Littérature scientifique sur le sujet « Sodium-ion batterie »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Sodium-ion batterie ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Sodium-ion batterie"
Chou, Shulei. « Challenges and Applications of Flexible Sodium Ion Batteries ». Materials Lab 1 (2022) : 1–24. http://dx.doi.org/10.54227/mlab.20210001.
Texte intégralLi, Fang, Zengxi Wei, Arumugam Manthiram, Yuezhan Feng, Jianmin Ma et Liqiang Mai. « Sodium-based batteries : from critical materials to battery systems ». Journal of Materials Chemistry A 7, no 16 (2019) : 9406–31. http://dx.doi.org/10.1039/c8ta11999f.
Texte intégralHu, Chunxi. « Nanotechnology based on anode and cathode materials of sodium-ion battery ». Applied and Computational Engineering 26, no 1 (7 novembre 2023) : 164–71. http://dx.doi.org/10.54254/2755-2721/26/20230824.
Texte intégralZhao, Qinglan, Andrew Whittaker et X. Zhao. « Polymer Electrode Materials for Sodium-ion Batteries ». Materials 11, no 12 (17 décembre 2018) : 2567. http://dx.doi.org/10.3390/ma11122567.
Texte intégralRojo, Teofilo, Yong-Sheng Hu, Maria Forsyth et Xiaolin Li. « Sodium-Ion Batteries ». Advanced Energy Materials 8, no 17 (juin 2018) : 1800880. http://dx.doi.org/10.1002/aenm.201800880.
Texte intégralSlater, Michael D., Donghan Kim, Eungje Lee et Christopher S. Johnson. « Sodium-Ion Batteries ». Advanced Functional Materials 23, no 8 (21 mai 2012) : 947–58. http://dx.doi.org/10.1002/adfm.201200691.
Texte intégralEl Moctar, Ismaila, Qiao Ni, Ying Bai, Feng Wu et Chuan Wu. « Hard carbon anode materials for sodium-ion batteries ». Functional Materials Letters 11, no 06 (décembre 2018) : 1830003. http://dx.doi.org/10.1142/s1793604718300037.
Texte intégralTan, Suchong, Han Yang, Zhen Zhang, Xiangyu Xu, Yuanyuan Xu, Jian Zhou, Xinchi Zhou et al. « The Progress of Hard Carbon as an Anode Material in Sodium-Ion Batteries ». Molecules 28, no 7 (31 mars 2023) : 3134. http://dx.doi.org/10.3390/molecules28073134.
Texte intégralZaidi, S. Z. J., M. Raza, S. Hassan, C. Harito et F. C. Walsh. « A DFT Study of Heteroatom Doped-Pyrazine as an Anode in Sodium ion Batteries ». Journal of New Materials for Electrochemical Systems 24, no 1 (31 mars 2021) : 1–8. http://dx.doi.org/10.14447/jnmes.v24i1.a01.
Texte intégralZhang, Miao, Liuzhang Ouyang, Min Zhu, Fang Fang, Jiangwen Liu et Zongwen Liu. « A phosphorus and carbon composite containing nanocrystalline Sb as a stable and high-capacity anode for sodium ion batteries ». Journal of Materials Chemistry A 8, no 1 (2020) : 443–52. http://dx.doi.org/10.1039/c9ta07508a.
Texte intégralThèses sur le sujet "Sodium-ion batterie"
Farina, Luca. « Sodium Ion battery for energy intensive application ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.
Trouver le texte intégralMichelet, Cédric. « Recherche exploratoire de nouveaux matériaux d'électrode négative pour batterie sodium-ion ». Nantes, 2014. http://archive.bu.univ-nantes.fr/pollux/show.action?id=d046bc78-38d0-480a-9562-5ec81ce5bca2.
Texte intégralLithium-ion batteries have become essential in recent years. Due to both the difficult access and the cost of the alkaline element, a new field of research concerning sodium-ion batteries has recently emerged. Among the major challenges inherent to this new battery type, the aim of the work developed during this PhD thesis is to explore new negative electrode materials. Two material types have been studied: metallic tin, and the chalcogenides AV4S8 (A=Ga, Ge). Tin was obtained with dense or dendritic form by electrolchemical deposition. In sodium-ion battery, this material presents interesting properties since during the first discharge, a specific capacity of 1 Ah/g at a working potential below 0. 6 V relative to Na+/Na0 can be obtained. However, a volume expansion of 350% during the sodiation causes a significant capacity loss, which is under 100 mAh/g after around ten cycles. The AV4S8 chalcogenides (A = Ga, Ge) have been the main subject of this PhD thesis. The reaction mechanism with sodium, close to a conversion mechanism, has been studied by in situ X -ray diffraction, X-ray absorption spectroscopy and electron energy loss spectroscopy in order to observe the oxidation number evolution of the elements involved in the reaction with sodium. These materials exhibit remarkable electrochemical properties, with an initial specific capacity of more than 800 mAh/g at low potential with excellent capacity retention upon cycling
FIORE, MICHELE. « Nanostructured Materials for secondary alkaline ion batteries ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2020. http://hdl.handle.net/10281/262348.
Texte intégralThanks to their superior energy and power density, lithium-ion batteries (LIBs) currently dominate the market of power sources for portable devices. The economy of scale and engineering optimizations have driven the cost of LIBs below the 200 $/KWh at the pack level. This catalyzed the market penetration of electric vehicles and made them a viable candidate for stationary energy storage. However, the rapid market expansion of LIBs raised growing concerns about the future sustainability of this technology. In particular, lithium and cobalt supplies are considered vulnerable, primarily because of the geopolitical implications of their high concentration in only a few countries. In the search for the next generation secondary batteries, known as post-lithium ion batteries, candidates that do not use rare metals have been extensively investigated in the last 10 years. Sodium-ion batteries (SIBs) attracted considerable attention thanks to the high abundance of the precursors and wide distribution of sodium on the earth's crust. As a matter of fact, as it will be pointed out during the dissertation, it is not straightforward to allocate the reduction of the price of the alkaline ion precursors to the reduction of the battery price. However, the difficulties in the supply of raw materials for LIBs, such as shortages in lithium carbonates and cobalt ores, could make lithium and cobalt-free systems, such as SIBs, attractive and cost-competitive alternatives. Compared to other, more exotic chemistries including Ca2+, Mg2+ and Al3+ batteries, SIBs are nowadays considered one as the most promising alternative to LIBs. Despite the extensive research, anode materials for SIBs still represent a serious problem for the commercial exploitation of this technology. Accordingly, the doctoral research on SIBs has been focused on anode materials. In particular, the attention was directed towards conversion oxides. Compared to intercalation materials, conversion-based ones have higher capacities but are more challenging to deal with because of the high volume variation during cycling. This challenge was addressed by material's nanostructuring and morphology control which proved to significantly reduce the pulverization of the active material. Different anode candidates have been studied during the doctoral work. Cobalt oxide nanofibers have been here explored as a first prototype for conversion materials in sodium ion batteries. The sodiation-desodiation mechanism is analyzed by means of ex situ XRD which led to a deeper understanding of the conversion reaction in SIBs. A cost-effective and environmentally benign alternative based on iron oxide is then considered. The limits of iron (III) oxide are tackled by combining the advantages of the nanostructuring and the doping with an aliovalent element. Si-doped Fe2O3 nanofibers are synthesized via an easy scalable process based on the electrospinning method. It is found that Si-addition improves the transport properties as well as induces changes in the crystal structure and morphology. In the final section of the thesis, potassium-ion batteries (KIBs) are examined as a promising alternative to sodium ion batteries. KIBs exhibit all the benefits of SIBs, with the additional advantage that graphite, can reversibly accommodate K-ions. On the positive side, Potassium manganese hexacyanoferrate (KMnHCF), has been reported to provide high operating voltages and satisfactory capacity retention. The proposed research activity presents the use of an ionic liquid based electrolyte compatible with the most promising anode and cathode for KIBs. In addition, a high-throughput optimization of the KMnHCF synthesis is reported. The selected candidates are then fully characterized, and their electrochemical properties investigated. The optimized material exhibits the highest ever reported coulombic efficiency for the KMHCF. This find, opens up the possibility of highly efficient, high energy potassium ion batteries.
Huynh, Le Thanh Nguyen. « Les accumulateurs au sodium et sodium-ion, une nouvelle génération d’accumulateurs électrochimiques : synthèse et électrochimie de nouveaux matériaux d’électrodes performants ». Thesis, Paris Est, 2016. http://www.theses.fr/2016PESC1123/document.
Texte intégralSince commercialization, Li-ion batteries have been playing an important role as power source for portable electronic devices because of high gravimetric, volumetric capacity and high voltage. Furthermore, the lithium-ion technology is best suited for large-scale application, such as electric vehicles, which poses a resource problem and ultimately cost. On the contrary, sodium is a most abundant element, inexpensive and similarly properties as lithium. In order to solve the problem of lithium raw resource, sodium is proposed as a solution for next generation power source storage. This work investigates the potential derivative vanadium pentoxide materials as sodium intercalation compounds: the V2O5 reference compound, the promizing potassium bronze K0,5V2O5, ε'-V2O5, as well as a lamellar manganese oxide: the sol-gel birnessite and its doped cobalt form. The structure-electrochemistry relationships are clarified through a study combining electrochemical properties, X-ray diffraction and Raman spectroscopy of materials at different insertion rate, end of the reaction and after galvanostatic cycling. New phases are highlighted and specific capacities between 100 and 160 mAh / g in the field of 4V-1V potential can be obtained with sometimes remarkably stable as in the case of NaV2O5 and ε'-V2O5
Desai, Parth. « Achieving Na-ion Battery Advancements Through Decoding Degradation Pathways and Electrolyte Engineering ». Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS681.
Texte intégralThe growing dependence on lithium-ion batteries for energy storage necessitates the exploration of alternative chemistries due to the limited and geopolitically sensitive lithium resources. The sodium-ion battery, considered a sustainable complement with abundant sodium precursors, is swiftly progressing towards commercialization. Following a comparative analysis of critical parameters, the Na3V2(PO4)2F3(NVPF)|hard carbon(HC) chemistry was selected for NVPF material's structural durability, robust power performance, and air/water stability. This thesis comprehensively navigates this technology by investigating degradation mechanisms, improving performance in lab-scale coin cells, and seamlessly transferring findings to commercial 18650 cells. At first, NVPF material instabilities were examined, with elevated temperatures causing vanadium dissolution, leading to NVPF electrode degradation, electrolyte instability, and finally, contamination of HC electrode. Imide co-salts and uniform carbon coating mitigate vanadium dissolution yet fail to suppress undesired electrolyte reactions. Hence, meticulously designed Gen-3 electrolytes with additives enhance cells' cycle and calendar life at elevated temperatures without excessive gassing. A low-viscosity methyl acetate cosolvent was infused in the electrolyte to enhance power and low-temperature performance further. The optimized electrolyte demonstrates remarkable cycle life, rate performance, extensive temperature tolerance, and safety, making it suitable for evaluation in commercial scenarios. The thesis concludes with assessing the 0V stability of sodium-ion batteries, comprehending SEI decomposition mechanisms, and proposing remedies. Lastly, future directions are outlined to propel Na-ion battery development and challenge LiFePO4-based Li-ion technology
GENTILE, ANTONIO. « MXene-based materials for alkaline-ion batteries : synthesis, properties, applications ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/382748.
Texte intégralThe ever-increasing production of portable devices and electric cars asks to the market to produce efficient devices that can store electrical energy. For these types of technologies, where device miniaturization is essential, lithium-ion batteries (LIBs) have become leaders as energy storage systems. The research on the lithium-ion batteries is focused to obtain more performing devices with high gravimetric and volumetric capacities of the electrode materials. In addition to the technological aspect, related to the optimization of materials, there is the supply chain of active components of the battery to consider, starting from lithium. At the moment, the problem is tackled by studying batteries with other alkaline metal ions, i.e. Na+ and K+. However, there are no standardized active materials for these devices, especially on sodium-ion batteries (SIBs), started only a few years later than that of LIBs; therefore, today these technologies are intended to support the LIBs in order to satisfy the enormous market demand of the batteries for the future vehicles. The goal of this work was to develop MXene-based anode materials to obtain efficient anodes for sodium and lithium-ion batteries. MXenes are a family of inorganic transition metal carbides, nitrides, and carbonitrides with a 2D structure that would seem promising for the intercalation of different ions due to a great flexibility and adaptability towards several intercalating ions. The ion intercalations occur by a pseudocapacitive mechanism whereby the materials have limited capacity, but they have great electrochemical stability over thousands of cycles and coulombic efficiencies near to 100%. The production of this material was done by HF etching of a precursor called MAX phase. This is the easiest and fastest method to obtain the material in laboratory scale, but it has many criticalities when the process has to be scale-up to industrial scale. A large part of this work was spent studying the synthetic technique to obtain MXenes for SIB by reducing or replacing HF in the chemical synthesis. The materials have been characterized by various techniques such as X-ray diffractometry, electron microscopy, X-ray photoelectron spectroscopy, etc., and by electrochemical tests, such as cyclic voltammetry and galvanostatic cycling. Thanks to the 2D structure, a common use of MXene in the literature is in nanocomposite syntheses for SIBs and LIBs, in order to produce high-capacity materials, as required in the battery market. Therefore, two nanocomposites based on antimony-MXene and tin oxide-MXene tested for SIB and for LIB respectively, were synthesized. Antimony and tin oxide are two materials with high theoretical capacity when used as anodes in batteries, but at the same time, they are extremely fragile and tend to pulverize during charging and discharging processes. MXene is used as a buffer to limit or prevent cracking and separation of alloys from the electrode surface.
Difi, Siham. « Phosphates de type NASICON comme matériaux d'électrode pour batteries sodium-ion à haute densité d'énergie ». Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT212/document.
Texte intégralThis thesis is devoted to the study of phosphate based composites with NASICON type structure, that are used as electrode materials for sodium-ion batteries: Na1+xFexTi2-x (PO4)3/C et Na1+xFexSn2-x(PO4)3/C with 0 ≤ x ≤ 1. These composites were synthesized by solid state route followed by a pyrolysis reaction with sucrose. They consist of particles having high porosity and coated with carbon giving to the electrode good ionic and electronic conductivity. The reaction mechanisms occurring during charge-discharge cycles were analyzed in operando mode, by X-ray diffraction, 57Fe and 119Sn Mössbauer spectroscopies and X-ray absorption spectroscopy. For the iron-titanium composites, the mechanisms are essentially based on the diffusion of Na+ in the channels of the crystalline phases with changes of transition metal oxidation state. For iron-tin composites, the mechanisms are more complex including insertion, conversion leading to the destruction of the NASICON phases and then reversible formation of NaxSn alloys. The best electrochemical performances were obtained for Na1,5Fe0,5Ti1,5(PO4)3/C with an operating potential of 2.2 V vs. Na+/Na0. Although these two types of materials can be used at lower potential, the performances must be improved to consider their application as the negative electrode
Beuvier, Thomas. « Des nanotitanates de sodium aux dioxydes de titane : électrode négative à base de TiO2(B) nanométrique pour accumulateur lithium-ion ». Phd thesis, Université de Nantes, 2009. http://tel.archives-ouvertes.fr/tel-00454406.
Texte intégralFang, Runhe. « Effect of composition and morphology on the electrochemical performance of Na3V2(PO4)2F3/Na3V2(PO4)2FO2 ». Electronic Thesis or Diss., Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS001.pdf.
Texte intégralIn the sodium ion battery system, the positive electrode plays an important role. Although weaker than layered oxide materials in some aspects, such as electrical conductivity, polyanionic materials have become one of the two main categories of positive electrode materials with their excellent electrochemical stability and high operating voltage. Na3V2(PO4)2F3-yOy (0≤y≤2) family is especially the most outstanding in terms of electrochemical performance. However, the electrochemical performance is limited because of the rather poor electronic conductivity induced by the isolated vanadium bi-octahedra units within the structure. There have been many studies to improve the electrochemical properties of Na3V2(PO4)2F3-yOy by means of carbon coating and special morphology etc. However, unconscious improvements in multiple aspects can lead to neglected further understanding of one specific changed element, due to the ultimately electrochemical performance enhancements. Therefore, this PhD thesis is consistent of well controlling all the varieties and comparing the morphology and composition impact of Na3V2(PO4)2F3-yOy without any carbon coating in order to improve its final electrochemical performance through a more fundamental perspective. Thus, this work is composed of the next parts under the form of deposited articles. In the first chapter, which is a state of the art, the background of the development of batteries and especially the sodium ion batteries will be briefly introduced. The common materials for each different part of the sodium ion battery will be further described. Next, attention will be focused on Na3V2(PO4)2F3-yOy and show the current status of its research in detail in terms of crystal structure and synthesis, etc. Then in the second chapter, a series of slightly tuned synthesis with the same precursors were carried out to obtain the Na3V2(PO4)2F3-yOy particles with different morphologies and similar composition and then investigate the effect of morphologies on energy storage performance. In the subsequent chapter III, from one most performant morphology found in the second chapter, the effect of the oxygen content on transport properties and electrochemical performance within Na3V2(PO4)2F3-yOy (different O2- substitution percent) were investigated, while keeping the morphologies unchanged. In the next chapter IV, the Na3V2(PO4)2FO2 found in chapter III with those synthesized through different methods with the same particle composition but totally different morphologies and surface functionalization were compared to further understand the morphology and surface coating impact on the energy storage capacity. At last, deep eutectic solvent, one kind of ionic liquid, was used as a new synthesis medium to reach a totally new and special morphology does not reported before and a new approach to make a carbon coating. In general, the different morphologies and compositions of Na3V2(PO4)2F3-yOy are obtained separately by controlling and refining a series of synthesis methods. Their influences on the final electrochemistry of the material have also been investigated separately. These studies contribute to the understanding of this material from a fundamental point of view, thus facilitating further optimization
Adelhelm, Philipp. « From Lithium-Ion to Sodium-Ion Batteries ». Diffusion fundamentals 21 (2014) 5, S.1, 2014. https://ul.qucosa.de/id/qucosa%3A32397.
Texte intégralLivres sur le sujet "Sodium-ion batterie"
Gaddam, Rohit R., et George Zhao. Handbook of Sodium-Ion Batteries. New York : Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003308744.
Texte intégralChao, Dongliang. Graphene Network Scaffolded Flexible Electrodes—From Lithium to Sodium Ion Batteries. Singapore : Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3080-3.
Texte intégralZhang, Jun. Carbon-Based Electrodes for High-Performance Sodium-Ion Batteries and Their Interfacial Electrochemistry. Singapore : Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-7566-2.
Texte intégralSodium-Ion Batteries. Materials Research Forum LLC, 2020. http://dx.doi.org/10.21741/9781644900833.
Texte intégralXie, Man, Feng Wu et Yongxin Huang. Sodium-Ion Batteries. De Gruyter, 2022. http://dx.doi.org/10.1515/9783110749069.
Texte intégralJi, X. Sodium-Ion Batteries - Technologies AndApplications. Wiley & Sons, Limited, John, 2023.
Trouver le texte intégralTitirici, Maria-Magdalena, Philipp Adelhelm et Yong Sheng Hu. Sodium-Ion Batteries : Materials, Characterization, and Technology. Wiley & Sons, Incorporated, John, 2022.
Trouver le texte intégralXie, Man, Yongxin Huang, Feng Wu et Publishing House Publishing House of Electronics Industry. Sodium-Ion Batteries : Advanced Technology and Applications. de Gruyter GmbH, Walter, 2022.
Trouver le texte intégralYu, Yang. Sodium-Ion Batteries : Energy Storage Materialsand Technologies. Wiley & Sons, Incorporated, John, 2022.
Trouver le texte intégralTitirici, Maria-Magdalena, Philipp Adelhelm et Yong Sheng Hu. Sodium-Ion Batteries : Materials, Characterization, and Technology. Wiley & Sons, Incorporated, John, 2022.
Trouver le texte intégralChapitres de livres sur le sujet "Sodium-ion batterie"
Ferraro, Marco, et Giovanni Tumminia. « Techno-economics Analysis on Sodium-Ion Batteries : Overview and Prospective ». Dans The Materials Research Society Series, 259–66. Cham : Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-48359-2_14.
Texte intégralAbraham, K. M. « Rechargeable Sodium and Sodium-Ion Batteries ». Dans Lithium Batteries, 349–67. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118615515.ch16.
Texte intégralLiu, Yumei, et Weibo Hua. « Sodium-Ion Batteries ». Dans Advanced Metal Ion Storage Technologies, 25–59. Boca Raton : CRC Press, 2023. http://dx.doi.org/10.1201/9781003208198-2.
Texte intégralZhang, Ye, Lie Wang, Yang Zhao et Huisheng Peng. « Flexible Aqueous Sodium-Ion Batteries ». Dans Flexible Batteries, 81–99. Boca Raton : CRC Press, 2022. http://dx.doi.org/10.1201/9781003273677-5.
Texte intégralRangom, Yverick, Timothy T. Duignan, Xin Fan et X. S. (George) Zhao. « Cycling Stability of Sodium-Ion Batteries in Analogy to Lithium-Ion Batteries ». Dans Handbook of Sodium-Ion Batteries, 389–466. New York : Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003308744-9.
Texte intégralGarg, Nisha, Venkatasailanathan Ramadesigan et Sankara Sarma V. Tatiparti. « Principles of Electrochemistry ». Dans Handbook of Sodium-Ion Batteries, 33–61. New York : Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003308744-2.
Texte intégralSoares, Davi Marcelo, Santanu Mukherjee et Gurpreet Singh. « Transition Metal Dichalcogenides as Active Anode Materials for Sodium-Ion Batteries ». Dans Handbook of Sodium-Ion Batteries, 293–321. New York : Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003308744-6.
Texte intégralJiang, Yinzhu, Yao Huang et Yuting Gao. « Prussian Blue Analogues as Cathode Materials for Sodium-Ion Bateries ». Dans Handbook of Sodium-Ion Batteries, 183–242. New York : Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003308744-4.
Texte intégralZhao, Qinglan, et Minhua Shao. « Polymer Electrodes for Sodium-Ion Batteries ». Dans Handbook of Sodium-Ion Batteries, 243–91. New York : Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003308744-5.
Texte intégralRamaprabhu, S., et Piriya V. S. Ajay. « Effect of Polymeric Binders on the Sodium-Ion Storage Performance of Positive and Negative Electrode Materials ». Dans Handbook of Sodium-Ion Batteries, 323–44. New York : Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003308744-7.
Texte intégralActes de conférences sur le sujet "Sodium-ion batterie"
Lagarde, Quentin, Serge Mazen, Bruno Beillard, Julien Leylavergne, Joel Andrieu, Jean-Pierre Cancès, Vahid Meghdadi, Michelle Lalande, Edson Martinod et Marie-Sandrine Denis. « Étude et conception de système de management pour batteries innovantes, Batterie Sodium (NA-ion) ». Dans Les journées de l'interdisciplinarité 2022. Limoges : Université de Limoges, 2022. http://dx.doi.org/10.25965/lji.581.
Texte intégralŠimek, Antonín. « Negative Electrode For Sodium-Ion Batteries ». Dans STUDENT EEICT 2021. Brno : Fakulta elektrotechniky a komunikacnich technologii VUT v Brne, 2021. http://dx.doi.org/10.13164/eeict.2021.77.
Texte intégral« Advancements in Electric Vehicle Battery Technology : A Systematic Review ». Dans International Conference on Cutting-Edge Developments in Engineering Technology and Science. ICCDETS, 2024. http://dx.doi.org/10.62919/mtuo5644.
Texte intégralWang, Mengnan, Chantal Glatthaara, Magdalena Titirici et Bernd M. Smarsly. « Lignin-derived Mesoporous Carbon for Sodium-Ion Batteries ». Dans MATSUS Spring 2024 Conference. València : FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2023. http://dx.doi.org/10.29363/nanoge.matsus.2024.365.
Texte intégralRaja, Arsalan Ahmad, Rana Abdul Shakoor et Ramazan Kahraman. « Electrochemical Analyses of Sodium based Mixed Pyrophosphate Cathodes for Rechargeable Sodium Ion Batteries ». Dans Qatar Foundation Annual Research Conference Proceedings. Hamad bin Khalifa University Press (HBKU Press), 2016. http://dx.doi.org/10.5339/qfarc.2016.eepp3291.
Texte intégralMoossa, Buzaina, Jeffin James Abraham, Ramazan Kahraman, Siham Al Qaradawi et Rana Abdul Shakoor. « Synthesis & ; Performance Evaluation of Hybrid Cathode Materials for Energy Storage ». Dans Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2021. http://dx.doi.org/10.29117/quarfe.2021.0045.
Texte intégralTian, Wenchao, Mengjuan Li, Jiahao Niu, Wenhua Li et Jing Shi. « The Research progress and comparisons between Lithium-ion battery and Sodium ion battery* ». Dans 2019 IEEE 19th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2019. http://dx.doi.org/10.1109/nano46743.2019.8993684.
Texte intégralAdelhelm, Philipp. « Inorganic Electrodes for Sodium-ion and Solid-state Batteries ». Dans Materials for Sustainable Development Conference (MAT-SUS). València : FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.nfm.2022.226.
Texte intégralGhiyami, S., et C. Mele. « Nanomaterials for Titanium-Based Anodes in Sodium-ion Batteries ». Dans 2023 IEEE Nanotechnology Materials and Devices Conference (NMDC). IEEE, 2023. http://dx.doi.org/10.1109/nmdc57951.2023.10343883.
Texte intégralNoer, Zikri, Siti Utari Rahayu, Hilda Ayu Marlina, Fauzi Handoko, Susanto Sigit Rahardi, Rifki Septawendar et Bambang Sunendar. « Electrochemical performance of sodium titanate nanorods for sodium-ion battery anode applications ». Dans 2ND INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION SCIENTIFIC DEVELOPMENT (ICAISD) 2021 : Innovating Scientific Learning for Deep Communication. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0106386.
Texte intégralRapports d'organisations sur le sujet "Sodium-ion batterie"
Dzwiniel, Trevor L., Krzysztof Z. Pupek et Gregory K. Krumdick. Scale-up of Metal Hexacyanoferrate Cathode Material for Sodium Ion Batteries. Office of Scientific and Technical Information (OSTI), octobre 2016. http://dx.doi.org/10.2172/1329386.
Texte intégralWiley, Ted, Jay Whitacre, Eric Weber, Michael Eshoo, James Noland, David Blackwood, Williams Campbell, Eric Sheen, Christopher Spears et Christopher Smith. Recovery Act - Demonstration of Sodium Ion Battery for Grid Level Applications. Office of Scientific and Technical Information (OSTI), août 2012. http://dx.doi.org/10.2172/1081309.
Texte intégralLiang, Xinghui, Rizki Ismoyojati et Yang-Kook Sun. A Novel Lithium Substitution Induced Tunnel/Spinel Heterostructured Cathode Material for Advanced Sodium-Ion Batteries. Peeref, juillet 2022. http://dx.doi.org/10.54985/peeref.2207p9041979.
Texte intégral