Littérature scientifique sur le sujet « Sodium Sulphur Battery »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Sodium Sulphur Battery ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Sodium Sulphur Battery"

1

Kodama, E., et Y. Kurashima. « Development of a compact sodium sulphur battery ». Power Engineering Journal 13, no 3 (1 juin 1999) : 136–41. http://dx.doi.org/10.1049/pe:19990306.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Jones, I. W., S. N. Heavens et F. M. Stackpool. « Current Trends in Sodium-Sulphur Battery Development at CSPL ». Key Engineering Materials 59-60 (janvier 1991) : 305–14. http://dx.doi.org/10.4028/www.scientific.net/kem.59-60.305.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Vudata, Sai Pushpitha, et Debangsu Bhattacharyya. « Thermal management of a high temperature sodium sulphur battery stack ». International Journal of Heat and Mass Transfer 181 (décembre 2021) : 122025. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.122025.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Lu, Jia Yun, Quan Sheng Jiang et Lei Qin. « The Research on Energy-Storaged Application of Na/S Battery ». Advanced Materials Research 443-444 (janvier 2012) : 189–92. http://dx.doi.org/10.4028/www.scientific.net/amr.443-444.189.

Texte intégral
Résumé :
The Na/S battery is a kind of advanced secondary battery which with β (β)- Al2O3 as the electrolyte, its negative electrode is metal sodium and positive electrode is sulphur. It has advantages of large capacity, small size, long service life and high efficiency. The raw material of the Na/S battery is widely and the production cost is low. In addition, it’s not limited by space and easy to maintain. The Na/S battery is widely used in stable supply of renewable energy such as peak load shifting, emergency power and wind power, In terms of improving the stability of the power quality, Na/S battery is a most maturely and potentially energy-storage battery in a variety of advanced secondary battery.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Eck, Gismar. « Design of the thermal management systems for sodium-sulphur traction batteries using battery models ». Journal of Power Sources 17, no 1-3 (janvier 1986) : 226–27. http://dx.doi.org/10.1016/0378-7753(86)80041-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Alessandrini, F., et S. Casadio. « Cyclic voltammetry test for the effectiveness of cathode additives in the sodium-sulphur battery ». Journal of Applied Electrochemistry 17, no 2 (mars 1987) : 437–41. http://dx.doi.org/10.1007/bf01023310.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Pervez, S. A., D. Kim, S. M. Lee, C. H. Doh, S. Lee, U. Farooq et M. Saleem. « Study of tin-sulphur-carbon nanocomposites based on electrically exploded tin as anode for sodium battery ». Journal of Power Sources 315 (mai 2016) : 218–23. http://dx.doi.org/10.1016/j.jpowsour.2016.03.047.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Kumar, Ajit, Arnab Ghosh, Arpita Ghosh, Aakash Ahuja, Abhinanda Sengupta, Maria Forsyth, Douglas R. MacFarlane et Sagar Mitra. « Sub-zero and room-temperature sodium–sulfur battery cell operations : A rational current collector, catalyst and sulphur-host design and study ». Energy Storage Materials 42 (novembre 2021) : 608–17. http://dx.doi.org/10.1016/j.ensm.2021.08.014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Mostert, Clemens, Berit Ostrander, Stefan Bringezu et Tanja Kneiske. « Comparing Electrical Energy Storage Technologies Regarding Their Material and Carbon Footprint ». Energies 11, no 12 (3 décembre 2018) : 3386. http://dx.doi.org/10.3390/en11123386.

Texte intégral
Résumé :
The need for electrical energy storage technologies (EEST) in a future energy system, based on volatile renewable energy sources is widely accepted. The still open question is which technology should be used, in particular in such applications where the implementation of different storage technologies would be possible. In this study, eight different EEST were analysed. The comparative life cycle assessment focused on the storage of electrical excess energy from a renewable energy power plant. The considered EEST were lead-acid, lithium-ion, sodium-sulphur, vanadium redox flow and stationary second-life batteries. In addition, two power-to-gas plants storing synthetic natural gas and hydrogen in the gas grid and a new underwater compressed air energy storage were analysed. The material footprint was determined by calculating the raw material input RMI and the total material requirement TMR and the carbon footprint by calculating the global warming impact GWI. All indicators were normalised per energy fed-out based on a unified energy fed-in. The results show that the second-life battery has the lowest greenhouse gas (GHG) emissions and material use, followed by the lithium-ion battery and the underwater compressed air energy storage. Therefore, these three technologies are preferred options compared to the remaining five technologies with respect to the underlying assumptions of the study. The production phase accounts for the highest share of GHG emissions and material use for nearly all EEST. The results of a sensitivity analysis show that lifetime and storage capacity have a comparable high influence on the footprints. The GHG emissions and the material use of the power-to-gas technologies, the vanadium redox flow battery as well as the underwater compressed air energy storage decline strongly with increased storage capacity.
Styles APA, Harvard, Vancouver, ISO, etc.
10

