Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.607785.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Schnabel, Manuel. « Silicon nanocrystals embedded in silicon carbide for tandem solar cell applications ». Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:da5bbb64-0bcd-4807-a9f3-4ff63a9ca98d.

Texte intégral
Résumé :
Tandem solar cells are potentially much more efficient than the silicon solar cells that currently dominate the market but require materials with different bandgaps. This thesis presents work on silicon nanocrystals (Si-NC) embedded in silicon carbide (SiC), which are expected to have a higher bandgap than bulk Si due to quantum confinement, with a view to using them in the top cell of a tandem cell. The strong photoluminescence (PL) of precursor films used to prepare Si-NC in SiC (Si-NC/SiC) was markedly reduced upon Si-NC formation due to simultaneous out-diffusion of hydrogen that passivated dangling bonds. This cannot be reversed by hydrogenation and leads to weak PL that is due to, and limited by, non-paramagnetic defects, with an estimated quantum yield of ≤5×10-7. Optical interference was identified as a substantial artefact and a method proposed to account for this. Majority carrier transport was found to be Ohmic at all temperatures for a wide range of samples. Hydrogenation decreases dangling bond density and increases conductivity up to 1000 times. The temperature-dependence of conductivity is best described by a combination of extended-state and variable-range hopping transport where the former takes place in the Si nanoclusters. Furthermore, n-type background doping by nitrogen and/or oxygen was identified. In the course of developing processing steps for Si-NC-based tandem cells, a capping layer was developed to prevent oxidation of Si-NC/SiC, and diffusion of boron and phosphorus in nanocrystalline SiC was found to occur via grain boundaries with an activation energy of 5.3±0.4 eV and 4.4±0.7 eV, respectively. Tandem cells with a Si-NC/SiC top cell and bulk Si bottom cell were prepared that exhibited open-circuit voltages Voc of 900 mV and short-circuit current densities of 0.85 mAcm-2. Performance was limited by photocurrent collection in the top cell; however, the Voc obtained demonstrates tandem cell functionality.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kinder, Erich W. « Fabrication of All-Inorganic Optoelectronic Devices Using Matrix Encapsulation of Nanocrystal Arrays ». Bowling Green State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1339719904.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Marín, Beloqui José Manuel. « Solution processed inorganic semiconductor solar cells ». Doctoral thesis, Universitat Rovira i Virgili, 2015. http://hdl.handle.net/10803/334407.

Texte intégral
Résumé :
En aquesta tesi, l'estudi optoelectrònica i fabricació de diferents solució de processament de semiconductors inorgànics com ara PBS Quantum Dots i cèl·lules solars perovskita s'han fabricat. Al llarg d'aquesta tesi mesuraments optoelectrònics com fotoinducidas càrrega Extracció (PICE), fotoinducidas transitòria fotovoltaje (PIT-PV), fotoinducidas transitòria fotocorriente (PIT-PC) Laser transitòria Espectroscòpia d'Absorció (L-TAS) s'han realitzat a les cèl·lules solars eficients per tal de estudiar els diferents processos elèctrics interns presents en el dispositiu sota condicions de treball. Usant aquestes tècniques, el desdoblament dels nivells de Fermi s'han trobat per ser l'origen de la tensió en PBS QD cèl·lules solars (Capítol 2). A més, en el capítol 4.1 d'un estudi optoelectrònic intensiva s'ha realitzat a les cèl·lules solars perovskita mesoporosos, on es van descobrir decaïments biexponenciales de TPV i càrrega diferencial es va proposar manera tan adequada per obtenir la càrrega generada en el dispositiu. D'altra banda, els dispositius van ser fabricats utilitzant diferents polímers com HTM, i els resultats proporcionats van confirmar que la regeneració va ser superior al 90%, i que PIT-PV realitzat en condicions de foscor corresponen a la recombinació entre els orificis de la HTM i els electrons en el TiO2, com presentat en el capítol 4.2. A més, els resultats presentats en el capítol 4.3 mostrar que una capa de Al2O3 monoatòmic alentir el recombinació en el dispositiu d'augment de la tensió del dispositiu.
En esta tesis, el estudio optoelectrónico y la fabricación de diferentes solución de procesado de semiconductores inorgánicos tales como PbS Quantum Dots y células solares de perovskita se han fabricado. A lo largo de esta tesis medidas optoelectrónicos como fotoinducidas carga Extracción (PICE), fotoinducidas transitoria fotovoltaje (PIT-PV), fotoinducidas transitoria fotocorriente (PIT-PC) Laser transitoria Espectroscopia de Absorción (L-TAS) se han realizado a las células solares eficientes con el fin de estudiar los diferentes procesos eléctricos internos presentes en el dispositivo bajo condiciones de trabajo. Usando estas técnicas, el desdoblamiento de los niveles de Fermi ha sido encontrado como el origen de la tensión en PbS QD células solares (Capítulo 2). Además, en el capítulo 4.1 de un estudio optoelectrónico intensiva se ha realizado a las células solares perovskita mesoporosos, donde se descubrieron decaimientos biexponenciales de TPV y carga diferencial se propuso manera tan adecuada para obtener la carga generada en el dispositivo. Por otra parte, los dispositivos fueron fabricados utilizando diferentes polímeros como HTM, y los resultados proporcionados confirmaron que la regeneración fue superior al 90%, y que PIT-PV realizado en condiciones de oscuridad corresponden a la recombinación entre los huecos de la HTM y los electrones en el TiO2, como presentado en el capítulo 4.2. También, los resultados presentados en el capítulo 4.3 mostraron que una capa de Al2O3 monoatómico ralentiza la recombinación en el dispositivo de aumento de la tensión del dispositivo.
In this thesis, the optoelectronic study and fabrication of different solution processed inorganic semiconductor such as PbS Quantum Dots and perovskite solar cells have been fabricated. Along this thesis optoelectronic measurements such as PhotoInduced Charge Extraction (PICE), PhotoInduced Transient PhotoVoltage (PIT-PV), PhotoInduced Transient PhotoCurrent (PIT-PC) Laser Transient Absorption Spectroscopy (L-TAS) have been performed to efficient solar cells in order to study the different inner electrical processes present in the device under working conditions. Using these techniques, the splitting of Fermi levels have found to be the origin of the voltage in PbS QD solar cells (Chapter 2). Besides, in chapter 4.1 an intensive optoelectronic study has been performed to mesoporous perovskite solar cells, where biexponential decays of TPV were discovered and Differential Charging was proposed as suitable way to obtain the charge generated in the device. Moreover, devices were fabricated using different polymers as HTM, and results provided confirmed that the regeneration was over 90%, and that PIT-PV performed in dark conditions correspond to the recombination between the holes in the HTM and the electrons in the TiO2, as presented in chapter 4.2. Also, results presented in chapter 4.3 showed that a monoatomic layer of Al2O3 slow down the recombination in the device increasing the device voltage..
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Solar Cells - Semiconductor Nanocrystals"

1

Meeting, Materials Research Society, et Symposium A, "Amorphous and Polycrystalline Thin-Film Silicon Science and Technology" (2009 : San Francisco, Calif.)., dir. Amorphous and polycrystalline thin-film silicon science and technology--2009 : Symposium held April 14-17, 2009, San Francisco, California, U.S.A. / editors, A. Flewitt ... [et al.]. Warrendale, Pa : Materials Research Society, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Meeting, Materials Research Society, et Symposium A, "Amorphous and Polycrystalline Thin-Film Silicon Science and Technology" (2010 : San Francisco, Calif.)., dir. Amorphous and polycrystalline thin-film silicon science and technology--2010 : Symposium held April 5-9, 2009, San Francisco, California / editors, Qi Wang ... [et al.]. Warrendale, Pa : Materials Research Society, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Borchert, Holger. Solar Cells Based on Colloidal Nanocrystals. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04388-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Paranthaman, M. Parans, Winnie Wong-Ng et Raghu N. Bhattacharya, dir. Semiconductor Materials for Solar Photovoltaic Cells. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-20331-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Mazer, Jeffrey A. Solar cells : An introduction to crystalline photovoltaic technology. Boston : Kluwer Academic Publishers, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Luque, Antonio, et Alexander Virgil Mellor. Photon Absorption Models in Nanostructured Semiconductor Solar Cells and Devices. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14538-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

S, Licht, dir. Semiconductor electrodes and photoelectrochemistry. Weinheim : Wiley-VCH, 2002.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

National Renewable Energy Laboratory (U.S.) et IEEE Photovoltaic Specialists Conference (37th : 2011 : Seattle, Wash.), dir. Carrier density and compensation in semiconductors with multi dopants and multi transition energy levels : The case of Cu impurity in CdTe : preprint. Golden, CO] : National Renewable Energy Laboratory, 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Strikha, V. I. Solnechnye ėlementy na osnove kontakta metall-poluprovodnik. Sankt-Peterburg : Ėnergoatomizdat, Sankt-Peterburgskoe otd-nie, 1992.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

A, Steiner Myles, Kanevce Ana, National Renewable Energy Laboratory (U.S.) et IEEE Photovoltaic Specialists Conference (37th : 2011 : Seattle, Wash.), dir. Using measurements of fill factor at high irradiance to deduce heterobarrier band offsets : Preprint. Golden, CO] : National Renewable Energy Laboratory, 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Solar Cells - Semiconductor Nanocrystals"

1

Borchert, Holger. « Physics and Chemistry of Colloidal Semiconductor Nanocrystals ». Dans Solar Cells Based on Colloidal Nanocrystals, 15–38. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04388-3_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Patil, Padmashri. « Thermal Sintering Improves the Short Circuit Current of Solar Cells Sensitized with CdTe/CdSe Core/Shell Nanocrystals ». Dans Physics of Semiconductor Devices, 343–46. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_86.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Böer, Karl W. « Solar Cells ». Dans Survey of Semiconductor Physics, 1119–70. Dordrecht : Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2912-1_34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Zhang, Chunfu, Jincheng Zhang, Xiaohua Ma et Qian Feng. « Organic Solar Cells ». Dans Semiconductor Photovoltaic Cells, 373–432. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9480-9_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Zhang, Chunfu, Jincheng Zhang, Xiaohua Ma et Qian Feng. « CdTe Solar Cells ». Dans Semiconductor Photovoltaic Cells, 293–324. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9480-9_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Goodnick, Stephen M., et Christiana Honsberg. « Solar Cells ». Dans Springer Handbook of Semiconductor Devices, 699–745. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-79827-7_19.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Winnacker, Albrecht. « Solar Cells ». Dans The Physics Behind Semiconductor Technology, 143–58. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-10314-8_10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Mertens, R. « Crystalline Silicon Solar Cells ». Dans Semiconductor Silicon, 339–44. Berlin, Heidelberg : Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-74723-6_27.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Zhang, Chunfu, Jincheng Zhang, Xiaohua Ma et Qian Feng. « Solar Cell Foundation ». Dans Semiconductor Photovoltaic Cells, 23–63. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9480-9_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Conibeer, Gavin. « Applications of Si Nanocrystals in Photovoltaic Solar Cells ». Dans Silicon Nanocrystals, 555–82. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527629954.ch20.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Solar Cells - Semiconductor Nanocrystals"

1

Chang, Haixin, Xiaojun Lv, Zijian Zheng et Hongkai Wu. « Bioinspired solar water splitting, sensitized solar cells, and ultraviolet sensor based on semiconductor nanocrystal antenna/graphene nanoassemblies ». Dans Photonics and Optoelectronics Meetings 2011, sous la direction de Erich Kasper, Jinzhong Yu, Xun Li, Xinliang Zhang, Jinsong Xia, Junhao Chu, Zhijiang Dong, Bin Hu et Yan Shen. SPIE, 2011. http://dx.doi.org/10.1117/12.915649.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kang, Ki Moon, Hyo-Won Kim, Il-Wun Shim et Ho-Young Kwak. « Syntheses of Specialty Nanomaterials at the Multibubble Sonoluminescence Condition ». Dans ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68320.

Texte intégral
Résumé :
In recent years, a large number of nano-size semiconductors have been investigated for their potential applications in photovoltaic cells, optical sensor devices, and photocatalysts [1, 2, 3]. Nano-size semiconductor particles have many interesting properties due mainly to their size-dependent electronic and optical properties. Appropriately, many speciality of nanomaterials such as CdS and ZnS semiconductor particles, and other metal oxides such as ZnO and lithium-titanate oxide (LTO) have been prepared. However, most of them were prepared with toxic reactants and/or complex multistep reaction processes. Particularly, it is quite difficult to produce LTO nanoparticles, since it typically requires wearisome conditions such as very high temperature over 1000 °C, long producing times, and so on. To overcome such problems, various core/shell type nanocrystals were prepared through different methods such as the hydrothermal synthetic method, microwave, and sonochemistry. Also many coating methods on inorganic oxide nanoparticles were tried for the preparations of various core-shell type nanocrystals. Sonoluminescence (SL) is a light emission phenomenon associated with the catastrophic collapse of a gas bubble oscillating under an ultrasonic field [4]. Light emission of single bubble sonoluminescence (SBSL) is characterized by picosecond flashes of the broad band spectrum extending to the ultraviolet [5, 6]. The bubble wall acceleration has been found to exceed 1011 g at the moment of bubble collapse. Recently observed results of the peak temperature and pressure from the sonoluminescing gas bubble in sulfuric acid solutions [9] were accurately predicted by the hydrodynamic theory for sonoluminescence phenomena [7, 10, 11, 12], which provides a clue for understanding sonochemical reactions inside the bubble and liquid layer adjacent to the bubble wall. Sonochemistry involves an application of sonoluminescence. The intense local heating and high pressure inside the bubbles and liquid adjacent bubble wall from such collapse can give rise to unusual effects in chemical reactions. The estimated temperature and pressure in the liquid zone around the collapsing bubble with equilibrium radius 5 μm, an average radius of bubbles generated in a sonochemical reactor at a driving frequency of 20 kHz with an input power of 179 W, is about 1000 °C and 500 atm, respectively. At the proper condition, a lot of transient bubbles are generated and collapse synchronistically to emit blue light when high power ultrasound is applied to liquid, and it is called multibubble sonoluminescence (MBSL). Figure 1 shows an experimental apparatus for MBSL with a cylindrical quartz cell, into which a 5 mm diameter titanium horn (Misonix XL2020, USA) is inserted [13]. The MBSL facilitates the transient supercritical state [14].in the liquid layer where rapid chemical reactions can take place. In fact, methylene blue (MB), which is one of a number of typical textile dyestuffs, was degraded very fast at the MBSL condition while MB does not degrade under simple ultrasonic irradiation [13]. MBSL has been proven to be a useful technique to make novel materials with unusual properties. In our study, various metal oxides such as ZnO powder [15], used as a primary reinforcing filler for elastomer, homogeneous Li4Ti5O12 nanoparticles [16], used for electrode materials, and core/shell nanoparticles such as CdS coating on TiO2 nanoparticles [17] and ZnS coating on TiO2 nanoparticles [18], which are very likely to be useful for the development of inorganic dye-sensitized solar cells, were synthesized through a one pot reaction under the MBSL condition. Figure 2 shows the XRD pattern of ZnO nanoparticles synthesized from zinc acetate dehydrate (Zn(CH3CO2)2 · 2H2O, 99.999%, Aldrich) in various alcohol solutions with sodium hydroxide (NaOH, 99.99%, Aldrich) at the MBSL condition. The XRD patterns of all powers indicate hexagonal zincite. The XRD pattern for the ZnO nanoparticles synthesized is similar to the ZnO powder produced by a modified sol-gel process and subsequent heat treatment at about 600 °C [19] as shown in Fig.3. The average particle diameter of ZnO powder is about 7 nm. A simple sonochemical method for producing homogeneous LTO nanoparticles, as shown schematically in Fig. 4. First, LiOH and TiO2 nanoparticles were used to prepare LiOH-coated TiO2 nanoparticles as shown in Fig.5. Second, the resulting nanoparticles were thermally treated at 500 °C for 1 hour to prepare LTO nanoparticles. Figure 6 shows a high resolution transmission electron microscope image of LTO nanoparticles having an average grain size of 30–40 nm. All the nanoparticle synthesized are very pure in phase and quite homogeneous in their size and shape. Recently we succeeded in synthesizing a supported nickel catalyst such as Ni/Al2sO3, MgO/Al2O3 and LaAlO3, which turned out to be effective for methane decomposition [20]. Sonochemistry may provide a new way to more rapidly synthesize many specialty nanoparticles with less waste [21]. This clean technology enables the preparation of new materials such as colloids, amorphous particles [22], and various alloys.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Liu, Chin-Yi, et Uwe R. Kortshagen. « Hybrid Solar Cells From Silicon Nanocrystals and Conductive Polymers ». Dans ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/es2009-90322.

Texte intégral
Résumé :
Hybrid solar cells based on blends of a conjugated polymer, poly-3(hexylthiophene) (P3HT), and silicon nanocrystals (Si NCs) have been developed and characterized. The properties of composite Si NCs/P3HT films which were spun from 1, 2-dichlorobenzene were studied. Under A.M. 1.5 direct illumination conditions (100mW/cm2), devices made with 50wt% 3–5nm Si NCs showed 1.33% power conversion efficiency (PCE) and had a 30% incident-photon-to-current conversion efficiency at 470 nm.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Bogdanovic, Elena, Ludmila Bakueva, Lukasz Brzozowski, Ivan Gorelikov, Nikita Reznik, Daniel J. Dumont et J. A. Rowlands. « Luminescence investigation of endothelial cells using metallic and semiconductor nanocrystals ». Dans Photonics North 2005, sous la direction de Warren C. W. Chan, Kui Yu, Ulrich J. Krull, Richard I. Hornsey, Brian C. Wilson et Robert A. Weersink. SPIE, 2005. http://dx.doi.org/10.1117/12.628234.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Wang, Wentao, Fude Liu, Chor Man Lau, Lei Wang, Guandong Yang, Dawei Zheng et Zhigang Li. « Field-effect ferroelectric-semiconductor solar cells ». Dans 2014 IEEE 40th Photovoltaic Specialists Conference (PVSC). IEEE, 2014. http://dx.doi.org/10.1109/pvsc.2014.6925448.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Katsube, Ryoji, Kenji Kazumi et Yoshitaro Nose. « Ternary phosphide semiconductor in solar cells ». Dans 2017 IEEE 44th Photovoltaic Specialists Conference (PVSC). IEEE, 2017. http://dx.doi.org/10.1109/pvsc.2017.8366757.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Yoon, W., E. E. Foos, M. P. Lumb et J. G. Tischler. « Solution processing of CdTe nanocrystals for thin-film solar cells ». Dans 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC). IEEE, 2012. http://dx.doi.org/10.1109/pvsc.2012.6318132.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Kakherskyi, Stanislav, Oleksandr Dobrozhan, Roman Pshenychnyi, Denys Kurbatov et Nadia Opanasyuk. « Cu2ZnSnS4, Cu2ZnSnSe4 Nanocrystals As Absorbers In 3rd Generation Solar Cells ». Dans 2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO). IEEE, 2020. http://dx.doi.org/10.1109/elnano50318.2020.9088772.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kakherskyi, Stanislav, Oleksandr Dobrozhan, Roman Pshenychnyi, Denys Kurbatov et Nadia Opanasyuk. « Cu2ZnSnS4, Cu2ZnSnSe4 Nanocrystals As Absorbers In 3rd Generation Solar Cells ». Dans 2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO). IEEE, 2020. http://dx.doi.org/10.1109/elnano50318.2020.9088910.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Cogan, Nicole M. B., Cunming Liu, Fen Qiu, Rebeckah Burke et Todd D. Krauss. « Ultrafast dynamics of colloidal semiconductor nanocrystals relevant to solar fuels production ». Dans SPIE Defense + Security, sous la direction de Michael K. Rafailov. SPIE, 2017. http://dx.doi.org/10.1117/12.2262168.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Solar Cells - Semiconductor Nanocrystals"

1

Alivisatos, A. P. Hierarchial Junction Solar Cells Based on Hyper-Branched Semiconductor Nanocrystals. Fort Belvoir, VA : Defense Technical Information Center, juin 2009. http://dx.doi.org/10.21236/ada585157.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kweon, K. Construction of Solar Cells from Colloidal Nanocrystals through Electrophoretic Deposition. Office of Scientific and Technical Information (OSTI), octobre 2019. http://dx.doi.org/10.2172/1572619.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Redwing, Joan, Tom Mallouk, Theresa Mayer, Elizabeth Dickey et Chris Wronski. High Aspect Ratio Semiconductor Heterojunction Solar Cells. Office of Scientific and Technical Information (OSTI), mai 2013. http://dx.doi.org/10.2172/1350042.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Geisz, J. Evaluation of Novel Semiconductor Materials Potentially Useful in Solar Cells : Cooperative Research and Development Final Report, CRADA number CRD-06-00172. Office of Scientific and Technical Information (OSTI), juillet 2010. http://dx.doi.org/10.2172/985555.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Ginley, D. S. Thin Film Solar Cells Derived from Sintered Semiconductor Quantum Dots : Cooperative Research and Development Final Report, CRADA number CRD-07-00226. Office of Scientific and Technical Information (OSTI), juillet 2010. http://dx.doi.org/10.2172/985567.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Bhushan, M., et J. Meakin. Zn/sub 3/P/sub 2/ as an improved semiconductor for photovoltaic solar cells. Final report, April 1, 1983-March 31, 1984. Office of Scientific and Technical Information (OSTI), mars 1985. http://dx.doi.org/10.2172/5872206.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie