Littérature scientifique sur le sujet « Soil gases »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Soil gases ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Soil gases"
Maček, Irena, Damijana Kastelec et Dominik Vodnik. « Root colonization with arbuscular mycorrhizal fungi and glomalin-related soil protein (GRSP) concentration in hypoxic soils in natural CO2 springs ». Agricultural and Food Science 21, no 1 (12 mars 2012) : 62–71. http://dx.doi.org/10.23986/afsci.5006.
Texte intégralGerke, Jörg. « The Central Role of Soil Organic Matter in Soil Fertility and Carbon Storage ». Soil Systems 6, no 2 (31 mars 2022) : 33. http://dx.doi.org/10.3390/soilsystems6020033.
Texte intégralClough, T. J., R. R. Sherlock, K. C. Cameron, R. J. Stevens, R. J. Laughlin et C. Müller. « Resolution of the 15N balance enigma ? » Soil Research 39, no 6 (2001) : 1419. http://dx.doi.org/10.1071/sr00092.
Texte intégralWerner, S. F., C. T. Driscoll, P. M. Groffman et J. B. Yavitt. « Landscape patterns of soil oxygen and atmospheric greenhouse gases in a northern hardwood forest landscape ». Biogeosciences Discussions 8, no 6 (8 novembre 2011) : 10859–93. http://dx.doi.org/10.5194/bgd-8-10859-2011.
Texte intégralZhu, Xiao-cong, Dong-rui Di, Ming-guo Ma et Wei-yu Shi. « Stable Isotopes in Greenhouse Gases from Soil : A Review of Theory and Application ». Atmosphere 10, no 7 (6 juillet 2019) : 377. http://dx.doi.org/10.3390/atmos10070377.
Texte intégralSysalová, Jiřina, Jan Kučera, Barbora Drtinová, Rostislav Červenka, Ondřej Zvěřina, Josef Komárek et Jan Kameník. « Mercury species in formerly contaminated soils and released soil gases ». Science of The Total Environment 584-585 (avril 2017) : 1032–39. http://dx.doi.org/10.1016/j.scitotenv.2017.01.157.
Texte intégralHale, Martin. « Mineral deposits and chalcogen gases ». Mineralogical Magazine 57, no 389 (décembre 1993) : 599–606. http://dx.doi.org/10.1180/minmag.1993.057.389.04.
Texte intégralSignor, Diana, et Carlos Eduardo Pellegrino Cerri. « Nitrous oxide emissions in agricultural soils : a review ». Pesquisa Agropecuária Tropical 43, no 3 (septembre 2013) : 322–38. http://dx.doi.org/10.1590/s1983-40632013000300014.
Texte intégralKim, D. G., R. Vargas, B. Bond-Lamberty et M. R. Turetsky. « Effects of soil rewetting and thawing on soil gas fluxes : a review of current literature and suggestions for future research ». Biogeosciences 9, no 7 (9 juillet 2012) : 2459–83. http://dx.doi.org/10.5194/bg-9-2459-2012.
Texte intégralBálint, Ágnes, Sándor Hoffmann, Attila Anton, Tibor Szili-Kovács et György Heltai. « Contribution of Agricultural Field Production to Emission of Greenhouse Gases (Ghg) ». Ecological Chemistry and Engineering S 20, no 2 (1 juin 2013) : 233–45. http://dx.doi.org/10.2478/eces-2013-0016.
Texte intégralThèses sur le sujet "Soil gases"
McGinley, Susan. « Measuring Soil Gases ». College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 1993. http://hdl.handle.net/10150/622349.
Texte intégralBottoms, Emily L. « Soil greenhouse gas emissions and soil C dynamics in bioenergy crops ». Thesis, University of Aberdeen, 2012. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=194783.
Texte intégralNkongolo, Nsalambi Vakanda. « Quantification of greenhouse gas fluxes from soil in agricultural fields ». Thesis, Nelson Mandela Metropolitan University, 2010. http://hdl.handle.net/10948/1474.
Texte intégralGoeschel, Tyler. « Quantifying Soil Greenhouse Gas Emissions And Soil Carbon Storage To Determine Best Management Practices In Agroecosystems ». ScholarWorks @ UVM, 2016. http://scholarworks.uvm.edu/graddis/644.
Texte intégralMiller, Gemma A. « The impacts of agricultural land management on soil carbon stabilisation ». Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/25437.
Texte intégralParmar, Kim. « Impacts of land use change to short rotation forestry for bioenergy on soil greenhouse gas emissions and soil carbon ». Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/16159.
Texte intégralBicalho, Elton da Silva. « Soil greenhouse gas emissions and their relations to soil attributes in a sugarcane area / ». Jaboticabal, 2016. http://hdl.handle.net/11449/135903.
Texte intégralAbstract: The production of the main soil greenhouse gases (GHG: CO2, CH4 and N2O) is influenced by agricultural practices that causes changes in soil phys¬ical, chemical and biological attributes, directly affecting their emission to the atmos¬phere. The aim of this study was to investigate the infield soil CO2 emissions (FCO2) and the soil CO2, CH4 and N2O production potentials (PCO2, PCH4 and PN2O, respec¬tively) in laboratory conditions, and their relationship to soil attributes in a mechanically harvested sugarcane area. The experimental area consisted of a 50 × 50-m radially symmetrical grid containing 133 points spaced at minimum distances of 0.5 m in the center of the sample grid. It was carried out eight evaluations of FCO2, soil temperature and soil moisture over a period of 19 days. Soil physical and chemical attributes were determined by sampling at a depth of 0-10 cm. The quantification of PCO2, PCH4 and PN2O consisted of laboratory incubation and determination of gas concentration by gas chromatography. FCO2 presented an infield average emission value of 1.19 µmol CO2 m−2 s−1, while GHG production in laboratory was 2.34 µg C-CO2 g−1 d−1 and 0.20 ng N-N2O g−1 d−1 for PCO2 and PN2O, respectively. No significant production or oxidation was observed for CH4. The factor analysis showed the formation of two independent processes that explained almost 72% of the total variance observed in the data. The first process was related to the transport of FCO2 and its relation to soil p... (Complete abstract click electronic access below)
Resumo: A produção dos principais gases de efeito estufa (GEE: CO2, CH4 e N2O) é influenciada por práticas agrícolas que causam alterações nos atributos físi¬cos, químicos e biológicos do solo, afetando diretamente sua emissão para a atmos¬fera. O objetivo deste estudo foi investigar a emissão de CO2 do solo (FCO2) em con¬dições de campo e a produção potencial de CO2, CH4 e N2O do solo (PCO2, PCH4 e PN2O, respectivamente) em condições de laboratório, além de suas relações com os atributos do solo em uma área de cana-de-açúcar colhida mecanicamente. A área experimental constituiu-se de um gradeado simétrico radialmente de 50 × 50 m con-tendo 133 pontos espaçados em distâncias mínimas de 0,5 m no centro da malha amostral. Foram conduzidas oito avaliações para FCO2, temperatura e umidade do solo durante um período de 19 dias. Os atributos físicos e químicos do solo foram determinados por meio de amostragem na profundidade de 0-10 cm. A quantificação de PCO2, PCH4 e PN2O consistiu de incubação em laboratório e determinação da con¬centração dos gases por meio de cromatografia gasosa. FCO2 apresentou um valor de emissão média de 1,19 µmol CO2 m−2 s−1, enquanto a produção de GEE em laborató¬rio foi de 2,34 µg C-CO2 g−1 d−1 e 0,20 ng N-N2O g−1 d−1 respectivamente para PCO2 e PN2O. Não foi observada produção ou oxidação significativa de CH4. A análise de fatores mostrou a formação de dois processos independentes que explicaram quase 72% da variância total observada nos dados. O primeiro proce... (Resumo completo, clicar acesso eletrônico abaixo)
Doutor
Mata, Ricardo Manuel Reis. « Assessment of the environmental impact of yeast waste application to soil : an integrated approach ». Master's thesis, ISA-UL, 2016. http://hdl.handle.net/10400.5/12979.
Texte intégralThe yeast production industry (e.g. distillery, brewing, baking industries) has been growing globally over the last years generating a large amount of sub-products. Laboratory experiments, under controlled conditions, were performed to investigate the impact of yeast waste application to a sandy texture soil. Experimental treatments were: surface application of yeast and decanted-yeast (CMSs and CMSds), surface application of yeast and decantedyeast followed by incorporation in the 0-5 cm soil layer (CMSm and CMSdm), surface application of ammonium nitrate (AN) (not applied in short-term experiment) and a control (soil only) (CTR). The amount of yeast applied was 2 g in the short-term experiment and equivalent to 170 kgN.ha-1 in the long-term experiment. A short-term (38-day period) leaching experiment was performed with 5 weekly irrigation events (5 treatments × 3 replications) to assess N, P, K losses. Results showed that yeast application increased NH4+, PT and KT leaching relative to control while decreased NO3- leaching relative to a high initial content of control, during first irrigation events. Incorporation treatments increased NH4+, NO3- and PT losses earlier. KT losses were higher in surface treatments. A long-term leaching experiment (73-day period) with 6 irrigation events every two weeks was then performed (6 treatments × 4 replicates) to assess N, P losses. A two parallel incubation experiment (6 treatments × 3 replicates) were simultaneously performed to measure GHG emissions (CO2, N2O, CH4) and to assess the N mineralization in each treatment. Results showed that yeast application increased initial NH4+ concentration in leachates and soil relative to control and NO3- increased afterwards. N2O and CO2 increased significantly relative to control on the first days after yeast application. AN treatment emissions were very similar to control but had a small increase of N2O. CH4 emissions were insignificant. The global warming potential (GWP) of yeast and AN were 6× and 2× times higher than control, respectively
N/A
Bradford, Mark Alexander. « The response of methane oxidation to environmental change ». Thesis, University of Exeter, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286477.
Texte intégralBegum, Khadiza. « Modelling soil organic carbon sequestration and greenhouse gas mitigation potentials in Bangladesh agriculture ». Thesis, University of Aberdeen, 2018. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=237655.
Texte intégralLivres sur le sujet "Soil gases"
Lindeen, Carol K. Soil basics. Mankato, Minn : Pebble Books, 2007.
Trouver le texte intégralA, Matson P., et Harriss R. C. 1941-, dir. Biogenic trace gases : Measuring emissions from soil and water. Oxford [England] : Blackwell Science, 1995.
Trouver le texte intégralGascoyne, Mel. Helium in soil gases in the Whiteshell Research area. Pinawa, Man : AECL, Whiteshell Laboratories, 1995.
Trouver le texte intégralB, Roen John, et Geological Survey (U.S.), dir. Near-surface anomalies associated with faults and gas accumulations in western Pennsylvania. [Reston, Va.?] : U. S. Dept. of the Interior, Geological Survey, 1985.
Trouver le texte intégralB, Roen John, et Geological Survey (U.S.), dir. Near-surface anomalies associated with faults and gas accumulations in western Pennsylvania. [Reston, Va.?] : U. S. Dept. of the Interior, Geological Survey, 1985.
Trouver le texte intégralB, Roen John, et Geological Survey (U.S.), dir. Near-surface anomalies associated with faults and gas accumulations in western Pennsylvania. [Reston, Va.?] : U. S. Dept. of the Interior, Geological Survey, 1985.
Trouver le texte intégralB, Roen John, et Geological Survey (U.S.), dir. Near-surface anomalies associated with faults and gas accumulations in western Pennsylvania. [Reston, Va.?] : U. S. Dept. of the Interior, Geological Survey, 1985.
Trouver le texte intégralEuropean Congress on Biotechnology (9th 1999 Brussels, Belgium). Biotechnology for the environment : Soil remediation. Dordrecht : Kluwer Academic, 2002.
Trouver le texte intégralR, Lal, dir. Soil management and greenhouse effect. Boca Raton : Lewis Publishers, 1995.
Trouver le texte intégralEnvironment, Alberta Alberta, dir. Specified gas emitters regulation : Soil carbon custom coefficient/protocols guidance document. [Edmonton] : Alberta Environment, 2007.
Trouver le texte intégralChapitres de livres sur le sujet "Soil gases"
Rettenberger, G., et F. H. Trier. « Retentive Capacity of Incapsulations Regarding Gases ». Dans Contaminated Soil ’90, 1207–8. Dordrecht : Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-3270-1_276.
Texte intégralHewitt, A. K. J., et S. G. McRae. « The Effects of Gases Emitted From Landfills on Soils and Crops ». Dans Contaminated Soil, 251–53. Dordrecht : Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-5181-5_31.
Texte intégralEngel, H., et G. Rettenberger. « Experiences with Thermal Disposal of Gases from Contaminated Soil ». Dans Contaminated Soil ’88, 845–48. Dordrecht : Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2807-7_134.
Texte intégralBohn, H. L. « Soil Treatment of Organic Waste Gases ». Dans Soils for Management of Organic Wastes and Waste Waters, 605–18. Madison, WI, USA : American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 2015. http://dx.doi.org/10.2134/1977.soilsformanagementoforganic.c24.
Texte intégralSwati, Indu Shekhar Thakur et Arti Mishra. « Rising Greenhouse Gases in the Atmosphere : The Microbes Can Be a Solution—A Review ». Dans Soil Biology, 623–36. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76863-8_32.
Texte intégralConrad, Ralf. « Metabolism of Nitric Oxide in Soil and Soil Microorganisms and Regulation of Flux into the Atmosphere ». Dans Microbiology of Atmospheric Trace Gases, 167–203. Berlin, Heidelberg : Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61096-7_11.
Texte intégralWagner-Riddle, Claudia, et Alfons Weersink. « Net Agricultural Greenhouse Gases ». Dans Sustaining Soil Productivity in Response to Global Climate Change, 169–82. Oxford, UK : Wiley-Blackwell, 2011. http://dx.doi.org/10.1002/9780470960257.ch12.
Texte intégralZaman, M., K. Kleineidam, L. Bakken, J. Berendt, C. Bracken, K. Butterbach-Bahl, Z. Cai et al. « Greenhouse Gases from Agriculture ». Dans Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques, 1–10. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-55396-8_1.
Texte intégralGrantham, Gary, et Melanie K. D. Eddis. « Contamination of Soils by Hazardous Gases : Investigation, Monitoring, Diagnosis and Treatment ». Dans Contaminated Soil ’90, 681–89. Dordrecht : Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-3270-1_141.
Texte intégralZaman, M., K. Kleineidam, L. Bakken, J. Berendt, C. Bracken, K. Butterbach-Bahl, Z. Cai et al. « Direct and Indirect Effects of Soil Fauna, Fungi and Plants on Greenhouse Gas Fluxes ». Dans Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques, 151–76. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-55396-8_5.
Texte intégralActes de conférences sur le sujet "Soil gases"
Matichenkov, V. « REDUCTION OF GREENHOUSE GASES EMISSION UNDER SILICON FERTILIZER APPLICATION ». Dans Land Degradation and Desertification : Problems of Sustainable Land Management and Adaptation. LLC MAKS Press, 2020. http://dx.doi.org/10.29003/m1701.978-5-317-06490-7/165-169.
Texte intégralJadhav, R. S., R. S. Amano, J. Jatkar et R. J. Lind. « Simulation Study of Heated Soil Vapor ». Dans ASME 2003 Heat Transfer Summer Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/ht2003-47054.
Texte intégralRoy, T., R. S. Amano et J. Jatkar. « A Transient Simulation of Heated Soil Vapor Extraction System ». Dans ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56425.
Texte intégralMIELCAREK, Paulina, Wojciech RZEŹNIK et Zbyszek ZBYTEK. « THE EFFECT OF SOLID MANURE INCORPORATION INTO THE SOIL ON THE EMISSION OF GASES AND ODOURS ». Dans RURAL DEVELOPMENT. Aleksandras Stulginskis University, 2018. http://dx.doi.org/10.15544/rd.2017.098.
Texte intégralSiltumens, Kristaps, Sindija Liepa, Inga Grinfelde, Diana Ruska et Dzidra Kreismane. « IMPACTS OF GRASSLAND PLANT COMPOSITION ON GHG EMISSIONS IN CLAY SOIL ». Dans 22nd SGEM International Multidisciplinary Scientific GeoConference 2022. STEF92 Technology, 2022. http://dx.doi.org/10.5593/sgem2022/4.1/s19.42.
Texte intégralRoy, T., R. S. Amano et J. Jatkar. « A Study of Soil Remediation by Vapor Extraction System and Air Sparging ». Dans ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-60289.
Texte intégralAmano, Ryo S., Jose Martinez Lucci, Krishna S. Guntur, M. Mahmun Hossain, M. Monzur Morshed, Matthew E. Dudley et Franklin Laib. « Experimental Study of Treating Volatile Organic Compounds ». Dans ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34579.
Texte intégralAmano, Ryo S., Jose Martinez Lucci et Krishna S. Guntur. « Experimental and Computational Study of Vaporization of Volatile Organic Compounds ». Dans ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41086.
Texte intégralVolpi, Iride, Giorgio Ragaglini, Enrico Bonari et Simona Bosco. « Monitoring of greenhouse gases from soil during two cropping seasons of maize in a Mediterranean environment. » Dans 2019 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor). IEEE, 2019. http://dx.doi.org/10.1109/metroagrifor.2019.8909268.
Texte intégralLiepa, Sindija, Kristaps Siltumens, Jovita Pilecka-Ulcugaceva, Inga Grinfelde et Dace Butenaite. « EFFECT OF SOIL PHYSICAL PROPERTIES ON N2O ISOTOPE FORMATION ». Dans 22nd SGEM International Multidisciplinary Scientific GeoConference 2022. STEF92 Technology, 2022. http://dx.doi.org/10.5593/sgem2022/4.1/s19.41.
Texte intégralRapports d'organisations sur le sujet "Soil gases"
Wyatt, D. E., R. J. Pirkle et D. J. Masdea. Barometric pumping of burial trench soil gases into the atmosphere at the 740-G Sanitary Landfill. Office of Scientific and Technical Information (OSTI), décembre 1992. http://dx.doi.org/10.2172/6730554.
Texte intégralQuale, Thomas. A Study of the Adsorption of Some Atmospheric Gases on Soils of the Willamette Valley River Basin. Portland State University Library, janvier 2000. http://dx.doi.org/10.15760/etd.1997.
Texte intégralGuidati, Gianfranco, et Domenico Giardini. Verbundsynthese «Geothermie» des NFP «Energie». Swiss National Science Foundation (SNSF), janvier 2020. http://dx.doi.org/10.46446/publikation_nfp70_nfp71.2020.4.de.
Texte intégral