Articles de revues sur le sujet « Sodium-ion batterie »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Sodium-ion batterie ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
M Nishtha Singh, M. "An Investigation into Sodium-Metal Battery as an Alternative to Lithium-Ion Batteries." International Journal of Science and Research (IJSR) 10, no. 1 (2021): 110–15. https://doi.org/10.21275/sr21102173054.
Texte intégralNiu, Jiansu. "The Analysis of the Sodium-ion Battery and its Development." Applied and Computational Engineering 123, no. 1 (2025): 100–105. https://doi.org/10.54254/2755-2721/2025.19580.
Texte intégralLi, Chengyang. "Research of Cathode Materials for Sodium-Ion Batteries." Highlights in Science, Engineering and Technology 116 (November 7, 2024): 283–89. http://dx.doi.org/10.54097/jpaw4474.
Texte intégralChou, Shulei. "Challenges and Applications of Flexible Sodium Ion Batteries." Materials Lab 1 (2022): 1–24. http://dx.doi.org/10.54227/mlab.20210001.
Texte intégralLi, Yan. "Review of sodium-ion battery research." Advances in Engineering Innovation 16, no. 3 (2025): 31–37. https://doi.org/10.54254/2977-3903/2025.21919.
Texte intégralWu, Mingrui. "Research Status and Development Direction of Anode Materials for Sodium-ion Batteries." Academic Journal of Science and Technology 12, no. 2 (2024): 199–201. http://dx.doi.org/10.54097/gbds7c14.
Texte intégralHu, Chunxi. "Nanotechnology based on anode and cathode materials of sodium-ion battery." Applied and Computational Engineering 26, no. 1 (2023): 164–71. http://dx.doi.org/10.54254/2755-2721/26/20230824.
Texte intégralZhao, Qinglan, Andrew Whittaker, and X. Zhao. "Polymer Electrode Materials for Sodium-ion Batteries." Materials 11, no. 12 (2018): 2567. http://dx.doi.org/10.3390/ma11122567.
Texte intégralGuo, Hongqiang. "Progress Of Low-Temperature Carbonization of Cellulose as Anode Material for Sodium-Ion Batteries." Highlights in Science, Engineering and Technology 96 (May 5, 2024): 227–34. http://dx.doi.org/10.54097/8sr0ea06.
Texte intégralRojo, Teofilo, Yong-Sheng Hu, Maria Forsyth, and Xiaolin Li. "Sodium-Ion Batteries." Advanced Energy Materials 8, no. 17 (2018): 1800880. http://dx.doi.org/10.1002/aenm.201800880.
Texte intégralSlater, Michael D., Donghan Kim, Eungje Lee, and Christopher S. Johnson. "Sodium-Ion Batteries." Advanced Functional Materials 23, no. 8 (2012): 947–58. http://dx.doi.org/10.1002/adfm.201200691.
Texte intégralWang, Shuai, Wenhua Zhang, Wang Peng, et al. "Research Progress on Modification of Cathode Materials for Polyanionic Sodium-Ion Batteries." Highlights in Science, Engineering and Technology 117 (September 27, 2024): 79–84. http://dx.doi.org/10.54097/y0d19e09.
Texte intégralLi, Zihui. "The Progress in Synthesis of Efficient Carbon-Based Anode Materials for Sodium Ion Batteries." Applied and Computational Engineering 149, no. 1 (2025): 178–87. https://doi.org/10.54254/2755-2721/2025.kl22618.
Texte intégralBhutia, Pempa Tshering, Sylvie Grugeon, Asmae El Mejdoubi, Stéphane Laruelle, and Guy Marlair. "Safety Aspects of Sodium-Ion Batteries: Prospective Analysis from First Generation Towards More Advanced Systems." Batteries 10, no. 10 (2024): 370. http://dx.doi.org/10.3390/batteries10100370.
Texte intégralEl Moctar, Ismaila, Qiao Ni, Ying Bai, Feng Wu, and Chuan Wu. "Hard carbon anode materials for sodium-ion batteries." Functional Materials Letters 11, no. 06 (2018): 1830003. http://dx.doi.org/10.1142/s1793604718300037.
Texte intégralCao, Guozhong, Hui (Claire) Xiong, Christopher S. Johnson, and Zaiping Guo. "Editorial – Sodium ion batteries, sodium batteries and sodium supercapacitors." Nano Energy 138 (June 2025): 110894. https://doi.org/10.1016/j.nanoen.2025.110894.
Texte intégralLi, Jinzhong, Yuguang Xie, Bin Xu, Qinghua Gui, and Lei Mao. "Comparative study of thermal runaway characteristics between sodium-ion battery and Li-ion battery under heat abuse." Journal of Physics: Conference Series 2914, no. 1 (2024): 012001. https://doi.org/10.1088/1742-6596/2914/1/012001.
Texte intégralZhang, Miao, Liuzhang Ouyang, Min Zhu, Fang Fang, Jiangwen Liu, and Zongwen Liu. "A phosphorus and carbon composite containing nanocrystalline Sb as a stable and high-capacity anode for sodium ion batteries." Journal of Materials Chemistry A 8, no. 1 (2020): 443–52. http://dx.doi.org/10.1039/c9ta07508a.
Texte intégralTan, Suchong, Han Yang, Zhen Zhang, et al. "The Progress of Hard Carbon as an Anode Material in Sodium-Ion Batteries." Molecules 28, no. 7 (2023): 3134. http://dx.doi.org/10.3390/molecules28073134.
Texte intégralZaidi, S. Z. J., M. Raza, S. Hassan, C. Harito, and F. C. Walsh. "A DFT Study of Heteroatom Doped-Pyrazine as an Anode in Sodium ion Batteries." Journal of New Materials for Electrochemical Systems 24, no. 1 (2021): 1–8. http://dx.doi.org/10.14447/jnmes.v24i1.a01.
Texte intégralKhusyaeri, Hafid, Dewi Pratiwi, Haris Ade Kurniawan, Anisa Raditya Nurohmah, Cornelius Satria Yudha, and Agus Purwanto. "Synthesis of High-Performance Hard Carbon from Waste Coffee Ground as Sodium Ion Battery Anode Material: A Review." Materials Science Forum 1044 (August 27, 2021): 25–39. http://dx.doi.org/10.4028/www.scientific.net/msf.1044.25.
Texte intégralAparicio, Pablo A., and Nora H. de Leeuw. "Electronic structure, ion diffusion and cation doping in the Na4VO(PO4)2 compound as a cathode material for Na-ion batteries." Physical Chemistry Chemical Physics 22, no. 12 (2020): 6653–59. http://dx.doi.org/10.1039/c9cp05559b.
Texte intégralYang, Qingyun, Yanjin Liu, Hong Ou, et al. "Fe-Based metal–organic frameworks as functional materials for battery applications." Inorganic Chemistry Frontiers 9, no. 5 (2022): 827–44. http://dx.doi.org/10.1039/d1qi01396c.
Texte intégralHuang, Hanjiao, Zongyou Li, Yanjun Gao, et al. "High Electrochemical Performance of Sodium-Ion Gel Polymer Electrolytes Achieved Through a Sandwich Design Strategy Combining Soft Polymers with a Rigid MOF." Energies 18, no. 5 (2025): 1160. https://doi.org/10.3390/en18051160.
Texte intégralGupta, Aman, Ditipriya Bose, Sandeep Tiwari, Vikrant Sharma, and Jai Prakash. "Techno–economic and environmental impact analysis of electric two-wheeler batteries in India." Clean Energy 8, no. 3 (2024): 147–56. http://dx.doi.org/10.1093/ce/zkad094.
Texte intégralKulova, Tatiana L., and Alexander M. Skundin. "Nafion-based solid polymer electrolytes for lithium-ion and sodium-ion batteries." Electrochemical Energetics 24, no. 3 (2024): 117–32. http://dx.doi.org/10.18500/1608-4039-2024-24-3-117-132.
Texte intégralMu, Xin, Xiangyu Yin, Meili Qi, Abdulla Yusuf, and Shibin Liu. "Flexible Electrospun Polyacrylonitrile/ZnO Nanofiber Membrane as Separator for Sodium-Ion Batteries with Cycle Stability." Coatings 15, no. 2 (2025): 141. https://doi.org/10.3390/coatings15020141.
Texte intégralLin, Ziyang, and Zhuofan Wang. "Application of Solid Polymer Electrolytes for Solid-State Sodium Batteries." MATEC Web of Conferences 386 (2023): 03019. http://dx.doi.org/10.1051/matecconf/202338603019.
Texte intégralLi, Ruofan, Xiaoli Yan, and Long Chen. "2D Conductive Metal–Organic Frameworks for Electrochemical Energy Application." Organic Materials 06, no. 02 (2024): 45–65. http://dx.doi.org/10.1055/s-0044-1786500.
Texte intégralPeng, Bo, Zhihao Sun, Shuhong Jiao, et al. "Facile self-templated synthesis of P2-type Na0.7CoO2 microsheets as a long-term cathode for high-energy sodium-ion batteries." Journal of Materials Chemistry A 7, no. 23 (2019): 13922–27. http://dx.doi.org/10.1039/c9ta02966d.
Texte intégralDong, Xu, Dominik Steinle, and Dominic Bresser. "Single-Ion Conducting Polymer Electrolytes for Sodium Batteries." ECS Meeting Abstracts MA2023-01, no. 5 (2023): 954. http://dx.doi.org/10.1149/ma2023-015954mtgabs.
Texte intégralWang, Wanlin, Weijie Li, Shun Wang, Zongcheng Miao, Hua Kun Liu, and Shulei Chou. "Structural design of anode materials for sodium-ion batteries." Journal of Materials Chemistry A 6, no. 15 (2018): 6183–205. http://dx.doi.org/10.1039/c7ta10823k.
Texte intégralShrivastava, Hritvik. "Viable Alternatives to Lithium-Based Batteries." Scholars Journal of Engineering and Technology 11, no. 05 (2023): 111–14. http://dx.doi.org/10.36347/sjet.2023.v11i05.001.
Texte intégralLibich, Jiří, Josef Máca, Andrey Chekannikov, et al. "Sodium Titanate for Sodium-Ion Batteries." Surface Engineering and Applied Electrochemistry 55, no. 1 (2019): 109–13. http://dx.doi.org/10.3103/s1068375519010125.
Texte intégralRuan, Boyang, Jun Wang, Dongqi Shi, et al. "A phosphorus/N-doped carbon nanofiber composite as an anode material for sodium-ion batteries." Journal of Materials Chemistry A 3, no. 37 (2015): 19011–17. http://dx.doi.org/10.1039/c5ta04366b.
Texte intégralSlater, Michael D., Donghan Kim, Eungje Lee, and Christopher S. Johnson. "Correction: Sodium-Ion Batteries." Advanced Functional Materials 23, no. 26 (2013): 3255. http://dx.doi.org/10.1002/adfm.201301540.
Texte intégralZhang, Shuaiguo, Guoyou Yin, Haipeng Zhao, Jie Mi, Jie Sun, and Liyun Dang. "Facile synthesis of carbon nanofiber confined FeS2/Fe2O3 heterostructures as superior anode materials for sodium-ion batteries." Journal of Materials Chemistry C 9, no. 8 (2021): 2933–43. http://dx.doi.org/10.1039/d0tc05519k.
Texte intégralChong, Huang. "Current Research Directions of Sodium-Ion Battery Materials." Journal of Engineering System 2, no. 3 (2024): 89–94. https://doi.org/10.62517/jes.202402313.
Texte intégralSu, Dan, Hao Zhang, Jiawei Zhang, and Yingna Zhao. "Design and Synthesis Strategy of MXenes-Based Anode Materials for Sodium-Ion Batteries and Progress of First-Principles Research." Molecules 28, no. 17 (2023): 6292. http://dx.doi.org/10.3390/molecules28176292.
Texte intégralBelharouak, Ilias, Rachid Essehli, Marm Dixit, Mengya Li, and Ruhul Amin. "(Invited) Research and Development Trends in Sodium-Ion Batteries." ECS Meeting Abstracts MA2024-01, no. 1 (2024): 30. http://dx.doi.org/10.1149/ma2024-01130mtgabs.
Texte intégralLiu, Guangtai, Ruocheng Liu, and Xiaoyu Qiu. "Development and Prospect of Electrode Materials for Sodium Ion Batteries." E3S Web of Conferences 553 (2024): 01002. http://dx.doi.org/10.1051/e3sconf/202455301002.
Texte intégralShahazi, Razu, Mashrufa Akther, Joy Malo, et al. "Recent advances in Sodium-ion battery research: Materials, performance, and commercialization prospects." Materials Technology Reports 3, no. 1 (2025): 2951. https://doi.org/10.59400/mtr2951.
Texte intégralJiang, Zhengxu, Zhanghengbin Ni, and Jiaxiong Shen. "The Research About Anode Material for Sodium-Ion Batteries." Highlights in Science, Engineering and Technology 116 (November 7, 2024): 296–301. http://dx.doi.org/10.54097/45106e50.
Texte intégralYang, Di, Yuntong Lv, Ming Ji, and Fangchu Zhao. "Evaluation and economic analysis of battery energy storage in smart grids with wind–photovoltaic." International Journal of Low-Carbon Technologies 19 (2024): 18–23. http://dx.doi.org/10.1093/ijlct/ctad142.
Texte intégralChe, Haiying, Suli Chen, Yingying Xie, et al. "Electrolyte design strategies and research progress for room-temperature sodium-ion batteries." Energy & Environmental Science 10, no. 5 (2017): 1075–101. http://dx.doi.org/10.1039/c7ee00524e.
Texte intégralWang, Jie, Ping Nie, Bing Ding, et al. "Biomass derived carbon for energy storage devices." Journal of Materials Chemistry A 5, no. 6 (2017): 2411–28. http://dx.doi.org/10.1039/c6ta08742f.
Texte intégralZhang, Kun, Guohua Gao, Wei Sun, Xing Liang, Yindan Liu, and Guangming Wu. "Large interlayer spacing vanadium oxide nanotubes as cathodes for high performance sodium ion batteries." RSC Advances 8, no. 39 (2018): 22053–61. http://dx.doi.org/10.1039/c8ra03514h.
Texte intégralBALARAJU, M., B. V. SHIVA REDDY, T. A. BABU, K. C. BABU NAIDU, and N. V. KRISHNA PRASAD. "ADVANCED ORGANIC ELECTRODE MATERIALS FOR RECHARGEABLE SODIUM-ION BATTERIES." Journal of Ovonic Research 16, no. 6 (2020): 387–96. http://dx.doi.org/10.15251/jor.2020.166.387.
Texte intégralWikner, Evelina, and Ritambhara Gond. "Simulating Hard Carbon for Sodium-Ion Batteries with the DFN Model." ECS Meeting Abstracts MA2023-02, no. 4 (2023): 797. http://dx.doi.org/10.1149/ma2023-024797mtgabs.
Texte intégralChen, Wenshuai, Haipeng Yu, Sang-Young Lee, Tong Wei, Jian Li, and Zhuangjun Fan. "Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage." Chemical Society Reviews 47, no. 8 (2018): 2837–72. http://dx.doi.org/10.1039/c7cs00790f.
Texte intégral