« Design and construction of a car automated by chemical processes ». ARPN Journal of Engineering and Applied Sciences, 30 avril 2023, 588–98. http://dx.doi.org/10.59018/032383.

Texte intégral
Résumé :
The need for affordable and efficient alternative energy sources is a defining issue of the twenty-first century that is receiving growing attention from both the scientific community and the public. While hydrocarbons have driven a majority of the world’s energy consumption for over a century, such sources are both unsustainable and environmentally detrimental. Hence, this research has been carried out to focus on the use of chemical processes to control a vehicle known as MODEL C, which was developed and modelled using a 3D computer graphics software called BLENDER, without the use of any form of internal combustion engine fuel in order to eradicate any form of hazardous emission. MODEL C is a chemical engineering car that is powered by chemical reactions. The car design is composed of separate processes for starting and stopping. The energy to move the car was taken from the sealed lead acid battery which consisted of two plates, viz. lead peroxide for the positive and sponge lead for the negative of which both plates were immersed in an electrolyte (sulphuric acid) for the conversion of chemical energy into electrical power. An iodine clock reaction was used in conjunction with a light dependent resistor (LDR) and a circuit board to stop the car after the reaction was going to completion. In this case, the iodine and the potassium iodide formed a complex with the starch solution that turned it black after a certain amount of time. This was based on the concentration of sodium thiosulphate that allowed the manipulation of how far the vehicle could travel at constant velocity.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Sodium Sulphur Battery"

1

Gonsalves, Valerie Clare. « Studies on the sodium-sulphur battery ». Thesis, University of Southampton, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236343.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Sodium Sulphur Battery"

1

Sudworth, J. L. The sodium sulfur battery. London : Chapman & Hall, 1985.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Sudworth, J. L. The sodium sulfur battery. London : Chapman & Hall, 1985.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Sudworth, J., et A. R. Tiley. Sodium Sulphur Battery. Springer, 1985.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Sodium Sulphur Battery"

1

Peters, Ebikienmo E., Peter J. Heggs et Darron W. Dixon-Hardy. « Thermal Analysis of a 10 Ah Sodium Sulphur Battery (NaS) Cell ». Dans Advances in Heat Transfer and Thermal Engineering, 823–26. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4765-6_139.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Crompton, TR. « Sodium-sulphur batteries ». Dans Battery Reference Book, 1–3. Elsevier, 2000. http://dx.doi.org/10.1016/b978-075064625-3/50063-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Crompton, TR. « Sodium-sulphur secondary batteries ». Dans Battery Reference Book, 1–3. Elsevier, 2000. http://dx.doi.org/10.1016/b978-075064625-3/50016-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Crompton, TR. « Sodium-sulphur secondary batteries ». Dans Battery Reference Book, 1–5. Elsevier, 2000. http://dx.doi.org/10.1016/b978-075064625-3/50030-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Schmiegel, Armin U. « Electrochemical storage systems ». Dans Energy Storage Systems, 248–372. Oxford University PressOxford, 2023. http://dx.doi.org/10.1093/oso/9780192858009.003.0008.

Texte intégral
Résumé :
Abstract This chapter describes electrochemical storage devices. The chapter starts with an introduction of the general characteristics and requirements of electrochemical storage: the open circuit voltage, which depends on the state of charge; the two ageing effects, calendaric ageing and cycle life; and the use of balancing systems to compensate for these effects. Then the four most common electrochemical technologies are described: the lead acid battery, the lithium ion battery, the sodium sulphur battery and the redox flow battery. The primary and secondary reactions are described for each cell chemistry, alongside the ageing effects that occur and the measures that can be taken to reduce them. The discharging behaviour, which is very important for a cell’s operation, is also given for each cell chemistry. The system components and requirements of each electrochemistry are detailed, and each electrochemistry is then used in an application example.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie