Littérature scientifique sur le sujet « Soil biomonitoring »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Soil biomonitoring ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Soil biomonitoring"
Wołejko, Elżbieta, Urszula Wydro, Joanna Irena Odziejewicz, Agata Koronkiewicz et Agata Jabłońska-Trypuć. « Biomonitoring of Soil Contaminated with Herbicides ». Water 14, no 10 (11 mai 2022) : 1534. http://dx.doi.org/10.3390/w14101534.
Texte intégralHorak, Othmar, et Wolfgang Friesl-Hanl. « Soil additives immobilising heavy metals in contaminated soils ». Nova Biotechnologica et Chimica 7, no 1 (13 janvier 2022) : 5–9. http://dx.doi.org/10.36547/nbc.1352.
Texte intégralKoleva, Vanya, Teodora Koynova, Ivaila Kuleva et Asya Dragoeva. « A simple tool to assess the effect of water-soluble soil pollutants on enzyme activity in human whole blood samples using WST-1 assay ». Revista Internacional de Contaminación Ambiental 39 (16 février 2023) : 43–46. http://dx.doi.org/10.20937/rica.54549.
Texte intégralSingh, Sunidhi, Shalini Dhyani, Ramesh Janipella, Soumya Chakraborty, Paras Ranjan Pujari, V. M. Shinde et Kripal Singh. « Biomonitoring-Supported Land Restoration to Reduce Land Degradation in Intensively Mined Areas of India ». Sustainability 14, no 20 (21 octobre 2022) : 13639. http://dx.doi.org/10.3390/su142013639.
Texte intégralBargagli, R., D. H. Brown et L. Nelli. « Metal biomonitoring with mosses : Procedures for correcting for soil contamination ». Environmental Pollution 89, no 2 (1995) : 169–75. http://dx.doi.org/10.1016/0269-7491(94)00055-i.
Texte intégralNuguyeva, Sh, et E. Mammadov. « Research of the Content of Heavy Metals in the Atmospheric Precipitation of the Geygel, Dashkesan and Gedabek Districts of Azerbaijan ». Bulletin of Science and Practice 7, no 6 (15 juin 2021) : 60–66. http://dx.doi.org/10.33619/2414-2948/67/08.
Texte intégralKováts, Nora, Katalin Hubai, Tsend-Ayush Sainnokhoi et Gábor Teke. « Biomonitoring of polyaromatic hydrocarbon accumulation in rural gardens using lettuce plants ». Journal of Soils and Sediments 21, no 1 (16 octobre 2020) : 106–17. http://dx.doi.org/10.1007/s11368-020-02801-1.
Texte intégralShilov, Viktor V., O. L. Markova et A. V. Kuznetsov. « BIOMONITORING OF INFLUENCE OF HARMFUL CHEMICALS ON THE BASIS OF THE MODERN BIOMARKERS. LITERATURE REVIEW ». Hygiene and sanitation 98, no 6 (28 octobre 2019) : 591–96. http://dx.doi.org/10.18821/0016-9900-2019-98-6-591-596.
Texte intégralRola, Kaja, et Vítězslav Plášek. « The Utility of Ground Bryophytes in the Assessment of Soil Condition in Heavy Metal-Polluted Grasslands ». Plants 11, no 16 (11 août 2022) : 2091. http://dx.doi.org/10.3390/plants11162091.
Texte intégralKhabibullina, Aida R., Tatyana V. Vdovina, Alexander S. Sirotkin, Josef Trögl, Taťjána Brovdyová et Pavel Kuráň. « Analysis of microbial phospholipids in processes оf biomonitoring of soil condition ». PROCEEDINGS OF UNIVERSITIES APPLIED CHEMISTRY AND BIOTECHNOLOGY 9, no 1 (2019) : 44–52. http://dx.doi.org/10.21285/2227-2925-2019-9-1-44-52.
Texte intégralThèses sur le sujet "Soil biomonitoring"
Lindén, Anna. « Biomonitoring of cadmium in pig production / ». Uppsala : Dept. of Pharmacology and Toxicology, Swedish Univ. of Agricultural Sciences ([Institutionen för farmakologioch toxikologi], Sveriges lantbruksuniv.), 2002. http://projkat.slu.se/SafariDokument/222.htm.
Texte intégralOlsson, Ing-Marie. « Biomonitoring of cadmium in cattle, pigs and humans / ». Uppsala : Swedish Univ. of Agricultural Sciences (Sveriges lantbruksuniv.), 2002. http://epsilon.slu.se/avh/2002/91-576-6356-4.pdf.
Texte intégralPower, Rowena Suzanne. « The application of a transgenic strain of the nematode Caenorhabditis elegans to the biomonitoring of metal polluted soil ». Thesis, University of Nottingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310841.
Texte intégralJejdling, Julia. « Biomonitoring of soil remediation workers´ exposure to polycyclic aromatic compounds (PACs) – method development and characterisation of PACs in blood ». Thesis, Örebro universitet, Institutionen för naturvetenskap och teknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-74387.
Texte intégralSturba, Lucrezia. « “Validazione dell’applicabilità del saggio di tossicità acuta con Eisenia fetida accoppiato ad un approccio multi-biomarker come strumento diagnostico nel monitoraggio della qualità ambientale di suoli industriali e agricoli soggetti a spandimento di fanghi di depurazione biologica e relativi hydrochars" ». Doctoral thesis, Università di Siena, 2021. http://hdl.handle.net/11365/1149168.
Texte intégralNGUYEN, VAN THO. « Assessment of combined toxic and genotoxic effects of soil metal pollutants : a laboratory and a field experiment using the test plant Trifolium repens L ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2015. http://hdl.handle.net/10281/74387.
Texte intégralNugent, Ayres Michelle V. « Spatial and Geochemical Techniques to Improve Exposure Assessment of Manganese in Windsor, Ontario ». Thèse, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/20276.
Texte intégralLicks, Leticia Azambuja dos Santos. « Avalia??o da utiliza??o de microcosmos como ferramenta de an?lise da efic?cia de biomonitoramento no controle de vazamento de CO2 ». Pontif?cia Universidade Cat?lica do Rio Grande do Sul, 2018. http://tede2.pucrs.br/tede2/handle/tede/8206.
Texte intégralApproved for entry into archive by Sheila Dias (sheila.dias@pucrs.br) on 2018-07-13T20:27:02Z (GMT) No. of bitstreams: 1 TESELL_5jul.pdf: 8671551 bytes, checksum: c59b1fb1df38a655609d9a3ce6cd7d50 (MD5)
Made available in DSpace on 2018-07-13T20:37:40Z (GMT). No. of bitstreams: 1 TESELL_5jul.pdf: 8671551 bytes, checksum: c59b1fb1df38a655609d9a3ce6cd7d50 (MD5) Previous issue date: 2018-05-16
The climate changes associated with the increase of greenhouse gases emissions to the atmosphere stand out as one of the greatest current environmental concerns. Extensive research is being conducted in order to reduce the amount of emissions and their impact on climate. Carbon dioxide (CO2) is the main greenhouse gas contributing to this problem. Therefore, it is increasingly important to find solutions to reduce CO2 levels in the atmosphere. Among the feasible techniques to reduce these emissions is the geological storage, which consists of injecting large amounts of this gas into deep underground geological formations. To be effective, CO2 must be trapped in these deep geological formations for at least several centuries. In this context, monitoring of CO2 leakages and seepages to sensitive environments is a key step in the process. Research on monitoring and verification of CO2 leakages in shallow environments are carried out in large areas prepared for controlled injection and leakage of this gas, this techniques for its detection are hard and expensive. In this sense, this study aims to verify the use of microcosms as a biomonitoring tool to control CO2 leakage by conducting controlled injections of CO2 into continuous flow columns under different experimental conditions. For this, physical, chemical and microbiological analyzes were performed in the soil before, during and after percolation of CO2 in the column. These parameters were also analyzed with in situ soil samples. Based on statistical methods at the end of the study, it was observed that the design of the columns was suitable, however, the chosen parameters were insufficient to determine the influence of CO2 on the proposed test conditions.
As mudan?as clim?ticas associadas ? intensifica??o do efeito estufa est?o entre as maiores preocupa??es ambientais atuais. Muita pesquisa tem sido realizada com o intuito de reduzir o impacto dos gases associados ao efeito estufa, dentre eles o di?xido de carbono (CO2). Devido ? grande contribui??o do CO2 para o aquecimento global, ? cada vez mais importante a realiza??o de estudos que visem a diminui??o de seus n?veis na atmosfera. Entre as t?cnicas vi?veis para conter estas emiss?es est? o armazenamento geol?gico de carbono, que consiste em injetar quantidades significativas deste g?s em forma??es geol?gicas. No entanto, para ser efetiva, o CO2 deve ficar retido nestas forma??es geol?gicas profundas, n?o retornando a superf?cie a longo prazo. Assim, o monitoramento de vazamentos de CO2 ? uma etapa fundamental no processo de armazenamento geol?gico. Estes estudos usualmente s?o realizados em ?reas extensas preparadas para testes controlados de inje??o e vazamento de g?s (geralmente trabalhosos e dispendiosos). Este trabalho teve como objetivo verificar a utiliza??o de microcosmos como ferramenta de biomonitoramento no controle de vazamento de CO2, realizando inje??es controladas de CO2 em colunas de fluxo cont?nuo em diferentes condi??es experimentais. Foram realizadas an?lises f?sico qu?micas e microbiol?gicas no solo antes, durante e ap?s a percola??o de CO2 na coluna. Esses par?metros tamb?m foram comparados com amostras do solo in situ. Com base em m?todos estat?sticos no fim do estudo foi observado que o projeto das colunas foi adequado, no entanto, os par?metros escolhidos foram insuficientes para determinar a influ?ncia do CO2 nas condi??es de ensaio proposta.
Williams, Carl A. « The analysis of gold in plants and soils by inductively coupled plasma mass spectroscopy ». Thesis, University of Surrey, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.320971.
Texte intégralLévèque, Thibaut. « Biomonitoring environnemental et sanitaire des sols pollués par les éléments traces métalliques ». Thesis, Toulouse, INPT, 2014. http://www.theses.fr/2014INPT0093/document.
Texte intégralIn a context where environmental health concerns are globally increasing. Improve understanding of the mechanisms and bioavailability (eco) toxicity of persistent metals pollutants is a priority, especially because of their observed omnipresence in ecosystems in relation to their compartmentation and speciation. The earthworm is used to assess soil quality; moreover this soil organism through its bioturbation activities affects biogeochemical cycles. Ecotoxicity tests under controlled circumstances on earthworms have been conducted with different soils and worms’ species. Then an impact study on earthworms’ communities was conducted on a polluted site showing a concentration gradient. The influence of earthworms’ bioturbation on phytoavailability of pollutants was studied through experiments in mesocosms and Rhizotest. Finally, in vitro measures of pollutants bioavailability were performed on polluted soils and plants in different contexts: brownfields, gardens, sports field. The objective is to study the link between bioavailability for humans, soil characteristics, context of pollution and toxicity. Two complementary approaches have been developed: scientific research related to the mechanisms and development of tools, practical procedures which could be used by managers and risk assessors. Ecotoxicity of metals and metalloid (denoted ETM) on earthworms is not simply governed by their total concentrations, but strongly depends on the physico-chemical characteristics of soils. Furthermore, analysis of earthworm communities from a contaminated site can evaluate the quality of soil since seen an impact on the abundance, diversity and rate of juvenile worms. In addition, earthworms’ bioturbation significantly increases the bioavailability of ETM for vegetable plants such as lettuce. Finally, the human bioaccessibility of ETM is governed by many factors, in particular the context of pollution. The bioaccessible fraction of ETM is directly responsible for their cytotoxicity on intestinal cells. These results were complemented by mechanistic studies (IR, EXAFS, XANES, μ-XRF)
Livres sur le sujet "Soil biomonitoring"
In Situ Biomonitoring of a Polluted Environment by Wild Plant and Crop Plant Species. Nova Science Publishers, Incorporated, 2018.
Trouver le texte intégralChapitres de livres sur le sujet "Soil biomonitoring"
Shah, Naseer Ali, Azmat Ullah Jan et Ijaz Ali. « Biomonitoring of Electronic Waste Polluted Environment ». Dans Soil Biology, 13–20. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26615-8_2.
Texte intégralDawood, Muhammad, Abdul Wahid, Muhammad Zaffar Hashmi, Sidra Mukhtar et Zaffar Malik. « Use of Earthworms in Biomonitoring of Soil Xenobiotics ». Dans Soil Biology, 73–88. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-47744-2_6.
Texte intégralDahiya, Ujjwal Ranjan, Jhumki Das et Subia Bano. « Biological Indicators of Soil Health and Biomonitoring ». Dans Advances in Bioremediation and Phytoremediation for Sustainable Soil Management, 327–47. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-89984-4_21.
Texte intégralStamou, G. P., et G. B. Stamou. « Possible Application of Fuzzy System Simulation Models for Biomonitoring Soil Pollution in Urban Areas ». Dans Bioindicator Systems for Soil Pollution, 55–65. Dordrecht : Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1752-1_6.
Texte intégralSchnabl, H., P. Helfrich et S. Trapmann. « Plant thylakoid membranes and protoplasts as biological units for detection of phytotoxic compounds in water, air, soil and compost ». Dans New Microbiotests for Routine Toxicity Screening and Biomonitoring, 177–84. Boston, MA : Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4289-6_17.
Texte intégralMeravi, Neelima, et Santosh Kumar Prajapati. « Biomonitoring the Genotoxicity of Heavy Metals/Metalloids Present in Soil Contaminated by Fly Ash from Coal-Fired Thermal Power Plant Using Tradescantia pallida ». Dans Phytoremediation, 169–76. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10395-2_12.
Texte intégralRoss, P., P. Leitman, A. Ringwood et M. Delorenzo. « Microbiotests for contaminated soils and sediments : interpreting the data ». Dans New Microbiotests for Routine Toxicity Screening and Biomonitoring, 441–48. Boston, MA : Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4289-6_48.
Texte intégralSageena, Geetanjali, Kavita Khatana et Jitendra K. Nagar. « Biomonitoring of heavy metals contamination in soil ecosystem ». Dans Hazardous and Trace Materials in Soil and Plants, 313–25. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-323-91632-5.00019-7.
Texte intégralMedhi, Jinu, Jintu Dutta et Mohan Chandra Kalita. « Biomonitoring Ecosystem : Modelling Relationship with Arthropods ». Dans Arthropods [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.94313.
Texte intégralGautam, Meenu, Srishti Mishra et Madhoolika Agrawal. « Bioindicators of soil contaminated with organic and inorganic pollutants ». Dans New Paradigms in Environmental Biomonitoring Using Plants, 271–98. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-824351-0.00001-8.
Texte intégralActes de conférences sur le sujet "Soil biomonitoring"
Krainiukov, O., A. Nekos, E. Kochanov, Yu Buts et I. Miroshnychenko. « Biomonitoring of soil quality within the limits of the oil refining enterprise ». Dans XIV International Scientific Conference “Monitoring of Geological Processes and Ecological Condition of the Environment”. European Association of Geoscientists & Engineers, 2020. http://dx.doi.org/10.3997/2214-4609.202056064.
Texte intégralLias, Franky S., K. Jamil et D. B. T. Norsila. « Biomonitoring of heavy metals using soil near Teluk Ewa cement plant : Preliminary study ». Dans Environment (ISESEE). IEEE, 2011. http://dx.doi.org/10.1109/isesee.2011.5977085.
Texte intégralSTAPULIONYTĖ, Asta, Skaistė BONDZINSKAITĖ, Monika STRAVINSKAITĖ, Raimondas ŠIUKŠTA, Ričardas TARAŠKEVIČIUS et Tatjana ČĖSNIENĖ. « SOIL GENOTOXICITY BIOMONITORING IN RECULTIVATED FACTORY AREA USING THE CYTOGENETIC AND MOLECULAR ASSAYS IN TWO PLANT TEST-SYSTEMS ». Dans RURAL DEVELOPMENT. Aleksandras Stulginskis University, 2018. http://dx.doi.org/10.15544/rd.2017.025.
Texte intégralBarnekow, Ulf, et Mirko Koehler. « Soil bioengineering and biomonitoring of vegetation and after-care at Wismut´s backfilled and covered Lichtenberg open pit and its surrounding area, Ronneburg, Germany ». Dans Mine Closure 2016. Australian Centre for Geomechanics, Perth, 2016. http://dx.doi.org/10.36487/acg_rep/1608_39_barnekow.
Texte intégralMaruszewski, K., Halina Podbielska, Przemyslaw Andrzejewski et Wieslaw Strek. « Sol-gel materials as possible devices for tissue biomonitoring ». Dans BiOS Europe '96, sous la direction de Hans-Jochen Foth, Renato Marchesini et Halina Podbielska. SPIE, 1996. http://dx.doi.org/10.1117/12.260647.
Texte intégralRapports d'organisations sur le sujet "Soil biomonitoring"
Biomonitoring of fish communities, using the index of Biotic Integrity, as an indicator of the success of soil conservation measures in the Rabbit Creek and Middle Creek watersheds, Macon County, North Carolina. Office of Scientific and Technical Information (OSTI), août 1993. http://dx.doi.org/10.2172/10183599.
Texte intégral