Littérature scientifique sur le sujet « SnS2 NANOFILLER »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « SnS2 NANOFILLER ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "SnS2 NANOFILLER"

1

Sai Prasanna, CM, et S. Austin Suthanthiraraj. « Improved zinc ion transportation in gel polymer electrolyte upon the addition of nano-sized SnO2 ». Polymers and Polymer Composites 28, no 1 (21 juillet 2019) : 54–65. http://dx.doi.org/10.1177/0967391119858558.

Texte intégral
Résumé :
Nanocomposite gel polymer electrolytes (NCGPEs) consisting of Zn(OTf)2 salt solution in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid (EMIMTFSI), entrapped in poly(vinyl chloride) (PVC)/poly(ethyl methacrylate) (PEMA) matrices, and dispersed with different concentrations of tin oxide (SnO2) nanofiller were prepared by simple solution casting method. The free-standing film of the composite gel polymer electrolyte (GPE) exhibited an optimum ionic conductivity value of 4.92 × 10−4 Scm−1 at ambient temperature. The gel composites developed predominant amorphous phase and porous morphologies, thus supporting the high ionic conduction as confirmed from X-ray diffraction (XRD) and scanning electron microscopic (SEM) studies. The complex formation properties of the materials were evaluated by attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy technique. The dispersion of nanofillers in GPEs improved the thermal behavior of the composite system to 185°C, which was ascertained by thermogravimetric (TG) analysis. The electrochemical stability window of approximately 4.37 V with feasible plating/stripping process of zinc metal on stainless steel electrode was analyzed by voltammetric studies and all these features suggested the possibility of exploiting NCGPE films as electrolytes in batteries.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Dhatarwal, Priyanka, Shobhna Choudhary et R. J. Sengwa. « Effectively nanofiller concentration tunable dielectric properties of PVP/SnO2 nanodielectrics ». Materials Letters 273 (août 2020) : 127913. http://dx.doi.org/10.1016/j.matlet.2020.127913.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Ayeleru, Olusola Olaitan, Sisanda Dlova, Freeman Ntuli, Williams Kehinde Kupolati et Peter Apata Olubambi. « Synthesis and characterization of SnO2 nanofiller from recycled expanded polystyrene ». Procedia Manufacturing 30 (2019) : 635–41. http://dx.doi.org/10.1016/j.promfg.2019.02.089.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Bhute, Monali V., Subhash B. Kondawar et Pankaj Koinkar. « Fabrication of hybrid gel nanofibrous polymer electrolyte for lithium ion battery ». International Journal of Modern Physics B 32, no 19 (18 juillet 2018) : 1840066. http://dx.doi.org/10.1142/s0217979218400660.

Texte intégral
Résumé :
Fibrous membranes are promising separators for high-performance lithium ion battery because of their high porosity and superior electrolyte uptake. In this paper, the fabrication of hybrid gel polymer electrolyte (HGPE) by introducing SnO2 nanoparticles in poly(vinylidine fluoride) by electrospinning technique and soaking the electrospun nanofibrous membranes in 1 M LiPF6 in ethylene carbonate (EC)/diethyl carbonate (DEC) (1:1, v/v). The as-prepared electrospun HGPE with SnO2 nanofiller was characterized by scanning electron microscopy. The influence of SnO2 on the structure of polymer membrane, physical, and electrochemical properties is systematically investigated. HGPE shows significant high ionic conductivity 4.6 × 10[Formula: see text] S/cm at room-temperature and better cell performance such as discharge C-rate capability and cycle performance. The hybrid gel polymer nanofibrous membrane favors high uptake of lithium electrolyte so that electrolyte leakage is reduced. The gel polymer electrolyte with SnO2 filler was used for the fabrication of Li/PVdF-SnO2/LiFePO4 coin cell. The fabricated cell was evaluated at a current density of 0.2 C-rate and delivered stable and excellent cycle performance. This study revealed that the prepared HGPE can be employed as potential electrolyte for lithium ion batteries.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Sengwa, R. J., et Priyanka Dhatarwal. « Nanofiller concentration-dependent appreciably tailorable and multifunctional properties of (PVP/PVA)/SnO2 nanocomposites for advanced flexible device technologies ». Journal of Materials Science : Materials in Electronics 32, no 7 (13 mars 2021) : 9661–74. http://dx.doi.org/10.1007/s10854-021-05627-w.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Dhatarwal, Priyanka, et R. J. Sengwa. « Poly(vinyl pyrrolidone) matrix and SiO2, Al2O3, SnO2, ZnO, and TiO2 nanofillers comprise biodegradable nanocomposites of controllable optical properties for optoelectronic applications ». Optik 241 (septembre 2021) : 167215. http://dx.doi.org/10.1016/j.ijleo.2021.167215.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Sengwa, R. J., et Priyanka Dhatarwal. « Polymer nanocomposites comprising PMMA matrix and ZnO, SnO2, and TiO2 nanofillers : A comparative study of structural, optical, and dielectric properties for multifunctional technological applications ». Optical Materials 113 (mars 2021) : 110837. http://dx.doi.org/10.1016/j.optmat.2021.110837.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Harshvardhan, Palkin Yadav et Bharti Singh. « Systematic investigation of the effect of SnS2 nanofiller content on the piezoelectric performance of the PVDF-TrFE-based nanogenerator ». Materials Today : Proceedings, juin 2023. http://dx.doi.org/10.1016/j.matpr.2023.05.607.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "SnS2 NANOFILLER"

1

HARSHVARDHAN et PALKIN YADAV. « SYSTEMATIC INVESTIGATION OF THE EFFECT OF SnS2 NANOFILLER CONTENT ON THE PIEZOELECTRIC PERFORMANCE OF THE PVDF-TrFE-BASED NANOGENERATOR ». Thesis, 2023. http://dspace.dtu.ac.in:8080/jspui/handle/repository/19797.

Texte intégral
Résumé :
In this work, SnS2 is used as a nanofiller material to improve the response of the polymer-based piezoelectric nanogenerator because of its better inherent piezoelectric properties in comparison to other 2D materials. For this, first, nanoflakes of tin sulfide (SnS2) were synthesized via the hydrothermal method, where the high purity of SnS2 powder is confirmed by Raman spectroscopy and X-ray diffraction studies. The obtained powder of SnS2 was then mixed with PVDF-TrFE in different weight percentages (0%, 1%, 3%, 5%, and 7%) of SnS2 to synthesize polymer composite film via the drop-casting method. These films are then characterized with XRD and FTIR spectrometers, which show enhancement in the electroactive beta phase of the nanocomposite films after doping with SnS2 powder, from 58.30% to 93.07%, which is in agreement with the polarization versus electric field (P-E) measurements that show increased remnant polarization after doping. These films are then used to fabricate a piezoelectric nanogenerator by adhering aluminum tape to both sides of the films. The piezoelectric nanogenerator's (PENG) output performance is analyzed by measuring the open-circuit voltage (Voc) and short-circuits (Isc) by tapping the nanogenerator with the help of a dynamic shaker, which shows that the output performance of Trifluoroethylene (PVDF-TrFE) based PENGs gets enhanced after the introduction of SnS2 powder. The maximum piezoelectric voltage corresponding to the PENG made with 5% SnS2 was 14.4 V, which was almost 1.5 times that of the PENG made with bare PVDF-TrFE. The output piezoelectric current followed a similar trend, with the 5% SnS2 PENG producing 3.9�A of current, which was roughly 1.62 times more than the output of the bare PVDF TrFE thin film. As a result, the present study demonstrates that adding SnS2 to the PVDF matrix can significantly improve energy harvesting technologies based on PVDF's piezoelectric properties.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie