Littérature scientifique sur le sujet « Solar axion »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Solar axion ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Solar axion"

1

Vergados, John D., Paraskevi C. Divari et Hiroyasu Ejiri. « Calculated Event Rates for Axion Detection via Atomic and Nuclear Processes ». Advances in High Energy Physics 2022 (22 février 2022) : 1–24. http://dx.doi.org/10.1155/2022/7373365.

Texte intégral
Résumé :
The possibility of detection of 5.5 MeV and 14.4 keV solar axions by observing axion-induced nuclear and atomic transitions is investigated. The presence of nuclear transitions between spin orbit partners can be manifested by the subsequent deexcitation via gamma ray emissions. The transition rates can also be studied in the context of radiative axion absorption by a nucleus. The elementary interaction is obtained in the context of the axion-quark couplings predicted by existing axion models. Then, these couplings will be transformed to the nucleon level utilizing reasonable existing models, which lead to effective transition operators. Using these operators, we calculate the needed nuclear matrix elements employing wave functions obtained in the context of the nuclear shell model. With these ingredients, we discuss possibilities of experimental observation of the axion-induced nuclear gamma rays. In the second part, we will examine the axion-induced production of X-rays (axion-photon conversion) or ionization from deeply bound electron orbits. In this case, the axion electron coupling is predicted by existing axion models; no renormalization is needed. The experimental signal is the observation of directly produced electrons and/or the emission of hard X-rays and Auger electrons, following the deexcitation of the final atom. Critical discussion is made on the experimental feasibility of detecting the solar axions by using multiton scale NaI detectors.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Galan, Javier. « Exploring the Sun’s core with BabylAXO ». Journal of Physics : Conference Series 2156, no 1 (1 décembre 2021) : 012014. http://dx.doi.org/10.1088/1742-6596/2156/1/012014.

Texte intégral
Résumé :
Abstract Axions are a natural consequence of the Peccei-Quinn mechanism, the most compelling solution to the strong-CP problem. Similar axion-like particles (ALPs) also appear in a number of possible extensions of the Standard Model, notably in string theories. Both, axions and ALPs, are very well motivated candidates for Dark Matter (DM), and they would be copiously produced at the sun’s core. A relevant effort during the last two decades has been the CAST experiment at CERN, the most sensitive axion helioscope to date. The International Axion Observatory (IAXO) is a large-scale 4th generation helioscope, and its primary physics goal is to extend further the search for solar axions or ALPs with a final signal to background ratio of about 5 orders of magnitude higher. We briefly review here the astrophysical hints and models that will be at reach while searching for solar axions within the context of the IAXO helioscope search program, and in particular the physics under reach for BabyIAXO, an intermediate helioscope stage towards the full IAXO.
Styles APA, Harvard, Vancouver, ISO, etc.
3

GNEDIN, YU N. « CURRENT STATUS OF MODERN DARK MATTER PROBLEM ». International Journal of Modern Physics A 17, no 29 (20 novembre 2002) : 4251–60. http://dx.doi.org/10.1142/s0217751x02013290.

Texte intégral
Résumé :
The basic methods of searching for dark matter candidates are discussed. The main topics of this talk are: (a) ground - based cavity experiments with searching for galactic axions; (b) searching for hadronic axion decay line into galactic and extragalactic light; (c) experimental search for solar and stellar axions; (d) basic methods of searching for WIMPs as candidates into dark matter; (e) limits on axion and WIMP masses and their coupling constants to photons and ordinary matter; (f) novels of searching for nonbaryonic dark matter.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Redondo, Javier. « Solar axion flux from the axion-electron coupling ». Journal of Cosmology and Astroparticle Physics 2013, no 12 (5 décembre 2013) : 008. http://dx.doi.org/10.1088/1475-7516/2013/12/008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Xu, Wenqin. « Beyond the Standard Model Searches with the Majorana Demonstrator Experiment ». Journal of Physics : Conference Series 2156, no 1 (1 décembre 2021) : 012021. http://dx.doi.org/10.1088/1742-6596/2156/1/012021.

Texte intégral
Résumé :
Abstract The Majorana Demonstrator experiment operated two modular arrays of p-type point contact high purity germanium (HPGe) detectors, of which 30 kg is enriched to 88% in Ge-76, to search for neutrinoless double beta decay. The data-taking campaign for double beta decay with enriched detectors was successfully concluded in March 2021, and data-taking with natural detectors is still ongoing. The Demonstrator has achieved excellent energy performance in a wide dynamic range covering 1 keV to 10 MeV. The extra-low background level and excellent energy performance achieved by the Demonstrator makes it competitive in various searches of physics beyond the Standard Model. If there is an axion-photon coupling, axions can be produced by the Primakoff conversion of photons in the Sun. Solar axions can inversely generate photon signals in germanium crystals, which can be coherently enhanced when the Bragg condition is satisfied. The Demonstrator is searching for solar axions with a novel method to correlate and leverage its high number of HPGe detectors. We will discuss the status and results of recent searches for new physics with the Demonstrator, including the first reporting of a solar axion search.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Qu, Mingrui. « The Principle and Detection Progress of Axion Dark Matter ». Highlights in Science, Engineering and Technology 17 (10 novembre 2022) : 308–12. http://dx.doi.org/10.54097/hset.v17i.2620.

Texte intégral
Résumé :
Detection of the axion is a significant yet challenging discovery for particle physics and astrophysics. Based on information retrieval and interpretation of results, a summary of state-of-art detection methods could be achieved, and future progress and be predicted. Although the axion suffices for its properties of hidden nature and impact on gravity, which leads to the difficulty of detection. There are currently several candidates for the detection of axions: cavity microwave experiments, solar axion searches, and radio telescope searches. With progress on all of these detection methods, analysis can be performed to establish a foundation for further development in these detection methods. If current methods continue to become more efficient and new methods are continuously proposed, the axion’s detection can be hastened and proof or counter-proof would be established quicker. Overall, these results offer a guideline for further axion search and newer questions based on the axion in the near future.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ruz, J. « CAST—CERN Axion Solar Telescope ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 572, no 1 (mars 2007) : 498–99. http://dx.doi.org/10.1016/j.nima.2006.10.235.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Abdelhameed, A. H., S. V. Bakhlanov, P. Bauer, A. Bento, E. Bertoldo, L. Canonica, A. V. Derbin et al. « A new limit on the resonant absorption of solar axions obtained via 169Tm-containing bolometer ». Journal of Physics : Conference Series 2103, no 1 (1 novembre 2021) : 012142. http://dx.doi.org/10.1088/1742-6596/2103/1/012142.

Texte intégral
Résumé :
Abstract A newly developed experimental technique based on 169Tm-containing cryogenic bolometer detector was employed in order to perform the search for solar axions. The inclusion of target material into the active detector volume allowed for significant increase in sensitivity to axion parameters. A short 6.6 days measurement campaign with 8.18 g detector crystal yielded the following limits on axion couplings: | g A γ ( g A N 0 + g A N 3 ) ≤ 1.44 × 10 − 14 GeV − 1 and | g A e ( g A N 0 + g A N 3 ) ≤ 2.81 × 10 − 16 . The achieved results demonstrate high scalability potential of presented experimental approach.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Gavrilyuk, Yu M., A. N. Gangapshev, A. V. Derbin, I. S. Drachnev, V. V. Kazalov, V. V. Kuzminov, M. S. Mikulich et al. « New Constraints on the Axion–Electron Coupling Constant for Solar Axions ». JETP Letters 116, no 1 (juillet 2022) : 11–17. http://dx.doi.org/10.1134/s0021364022601075.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Jakovčić, K., S. Andriamonje, S. Aune, F. Avignone, K. Barth, A. Belov, B. Beltrán et al. « Prospects for the CERN Axion Solar Telescope sensitivity to 14.4keV axions ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 580, no 1 (septembre 2007) : 37–39. http://dx.doi.org/10.1016/j.nima.2007.05.035.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Solar axion"

1

Dafni, Theopisti. « A search for solar axions with the MICROMEGAS detector in CAST ». Phd thesis, [S.l. : s.n.], 2005. http://elib.tu-darmstadt.de/diss/000577.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Lozza, Valentina. « Low energy low background photon counter for wisp search experiments ». Doctoral thesis, Università degli studi di Trieste, 2010. http://hdl.handle.net/10077/3719.

Texte intégral
Résumé :
2008/2009
Remarkable interest has recently arisen about the search for Weakly Inter- acting Sub-eV Particles (WISPs), such as axions, Axion Like Particles (ALPs), Minicharged and chameleon particles, all of which are not included in the Stan- dard Model. Precision experiments searching for WISPs probe energy scales as high as 10^6 TeV and are complementary to accelerator experiments, where the energy scale is a few TeV. The axion, in particular, is the oldest studied and has the strongest theoretical motivation, having its origin in Quantum Chromodynamics. It was introduced for the first time in 1973 by Peccei and Quinn to solve the strong CP problem, while later on the cosmological implications of its postulated existence also became clear: it is a good candidate for the cold dark matter, and it is necessary to fully explain the evolution of galaxies. Among the different interactions of axions, the most promising for its detection, from an experimental point of view, is the coupling to two photons (Primakoff effect). Using this coupling, several bounds on the axion mass and energy scale have been set by astrophysical observations, by laboratory experiments and by the direct observation of celestial bodies, such as the Sun. Most of these considerations, as was recently recognized, not only constrain the mass and coupling of the axion, but are more generally applicable to all ALPs. The current best limits on the coupling, over a wide range of ALP masses, come from the the CAST (Cern Axion Solar Telescope) experiment at Cern, which looks for ALPs produced in the solar core. The experiment is based on the Primakoff effect in a high magnetic field, where solar ALPs can be reconverted in photons. The CAST magnet, a 10 T, 10 m long LHC superconducting dipole, is placed on a mobile platform in order to follow the Sun twice a day, during sunrise and sunset, and has two straight bores instrumented with X-ray detectors at each end. The re- generated photon flux is, in fact, expected to be peaked at a few keV. On the other hand, there are suggestions that the problem of the anomalous temperature profile of the solar corona could be solved by a mechanism which could enhance the low energy tail of the regenerated photon spectrum. A low energy photon counter has, for this reason, been designed and built to cover one of the CAST ports, at least temporarily. Low energy, low background photon counters such as the one just mentioned, are also crucial for most experiments searching for WISPs. The low energy photon counting system initially developed to be coupled to CAST will be applicable, with proper upgrades, to other WISPs search experiments. It consists of a Galilean telescope to match the CAST magnet bore cross section to an optical fiber leading photons to the sensors, passing first through an optical switch. This last device allows one to share input photons between two different detectors, and to acquire light and background data simultaneously. The sensors at the end of this chain are a photomultiplier tube and an avalanche photodiode operated in Geiger mode. Each detector was preliminary characterized on a test bench, then it was coupled to the optical system. The final integrated setup was subsequently mounted on one of the CAST magnet bores. A set of measurements, including live sun tracking, was carried out at Cern during 2007-2008. The background ob- tained there was the same measured in the test bench measurements, around 0.4 Hz, but it is clear that to progress from these preliminary measurements a lower background sensor is needed. Different types of detectors were considered and the final choice fell on a Geiger mode avalanche photodiode (G-APD) cooled at liquid nitrogen temperature. The aim is to drastically reduce the dark count rate, al- though an increase in the afterpulsing phenomenon is expected. Since the detector is designed to be operated in a scenario where a very low rate of signal photons is predicted, the afterpulsing effect can be accepted and corrected by an increase in the detector dead time. First results show that a reduction in background of a factor better than 10^4 is obtained, with no loss in quantum e ciency. In addition, an optical system based on a semitransparent mirror (transparent to X-rays and re ective for 1-2 eV photons) has been built. This setup, covering the low energy spectrum of solar ALPs, will be installed permanently on the CAST beamline. Current work is centered on further tests on the liquid nitrogen cooled G-APD concept involving different types of sensors and different layouts of the front-end read-out electronics, with a particular attention to the quenching cir- cuit, whether active or passive. Once these detector studies are completed, the final low background sensor will be installed on the CAST experiment. It is important to note that the use of a single photon counter for low energy photons having a good enough background (<1 Hz at least) is not limited to the CAST case, but is of great importance for most WISPs experimental searches, with special regard for photon regeneration experi- ments, and, in general, for the field of precision experiments in particle physics.
Negli ultimi tempi è riemerso un notevole interesse nel campo della ricerca di particelle leggere debolmenti interagenti (Weakly Interacting Sub-eV Particles - WISPs), come ad esempio assioni, particelle con comportamenti simili agli assioni (Axion Like Particles - ALPs), particelle con carica frazionaria e particelle camaleonte; tutti tipi di particelle non inclusi nel Modello Standard. Vista la loro natura debolmente interagente, la scala di energia coinvolta è dell'ordine dei 10^6 TeV, queste particelle non sono visibili nelle collisioni realizzabili negli attuali acceleratori e possono invece essere studiate in esperimenti di precisione, che, sotto questo punto di vista, diventano complementari agli esperimenti su acceleratori. L'assione in particolare è la prima particella, da un punto di vista cronologico, ad essere stata ipotizzata, ed inoltre la sua esistenza è supportata da forti basi teoriche: la sua origine va infatti ricercata all'interno della Cromodinamica Quantistica (QCD). L'assione fu introdotto per la prima volta nel 1973 da Peccei e Quinn come soluzione del problema di violazione di CP nelle interazioni forti, mentre le sue implicazioni cosmologiche risultarono chiare solo in seguito. L'assione infatti può essere considerato un buon candidato per la materia oscura fredda e la sua introduzione è necessaria per spiegare l'evoluzione delle galassie. Tra le diverse interazione degli assioni con la materia e la radiazione, la più interessante da un punto di vista sperimentale è l'accoppiamento con due fotoni (effetto Primakoff). Usando questo tipo di accoppiamento numerosi limiti, sia sulla massa dell'assione che sulle scale di energia coinvolte, possono essere ottenuti da osservazioni astrofisiche e da esperimenti di laboratorio così come dalla diretta osservazione di oggetti celesti tipo il Sole. Queste considerazioni possono essere applicate non solo all'assione ma più in generale a tutte le ALPs. Attualmente i limiti migliori sulla costante di accoppiamento, su un largo spettro di masse di ALPs, si sono ottenuti dall'esperimento CAST (Cern Axion Solar Tele- scope) al Cern, che guarda agli ALPs prodotti nel Sole. L'esperimento è basato sull'effetto Primakoff in un campo magnetico elevato, dove gli ALPs solari sono riconvertiti in fotoni. Il magnete dell'esperimento CAST è costituito da un prototipo per un dipolo superconduttore di LHC, lungo 10 m e con un campo magnetico totale di 10 T. Il magnete è posto su di un affusto mobile per poter seguire il sole durante le fasi di alba e tramonto. Alle due estremità del magnete sono disposti quattro rivelatori sensibili nel campo degli X molli. Il picco del usso di fotoni rigenerato è infatti atteso a pochi keV. Tuttavia, ci sono suggerimenti che il prob- lema ancora aperto del profilo di temperatura della corona solare può essere risolto tramite un meccanismo che contemporaneamente incrementerebbe le code a bassa energia dell'atteso usso di fotoni rigenerati. A questo scopo un contatore di fotoni sensibile nell'intervallo del visibile è stato progettato ed assemblato per coprire una delle quattro porte del magnete di CAST, almeno temporaneamente. I contatori di fotoni studiati hanno un largo campo di applicazione e possono essere usati in altri tipi di esperimenti per la ricerca di WISPs. Il sistema inizialmente sviluppato per CAST consiste in un telescopio Galileiano per accoppiare una fibra ottica all'apertura del magnete di CAST, la fibra ottica è quindi collegata ad un interruttore ottico che permette di utilizzare due rivelatori contemporaneamente. La fibra in ingresso è infatti collegata alternativamente a due fibre in uscita, in questo modo ciascun rivelatore acquisisce per metà del tempo segnale e per metà del tempo fondo, lasciando inalterato il tempo totale di integrazione. I sensori utilizzati fino ad ora al termine della catena ottica sono un tubo fotomoltiplicatore e un avalanche photodiode operato in modalità Geiger. Ciascun rivelatore è stato preliminarmente caratterizzato su un banco di prova e quindi collegato al sistema ottico. Il sistema finale è stato quindi installato su CAST. Una serie di misure, che includono reali prese dati, sono state condotte al Cern durante il 2007-2008. La misura del fondo ottenuta a CAST è stata la stessa misurata durante i test di prova a Trieste, circa 0.4 Hz, ma risulta chiaro che il vero sviluppo futuro è basato su un sensore a fondo molto più basso. A questo scopo sono stati considerati diversi tipi di sensore e la scelta finale è ricaduta su di un avalanche photodiode operato in modalità Geiger e raffreddato all'azoto liquido. Lo scopo è quello di ridurre drasticamente i conteggi di fondo, sebbene a queste temperature sia atteso un incremento del rateo di afterpulses. Tuttavia il rivelatore è pensato per essere utilizzato in un applicazione a basso rateo e quindi il fenomeno degli afterpulses può essere ridotto agendo direttamente sul tempo morto del rivelatore, cioè aumentandolo. I primi test condotti sul rivelatore mostrano un decremento del fondo pari ad un fattore meglio di 10^4, senza rilevabili variazioni in efficienza. In aggiunta a questo sistema, per ottenere un'installazione permanente sul fascio di CAST, è stato realizzato uno specchio semitrasparente, che lascia pressocchè inalterato il fascio di raggi X e invece de ette il fascio di fotoni con energia nel visibile. Il lavoro attuale è incentrato sullo sviluppo del rivelatore a basso fondo raffreddato all'azoto liquido, includendo anche lo studio di diversi tipi di sensore e diversi tipi di elettronica di lettura, con particolare attenzione all'elettronica di quenching del circuito con le varianti attiva e passiva. Una volta terminati gli studi sui diversi tipi di rivelatori, l'apparato finale sarà installato su CAST. E' comunque importante notare che l'uso di un rivelatore a singolo fotone sensibile tra 1-2 eV con un fondo sufficientemente basso (<1 Hz almeno) non è limitato all'uso su CAST ma in tutti gli altri esperimenti per la ricerca di WISPs, con particolare riguardo agli esperimenti di rigenerazione risonante, e in generale, nel campo di applicazione degli esperimenti di precisione alla fisica delle particelle.
1982
Styles APA, Harvard, Vancouver, ISO, etc.
3

Rosu, Madalin-Mihai. « Search for Solar Axions with the CCD Detector and X-ray Telescope at CAST Experiment ». Phd thesis, Technical University of Darmstadt, 2015. http://tuprints.ulb.tu-darmstadt.de/4577/1/thesis_cast_madalin.pdf.

Texte intégral
Résumé :
The CERN Axion Solar Telescope (CAST) is an experiment that uses the world’s highest sensitivity Helioscope to date for solar Axions searches. Axions are weakly interacting pseudoscalar particles proposed to solve the so-called Strong Charge-Parity Problem of the Standard Model. The principle of detection is the inverse Primakoff Effect, which is a mechanism for converting the Axions into easily detectable X-ray photons in a strong transverse magnetic field. The solar Axions are produced due to the Primakoff effect in the hot and dense core of from the coupling of a real and a virtual photon. The solar models predict a peak Axion luminosity at an energy of 3 keV originating mostly from the inner 20% of the solar radius. Thus an intensity peak at an energy of 3 keV is also expected in the case of the X-ray radiation resulting from Axion conversion. CAST uses a high precision movement system for tracking the Sun twice a day with a LHC dipole twin aperture prototype magnet, 9.26 meters long and with a field of 9 Tesla. On the four apertures of the magnet, X-ray detectors look for photons resulted from Axion conversion. For investigating different Axion masses, 3He and 4He buffer gas was injected in the magnetic region, restoring the coherence for Axion-to-photon conversion into mass regions so far unexplored, favoured by QCD Axion models. Using this scanning strategy, Axion masses were investigated in the range 0.02 eV to 1.17 eV between 2003 and 2013. One of CAST Detectors is a pn-CCD chip placed in the focal plane of an X-ray Telescope. In this thesis an overview of 2009, 2010 and 2011 data taken with this detector is presented. Signal and background levels were extracted, indicating that no conversion signature was detected. The analysed data is being used within the collaboration for improving the combined upper limits on the Axion-to- photon coupling constant parameter space (g!! ≲ 3.3×10!!"
Styles APA, Harvard, Vancouver, ISO, etc.
4

Rosu, Madalin-Mihai Verfasser], Dieter [Akademischer Betreuer] [Hoffmann et Konstantin [Akademischer Betreuer] Zioutas. « Search for Solar Axions with the CCD Detector and X-ray Telescope at CAST Experiment / Madalin-Mihai Rosu. Betreuer : Dieter H. H. Hoffmann ; Konstantin Zioutas ». Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2015. http://d-nb.info/1111113467/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Rosu, Madalin-Mihai [Verfasser], Dieter [Akademischer Betreuer] Hoffmann et Konstantin [Akademischer Betreuer] Zioutas. « Search for Solar Axions with the CCD Detector and X-ray Telescope at CAST Experiment / Madalin-Mihai Rosu. Betreuer : Dieter H. H. Hoffmann ; Konstantin Zioutas ». Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2015. http://nbn-resolving.de/urn:nbn:de:tuda-tuprints-45776.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Kang, Donghwa [Verfasser]. « Search for solar axions with the CCD detector at CAST (CERN axion solar telescope) / vorgelegt von Donghwa Kang ». 2007. http://d-nb.info/983760314/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Τσαγρή, Μαίρη. « Σήματα ηλιακών axions μέσα από αστροφυσικές παρατηρήσεις ». Thesis, 2008. http://nemertes.lis.upatras.gr/jspui/handle/10889/2347.

Texte intégral
Résumé :
Σε αυτήν την εργασία συζητάμε κυρίως τις ηλιακές παρατηρήσεις οι οποίες προτείνουν την ύπαρξη του σωματιδίου axion. Η αρχή λειτουργίας των ηλιακών τηλεσκοπίων που χρησιμοποιούνται για την ανίχνευση των ηλιακών axions μπορεί να βρίσκεται πίσω από την απροσδόκητη ηλιακή εκπομπή ακτίνων X, ακόμη και επάνω από 3.5 keV από τα μη ενεργά active regions. Επειδή αυτό συνδέεται με τα ηλιακά μαγνητικά πεδία και παρουσιάζει την αναμενόμενη B2 εξάρτηση, που είναι χαρακτηριστική για την αλληλεπίδραση τους με μαγνητικά πεδία. Τα μαγνητικά πεδία γίνονται σε αυτό το πλαίσιο ο καταλύτης και όχι η ειδάλλως πιθανή/απροσδιόριστη πηγή ενέργειας των ηλιακών ακτίνων X. Επιπλέον, ίσως μπορέσουμε (ίσως και όχι) να είμαστε σε θέση να αναδημιουργήσουμε πλήρως τον υποτιθέμενο ενσωματωμένο συντονισμό αλληλεπίδρασης των axions στον ήλιο και, να είμαστε σε θέση (ή και όχι) να τον αντιγράψουμε σε ένα επίγειο πείραμα. Τα σήματα των ηλιακών axions μπορεί να είναι παροδικές εκλάμψεις ακτίνων X ή συνεχής ακτινοβολία, όπως π.χ. από την κορώνα η οποία εκ πρώτης όψεος παραβιάζει το δεύτερο νόμο της θερμοδυναμικής καθώς και το νόμο Planck περί ακτινοβολίας μέλανος σώματος. Για την κατανόηση του προβλήματος της ηλιακής κορώνας και των άλλων ηλιακών μυστηρίων, όπως είναι οι ηλιακές καταιγίδες, οι ηλιακές κηλίδες, οι κατανομές χημικών στοιχείων, κ.λ.π., καταλήγουμε τουλάχιστον σε δύο νέα ‘εξωτικά σωματίδια’, όπως είναι: α) παγιδευμένα ‘βαριά’ axions τύπου Kaluza-Klein τα οποία διασπώνται ακτινοβολώντας και επιτρέπουν μια συνεχή αυτο-ακτινοβολία του ήλιου, μέσω της αυθόρμητης διάσπασής τους σε δύο φωτόνια. Αυτή η διεργασία εξηγεί την ξαφνική αναστροφή θερμοκρασίας στα ~2000 χλμ επάνω από την επιφάνεια του ήλιου. β) εξερχόμενα ‘ελαφριά’ axions, τα οποία αλληλεπιδρούν με τα τοπικά μαγνητικά πεδία μέσω της χαρακτηριστικής εξάρτησης (~B2). Η αλληλεπίδραση αυτή εξαρτάται από πολλές παραμέτρους, μία εκ των οποίων είναι η συχνότητα πλάσματος του περιβάλλοντος χώρου. Η συχνότητα αυτή θα πρέπει να ταιριάζει με τη μάζα ηρεμίας του axion, προκειμένου να έχουμε τον επιθυμητό συντονισμό. Η αναμενόμενη συμπεριφορά αυτών των δυο κατηγοριών αυτή εξηγεί τα κατά τα άλλα απρόβλεπτα παροδικά, αλλά ταυτόχρονα και συνεχή, ηλιακά φαινόμενα. Κατόπιν, η ενεργειακή κατανομή των φωτονίων ενός υποψήφιου φαινομένου άγνωστης προέλευσης μπορεί να ‘φωτογραφίσει’ το σημείο γέννησης των axions. Παραδείγματος χάριν, αυτό θα μπορούσε να προτείνει ότι ηλιακή κορώνα θερμοκρασίας ~2MK έχει τις ρίζες της στο πάνω μέρος της «ζώνης ακτινοβολίας» (radiation zone) ακόμα κι αν αυτό από μόνο του δεν μπορεί να εξηγήσει προφανώς την τόσο απότομη περιοχή μετάπτωσης μεταξύ της χρωμόσφαιρας και της κορώνας. Το προβλεφθέν μαγνητικό πεδίο Β ≈ 10 – 50 Τ στην αποκαλούμενη tachocline σε ακτίνα ~0.7R๏, κάνει αυτήν την περιοχή μια πιθανή νέα πηγή ηλιακών axions. Σε κάθε περίπτωση, η πολλαπλή σκέδαση φωτονίων μέσω του φαινομένου Compton ενισχύει τη μετατροπή φωτονίων από axions, δεδομένου ότι τα axions δεν μπορουν να αλληλεπιδράσουν πολλές φορές και έτσι δραπετεύουν. Καταλήγουμε λοιπόν στο συμπέρασμα ότι η ενεργειακή κατανομή κάτω από περίπου 100 eV είναι ένα νέο παράθυρο για τις αναζητήσεις axion. Εντυπωσιακά, αυτή η ενεργιακή κατανομή συμπίπτει με το γεγονός ότι: α) οι ενέργειες των φωτονίων που προκύπτουν από την αυθόρμητη διάσπαση των axions για μια εξωτερική αυτο-ακτινοβολία του ήλιου, πρέπει να διαπεράσουν μέχρι την ‘περιοχή μετάπτωσης’ στα ~2000 χλμ επάνω από την ηλιακή επιφάνεια, και β) με την κύρια συνιστώσα της ηλιακής φωτεινότητας ακτίνων X χαμηλής ενέργειας, η οποία είναι άγνωστης προέλευσης. Κατά συνέπεια, τα άμεσα/έμμεσα σήματα υποστηρίζουν τα axions ως μια εξήγηση της αινιγματικής συμπεριφοράς του ήλιου. Π.χ., η ανεξήγητη «solar oxygen crisis». Έτσι, λαμβάνοντας υπόψη σχετικές παρατηρήσεις στους ‘πόρους’, παρατηρείται μια επίσης εντυπωσιακή ~B2 εξάρτηση της κατανομής των χημικών στοιχείων πάνω απο έναν ‘πόρο’. Όλη αυτή η συμπεριφορά μπορεί να εξηγηθεί μέσω της πίεσης ακτινοβολίας απο την εκπομπή ακτίνων X που προέρχονται από τα axions του ηλιακού πυρήνα, ή, ακόμη και από κάποια άλλη εσωτερική ηλιακή πηγή axions. Έτσι, κεραίες αxions θα μπορούσαν να αξιοποιήσουν / ενσωματώσουν ένα τέτοιο μηχανισμό. Τέλος, η παρατηρηθείσα χαμηλο-ενεργειακή εκπομπή ακτίνων X από τον ‘ήρεμο’ ήλιο στα υψηλότερα πλάτη καθώς επίσης και η εκτεταμένη δραστηριότητα που συνδέεται με τις μαγνητικές δομές, που διασχίζουν το κέντρο του ηλιακού δίσκου, προτείνουν ότι τελικά έχουμε να κάνουμε με ένα σενάριο axions πολλών συνιστωσών. Ένα τέτοιο σενάριο ίσως είναι τελικά στην πράξη, αυτό που εξηγεί γιατί τα ηλιακά axions δεν έχουν προσδιοριστεί / παρατηρηθεί μέχρι τώρα στο καθ’ολα πλούσιο και χωρο-χρονικά μεταβαλλόμενο ηλιακό φάσμα ακτίνων X. Τέλος, υποστηρίζουμε, σε αυτήν την εργασία ότι, τα ηλιακά axions που μετατρέπονται σε (υψηλοενεργειακές) ακτίνες X κοντά στην ηλιακή επιφάνεια μπορούν να ιονίσουν τα ανωτέρω στρώματα. Αυτό έχει σαν αποτέλεσμα την ισοτροπική Compton σκέδαση και την ενεργειακή υποβάθμιση των φωτονίων. Τα φωτόνια διαδίδονται μέσα στο πλάσμα με πολλαπλές σκεδάσεις Compton (τυχαίος βηματισμός). Και τα δύο φαινόμενα επιτρέπουν για πρώτη φορά την σύνδεση της ηλιακής εκπομπής ακτίνων X με το τυποποιημένο πρότυπο ηλιακών axions. Δηλαδή, έχουμε να κάνουμε όχι μόνο με μια ακτινική εκπομπή ακτίνων X που προέρχονται από το κέντρο του ηλιακού δίσκου αλλά και με ένα ενεργειακό φάσμα που μετατοπίζεται προς όλο και χαμηλότερες ενέργειες. Αυτό είναι κάτι νέο που προέκυψε από αυτήν την εργασία. Επιπλέον, τονίζουμε ότι, από την λογική αυτής της εργασίας προκύπτει το σημείο γέννησης / μετατροπής axions, και μάλιστα ‘φωτογραφίζοντας’ την ηλιακή επιφάνεια. Αυτό το συμπέρασμα είναι πολύ σημαντικό. Διότι, εάν υιοθετήσουμε το ευρέως διαδεδομένο, αντίστροφο φαινόμενο Primakoff, που πιστεύεται ότι προκαλεί αυτήν την αλληλεπίδραση, όπως γίνεται παραδείγματος χάριν στην 2η φάση του πειράματος CAST με το ‘buffer gas’ στους μαγνητικούς σωλήνες, καταλήγουμε για πρώτη φορά σε μια μάζα ηρεμίας ενός σωματιδίου όπως είναι το axion: maxion ≥ 0.01 eV/c2. Αυτό το γεγονός μαζί με την γωνιακή και ενεργειακή κατανομή των ακτίνων Χ, που προέρχονται από axions στην επιφάνεια του ήλιου, προέκυψαν από αυτήν την εργασία. Επίσης, και η ανάλυση των δισδιάστατων κατανομών ηλιακών ακτίνων Χ χαμηλής ενέργειας απο δημοσιευθέντα αρχεία δεδομένων οδήγησε σε νέα αποτελέσματα.
We discuss mainly solar signatures suggesting axion or axion(-like) particles. The working principle of axion helioscopes can be behind unexpected solar X-ray emission, even above 3.5 keV from non-flaring active regions. Because this is associated with solar magnetic fields shows the expected B2- dependence. The magnetic fields become in this framework the catalyst and not the otherwise suspected / unspecified energy source of solar X-rays. In addition, the built–in fine tuning we may (not) be able to fully reconstruct, and, we may (not?) be able to copy in an earth bound experiment. Solar axion signals are transient X-ray brightenings, or, continuous radiation from the corona violating at first sight the second law of thermodynamics and Planck’s law of black body radiation. To understand the corona problem and other mysteries like flares, sunspots, elemental abundances, etc., we arrive at least at two exotica: a) trapped, radiatively decaying, massive axions of the Kaluza Klein type allow a continuous self-irradiation of the Sun, via their spontaneous decay, explaining the sudden temperature inversion ~2000 km above the Sun’s surface and b) outstreaming light axions interact with local fields (~B2), depending crucially, among other parameters on the plasma frequency which must match the axion rest mass, explaining the otherwise unpredictable transient, but also continuous, solar phenomena. Then, the photon energy distribution of a related phenomenon of unknown origin might point at the birth place of involved axions. For example, this could suggest that the ~2 MK solar corona has its axion roots at the top of the radiative zone even though this alone can not explain the steep transition region (TR) between the chromosphere and the corona. The predicted B ≈ 10–50 T at the so called tachocline at ~0.7R, make this place a potential coherent axion source, while the multiple photon scattering enhances the photon-to-axion conversion unilaterally, since axions escape. We conclude that the energy range below some 100 eV is a new window of opportunity for axion searches. Remarkably, it coincides with a) the 10 derived photon energies for an external self-irradiation of the Sun, which has to penetrate until the transition region at ~2000 km above the solar surface, and b) with the bulk of the soft solar X-ray luminosity, which is of unknown origin. Thus, (in)direct signatures support axions or the like as an explanation of enigmatic behavior in the Sun and beyond; e.g., the otherwise unexplained “solar oxygen crisis” taking into account related observations in pores, which also show striking ~B2 – dependence of elemental abundance in a pore. They can be associated with the radiation pressure of the X-ray emission from converted axions from the solar core, or, other as yet unpredicted inner solar axion source. Axion antennas could take advantage of such a feed back. Finally, the observed soft X-ray emission from the quiet Sun at highest latitudes as well as the extended activity associated with magnetic structures crossing the solar disk centre suggest that a multi-component axion(-like) scenario is finally at work, which explains why the solar axions have not been identified / noticed before in the rich and spatiotemporarily changing solar X-ray spectrum. Finally, it is arguing in this work that solar axions converted to (hard) X-rays near the solar surface can ionize the layers above. This gives rise to the isotropic Compton scattering and to the photon energy degradation while the photons propagate inside the plasma. Both effects allow for the first time to reconcile solar X-ray emission with the standard solar axion model, i.e. not only radial X-ray emission distinguishing thus the solar disk center, and, an energy spectrum shifted towards lower and lower energies. Moreover, the concluded place of birth of the axion conversion points at the solar surface. If we assume the widely mentioned coherent inverse Primakoff-effect being behind this interaction, as it is done for example in CAST phase II with buffer gas in the magnetic pipes, then the axion or axion-like rest mass is maxion ≥ 0.01 eV/c^2.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Dafni, Theopisti [Verfasser]. « A search for solar axions with the MICROMEGAS detector in CAST / von Theopisti Dafni ». 2005. http://d-nb.info/97565957X/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Vogel, Julia Katharina [Verfasser]. « Searching for solar axions in the eV-mass region with the CCD detector at CAST / vorgelegt von Julia Katharina Vogel ». 2009. http://d-nb.info/994565380/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Solar axion"

1

Exploring the Solar System and Beyond : A Max Axiom Super Scientist Adventure. Capstone Pr Inc, 2022.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Doescher, Erik, et Ailynn Collins. Exploring the Solar System and Beyond : A Max Axiom Super Scientist Adventure. Raintree Publishers, 2023.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Doescher, Erik, et Ailynn Collins. Exploring the Solar System and Beyond : A Max Axiom Super Scientist Adventure. Capstone, 2022.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Doescher, Erik, et Ailynn Collins. Exploring the Solar System and Beyond : A Max Axiom Super Scientist Adventure. Capstone, 2022.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Doescher, Erik, et Ailynn Collins. Exploring the Solar System and Beyond : A Max Axiom Super Scientist Adventure. Capstone Press, 2022.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Doescher, Erik, et Ailynn Collins. Exploring the Solar System and Beyond : A Max Axiom Super Scientist Adventure. Capstone, 2022.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Solar axion"

1

Vogel, Julia K., et Igor G. Irastorza. « Solar Production of Ultralight Bosons ». Dans The Search for Ultralight Bosonic Dark Matter, 141–71. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95852-7_5.

Texte intégral
Résumé :
AbstractThis chapter will spotlight axions produced in the core of the Sun. A first focus will be put on the production mechanism for axions in the solar interior through coupling of axions to photons via the Primakoff effect as well as their interactions with electrons. In addition to the axion production, the axion-to-photon conversion probability is a crucial quantity for solar axion searches (also referred to as helioscopes) and determines the expected number of photons from solar axion conversion that are detectable in a ground-based search. After these basic considerations, the helioscope concept will be detailed, and past, current, and future experimental realizations of axion helioscopes will be discussed. This includes the analysis used to aim at axion detection and upper limit calculations in case no signal above background is detected in experimental data. For completeness, alternative approaches other than traditional helioscopes to search for solar axions are discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Sikivie, P. « Solar and Cosmic Axion Hunting ». Dans Dark Matter in the Universe, 94–119. Berlin, Heidelberg : Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-86029-4_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Avignone, F. T., S. P. Ahlen, R. L. Brodzinski, S. Dimopolous, A. K. Drukier, G. Gelmini, B. W. Lynn et al. « Ultralow Background Searches for ββ-Decay, Cold Dark Matter and Solar Axions ». Dans Weak and Electromagnetic Interactions in Nuclei, 676–80. Berlin, Heidelberg : Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71689-8_130.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Avignone, F. T., et R. L. Brudzinski. « Double Beta Decay Experiments and Searches for Dark Matter Candidates and Solar Axions ». Dans Neutrinos, 147–81. Berlin, Heidelberg : Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-46648-9_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Avignone, F. T., R. L. Brodzinski, H. S. Miley et J. H. Reeves. « Recent Progress in Ultralow Background Ge Detector Searches for the ββ-Decay of 76Ge, Dark Matter Candidates, and Solar Axions ». Dans Neutrino Physics, 191–212. Berlin, Heidelberg : Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73679-7_19.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Keats, Jonathon. « Unparticle ». Dans Virtual Words. Oxford University Press, 2010. http://dx.doi.org/10.1093/oso/9780195398540.003.0007.

Texte intégral
Résumé :
“All science is either physics or stamp collecting.” So claimed Ernest Rutherford, the British physicist who discovered the atomic nucleus in 1910, touting the explanatory power of physics over the busywork of classifying elements or planets or animals. One hundred years later, the endless variety of matter postulated by physics—within the nucleus and throughout the universe—has far surpassed the inventories of the periodic table and solar system, leading particle physicists to refer to their domain as a bestiary and one textbook to be aptly titled A Tour of the Subatomic Zoo. There are electrons and protons and neutrons, as well as quarks and positrons and neutrinos. There are also gluons and muons—the unexpected discovery of which, in 1936, led the physicist Isidor Rabi to quip, “Who ordered that?”—and potentially axions and saxions and saxinos. In this menagerie it’s not easy for a new particle, especially a hypothetical one, to get attention. The unparticle, first proposed by American physicist Howard Georgi in 2007, is therefore remarkable for garnering worldwide media attention and spurring more than a hundred scholarly papers, especially considering that there’s no experimental evidence for it, nor is it called for mathematically by any prior theory. What an unparticle is, exactly, remains vague. The strange form of matter first arose on paper when Georgi asked himself what properties a “scale-invariant” particle might have and how it might interact with the observable universe. Scale invariance is a quality of fractals, such as snowflakes and fern leaves, that makes them look essentially the same at any magnification. Georgi’s analogous idea was to imagine particles that would interact with the same force regardless of the distance between them. What he found was that such particles would have no definite mass, which would, for example, exempt them from obeying special relativity. “It’s very difficult to even find the words to describe what unparticles are,” Georgi confessed to the magazine New Scientist in 2008, “because they are so unlike what we are familiar with.” For those unprepared to follow his mathematics, the name evokes their essential foreignness.
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Solar axion"

1

HASINOFF, M. D., S. ANDRIAMONJE, E. ARIK, D. AUTIERO, F. AVIGNONE, K. BARTH, E. BINGOL et al. « THE CERN AXION SOLAR TELESCOPE ». Dans Proceedings of the Fourth International Workshop. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812791160_0009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

IRASTORZA, I. G., S. ANDRIAMONJE, E. ARIK, D. AUTIERO, F. AVIGNONE, K. BARTH, E. BINGOL et al. « THE CERN AXION SOLAR TELESCOPE (CAST) : STATUS AND PROSPECTS ». Dans Proceedings of the Fourth International Workshop. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812791313_0058.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

ANDRIAMONJE, S., V. ARSOV, S. AUNE, D. AUTIERO, F. AVIGNONE, K. BARTH, A. BELOV et al. « FIRST RESULTS FROM THE CERN AXION SOLAR TELESCOPE (CAST) ». Dans Proceedings of the Fifth International Workshop. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701848_0062.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Hong, JaeSub E., Suzanne Romaine, Almus T. Kenter, Christopher S. Moore, Katharine Reeves, Brian D. Ramsey, Kiranmayee Kilaru et al. « SmallSat solar axion and activity x-ray imager (SSAXI) ». Dans UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XXI, sous la direction de Oswald H. Siegmund. SPIE, 2019. http://dx.doi.org/10.1117/12.2529781.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

AVIGNONE, F. T., R. J. CRESWICK et H. A. FARACH. « FUTURE PROSPECTIVES FOR SOLAR-AXION EXPERIMENTS WITH LARGE ARRAYS OF SINGLE-CRYSTAL DETECTORS ». Dans Proceedings of the Fourth International Workshop. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812791313_0095.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Barth, K. « Commissioning and First Operation of the Cryogenics for the CERN Axion Solar Telescope (CAST) ». Dans ADVANCES IN CRYOGENIC ENGEINEERING : Transactions of the Cryogenic Engineering Conference - CEC. AIP, 2004. http://dx.doi.org/10.1063/1.1774679.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Lakic, Biljana, S. Andriamonje, V. Arsov, S. Aune, D. Autiero, F. Avignone, K. Barth et al. « Search for Solar Axions : CAST ». Dans International Europhysics Conference on High Energy Physics. Trieste, Italy : Sissa Medialab, 2007. http://dx.doi.org/10.22323/1.021.0022.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Andriamonje, S., S. Aune, K. Barth, A. Belov, B. Beltrán, H. Bräuninger, J. M. Carmona et al. « Search for solar axions : the CAST experiment ». Dans THE DARK SIDE OF THE UNIVERSE : 2nd International Conference on The Dark Side of the Universe DSU 2006. AIP, 2006. http://dx.doi.org/10.1063/1.2409111.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Lakic, Biljana. « Search for solar axions with the CAST experiment ». Dans Identification of dark matter 2008. Trieste, Italy : Sissa Medialab, 2009. http://dx.doi.org/10.22323/1.064.0065.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Cerulli, Riccardo. « 7Li solar axions : preliminary results and feasibility studies ». Dans Identification of dark matter 2008. Trieste, Italy : Sissa Medialab, 2009. http://dx.doi.org/10.22323/1.064.0105.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Solar axion"

1

Vogel, J. K. Next-Generation Search for Solar Axion Dark Matter with the International Axion Observatory. Office of Scientific and Technical Information (OSTI), octobre 2019. http://dx.doi.org/10.2172/1572615.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie