Littérature scientifique sur le sujet « Smart Antenna System »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Smart Antenna System ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Smart Antenna System"

1

Yang, Lingsheng, Peijie Wang, Biyu Cheng et Jianping Fang. « Design of Hybrid Antenna System for User Terminal Applications ». Frequenz 72, no 9-10 (28 août 2018) : 407–14. http://dx.doi.org/10.1515/freq-2017-0197.

Texte intégral
Résumé :
Abstract An eight-element hybrid Smart antenna-MIMO system for user terminal application is proposed in this paper. The hybrid antenna system is based on an eight elements antenna array. When operate with respective feed ports, by using radiation pattern diversity, more than 15 dB isolation among antenna elements can be achieved. After designing the feed networks based on maximum power transmission optimization between the transmit and receive antennas, beam steering performance can be obtained, the eight elements work together as a smart antenna array. The hybrid system has both the advantages of MIMO and smart antenna, and is competitive for future wireless communication applications.
Styles APA, Harvard, Vancouver, ISO, etc.
2

T. G., Shivapanchakshari, et H. S. Aravinda. « PSO-CCO_MIMO-SA : A particle swarm optimization based channel capacity optimzation for MIMO system incorporated with smart antenna ». International Journal of Electrical and Computer Engineering (IJECE) 10, no 6 (1 décembre 2020) : 6276. http://dx.doi.org/10.11591/ijece.v10i6.pp6276-6282.

Texte intégral
Résumé :
With the radio channels physical limits, achieving higher data rate in the multi-channel systems is been a biggest concern. Hence, various spatial domain techniques have been introduced by incorporating array of antenna elements (i.e., smart antenna) in recent past for the channel limit expansion in mobile communication antennas. These smart antennas help to yield the improved array gain or bearm forming gain and hence by power efficiency enhanmaent in the channel and antenna range expansion. The use of smart antenna leads to spatial diversity and minimizes the fading effect and improves link reliability. However, in the process of antenna design, the proper channel modelling is is biggest concern which affect the wireless system performance. The recent works of MIMO design systems have discussed the issues in number of antenna selection which suggests that optimization of MIMO channel capacity is required. Hence, a Particle Swarm Optimization based channel capacity optimzation for MIMO system incorporated with smart antenna is introduced in this paper. From the outcomes it is been found that the proposed PSO based MIMO system achieves better convergenece speed which results in better channel capacity.
Styles APA, Harvard, Vancouver, ISO, etc.
3

M. R. S. Neelima, M. R. S. Neelima, A. Haritha A. Haritha, A. Sudha Madhuri, K. Devanam priya, K. Sandhya K. Sandhya et Dr Ch Santhi Rani Dr. Ch. Santhi Rani. « Smart Antenna for Wcdma FDD Downlink System ». Indian Journal of Applied Research 3, no 2 (1 octobre 2011) : 128–30. http://dx.doi.org/10.15373/2249555x/feb2013/44.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

M. Africa, Aaron Don, Rica Rizabel M. Tagabuhin et Jan Jayson S. D. Tirados. « Design and simulation of an adaptive beam smart antenna using MATLAB ». Indonesian Journal of Electrical Engineering and Computer Science 21, no 3 (10 mars 2021) : 1584. http://dx.doi.org/10.11591/ijeecs.v21.i3.pp1584-1593.

Texte intégral
Résumé :
<span id="docs-internal-guid-ad3b6b0d-7fff-2d92-685e-3d423ac2713f"><span>Signals transmitted over a long range of distance may pass through several obstacles and scatter, taking multiple paths to reach the receiver. Beamforming antennas are controlled electronically to adjust the radiation pattern following the first received signal. This allows the antenna to maximize the received signal and consequently, suppress the interfering signals received. A smart antenna should be able to diminish noise, increase the signal to noise ratio, and have better system competence. The adaptive beam makes use of the spacing of the several antennas and the phase of the signal of each antenna array to control the shape and direction of the signal beam. This paper focuses on the use of smart antennas using an adaptive beam method as a better system for the transmission of signals. A simulation between the existing Omnidirectional antenna system and the smart antenna system will be made and compared. The paper will discuss the corresponding advantages that a smart antenna system has compared to the Omnidirectional antenna system.</span></span>
Styles APA, Harvard, Vancouver, ISO, etc.
5

Kulhari, Sandeep Kumar, et Om Prakash. « Algorithms for Smart Antenna for Digital Communication System ». International Journal of Trend in Scientific Research and Development Volume-2, Issue-3 (30 avril 2018) : 2358–61. http://dx.doi.org/10.31142/ijtsrd12785.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Saragih, Yuliarman, Ibrahim et Agatha Elisabet. « Study of Smart Antenna Wide Band Multi Beam by Algorithm Switch Beam ». Journal of Sustainable Engineering : Proceedings Series 1, no 2 (4 octobre 2019) : 247–57. http://dx.doi.org/10.35793/joseps.v1i2.37.

Texte intégral
Résumé :
The use of wideband antennas in radio frequency (RF) systems are intended to improve the efficiency of the system economically. So that problems arise due to differences in RF system frequency allocation in each country can be overcome. Other than that, the need for an antenna that can optimize the direction of the beam becomes one which became a consideration, for that to develop a smart antenna that is capable of producing the different beam. In various studies, wideband antennas have been built only able to work on a single beam. Meanwhile, the antenna has also been proven to be working in multi-beam but still works on a single frequency. The researcher intends to develop an antenna that can work as a smart antenna that applies multi-beam with switching algorithms by having a wide working frequency (wideband). Multi-beam with wideband can be produced by combining wideband antenna array with a Butler matrix that applies the switching beam algorithm with phase array technique so that it can be a smart antenna because the antenna can be adjusted of the beam as desired.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Zhang, Zufan, Jie Zhang et Shaohui Sun. « Model of Handover and Traffic Based on Cellular Geometry with Smart Antenna ». International Journal of Antennas and Propagation 2014 (2014) : 1–8. http://dx.doi.org/10.1155/2014/646053.

Texte intégral
Résumé :
Based on the application of smart antennas in cellular mobile communications, this paper introduces the impact of the width of the antenna beams playing on the dwell time probability density function in cellular geometry with smart antenna. The research results indicate that the smart cell structure can improve the dwell time of users within the cell and improve the traffic system performance.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Chen, Yuan Yuan, Run Jie Liu, Jin Yuan Shen et Dan Dan He. « The Use of Adaptive Algorithms on Smart Antenna Device ». Advanced Materials Research 548 (juillet 2012) : 730–34. http://dx.doi.org/10.4028/www.scientific.net/amr.548.730.

Texte intégral
Résumé :
Adaptive beamforming is one of the core technology of the smart antenna system. Two different adaptive algorithms which adopt the minimum mean square algorithm (LMS) and recursive least squares algorithm (RLS) are employed to realize the beamforming in smart antenna system. The smart antenna system based on LMS and RLS is simulated and realized by the MATLAB software in which a uniform linear adaptive antenna array is used. The results show that the smart antenna systems based on RLS and LMS algorithms can significantly reduce the bit error rate especially with the low SNR.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Chung, Ming-An, Cheng-Wei Hsiao, Chih-Wei Yang et Bing-Ruei Chuang. « 4 × 4 MIMO Antenna System for Smart Eyewear in Wi-Fi 5G and Wi-Fi 6e Wireless Communication Applications ». Electronics 10, no 23 (26 novembre 2021) : 2936. http://dx.doi.org/10.3390/electronics10232936.

Texte intégral
Résumé :
This paper proposes a small-slot antenna system (50 mm × 9 mm × 2.7 mm) for 4 × 4 multiple-input multiple-output (MIMO) on smart glasses devices. The antenna is set on the plastic temple, and the inverted F antenna radiates through the slot in the ground plane of the sputtered copper layer outside the temple. Two symmetrical antennas and slots on the same temple and series capacitive elements enhance the isolation between the two antenna ports. When both temples are equipped with the proposed antennas, 4 × 4 MIMO transmission can be achieved. The antenna substrate is made of polycarbonate (PC), and its thickness is 2.7 mm εr=2.85, tanδ=0.0092. According to the actual measurement results, this antenna has two working frequency bands when the reflection coefficient is lower than −10dB, its working frequency bandwidth at 4.58–5.72 GHz and 6.38–7.0 GHz. The proposed antenna has a peak gain of 4.3 dBi and antenna efficiency of 85.69% at 5.14 GHz. In addition, it also can obtain a peak gain of 3.3 dBi and antenna efficiency of 82.78% at 6.8 GHz. The measurement results show that this antenna has good performance, allowing future smart eyewear devices to be applied to Wi-Fi 5G (5.18–5.85 GHz) and Wi-Fi 6e (5.925–7.125 GHz).
Styles APA, Harvard, Vancouver, ISO, etc.
10

Levy, Mounissamy, Sumanta Bose, D. Sriram Kumar et Anh Van Dinh. « Rapid Beam Forming in Smart Antennas Using Smart-Fractal Concepts Employing Combinational Approach Algorithms ». International Journal of Antennas and Propagation 2012 (2012) : 1–10. http://dx.doi.org/10.1155/2012/467492.

Texte intégral
Résumé :
Smart antennas offer a broad range of ways to improve wireless system performance. They provide enhanced coverage through range extension, hole filling, and better building penetration. Smart antennas use an array of low gain antenna elements which are connected by a network. Fractal concepts have been used in antenna arrays recently. The important properties of fractal arrays are frequency independent multiband characteristics, schemes for realizing low side lobe designs, systematic approaches to thinning, and the ability to develop rapid beam forming algorithms. In this paper, an attempt has been made to apply assignment of usage time and location tag algorithm for smart antennas combined with the fractal concepts to reduce the computational complexity and enhance resource allocation for rapid beam forming algorithms. Furthermore, two combinational approach algorithms are proposed for peer users within single base station and peer users between different base stations.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Smart Antenna System"

1

Tidd, William Graves. « Sequential beamspace smart antenna system ». Thesis, Montana State University, 2011. http://etd.lib.montana.edu/etd/2011/tidd/TiddW0511.pdf.

Texte intégral
Résumé :
This thesis proposes a design of a novel and innovative sequential beamspace (SBS) smart antenna system. The system is capable of accurate direction of arrival (DOA) estimation in beamspace and efficient beamforming. Moreover, the robust functionality of such a system includes high resolution radio frequency (RF) emitter DOA estimation and beamforming in a noisy environment in the presence of strong interference. Simulations for DOA estimation using beamspace MUSIC and beamspace Capon methods are presented in conjunction with Capon beamforming. These methods are compared and contrasted with proven element space DOA estimation techniques to demonstrate the validity and advantages of pursuing a SBS smart antenna for real-world applications. The beamspace DOA estimation accuracy, resolution, beamforming pattern, and output signal quality have been thoroughly studied and quantified. The algorithms have been tailored to utilize an 8 element uniform circular array (UCA) and an 8 channel analog beamformer (BF) operating at 5.8 GHz to gather lab-based experimental results. The simulations and experimental results show that the proposed system can achieve good performance once it is properly synchronized using a time delay correction filter. In addition, a significant decrease in hardware is realized when operating in beamspace versus element space.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Tung, Edwin Tai-Wing. « A multiport antenna for an indoor PCS smart antenna system ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ38646.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Lee, Gil Young. « Conformal Body-Worn Smart Antenna System for Wideband UHF Operation ». The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1323756546.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Janapsatya, Januar. « Switched-beam smart antenna system for indoor wireless LAN / ». [St. Lucia, Qld.], 2004. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe18419.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Chakravorti, Mark F. J. « CMOS analog signal processing for a smart antenna system ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0018/MQ49671.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Roh, Mark C. (Mark Charles) 1975. « A base station smart antenna system for CDMA cellular ». Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/47613.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ng, Kok Keng. « Smart antenna application in DS-CDMA mobile communication system ». Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2002. http://library.nps.navy.mil/uhtbin/hyperion-image/02sep%5FNg.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Schacht, Mirko [Verfasser]. « System Performance Gains from Smart Antenna Concepts in CDMA / Mirko Schacht ». Aachen : Shaker, 2005. http://d-nb.info/1181620074/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ng, Stewart Siew Loon. « Smart antenna in DS-CDMA mobile communication system using circular array / ». Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2003. http://library.nps.navy.mil/uhtbin/hyperion-image/03Mar%5FNg.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Yoon, Hwan-Sik. « Design, Modeling, and Optimization of a Mechanically Reconfigurable Smart Reflector Antenna System ». The Ohio State University, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=osu1036426477.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Smart Antenna System"

1

Matin, Mohammad Abdul, dir. Wideband, Multiband, and Smart Antenna Systems. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74311-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Okamoto, Garret T. Smart Antenna Systems and Wireless LANs. Cleveland : Kluwer Academic Publishers, 2002.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Smart antenna systems and wireless lans. Boston : Kluwer Academic Publishers, 1999.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Karmakar, Nemai Chandra, dir. Handbook of Smart Antennas for RFID Systems. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470872178.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Handbook of smart antennas for RFID systems. Hoboken, N.J : Wiley, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Blogh, J. S. Third-generation systems and intelligent wireless networking : Smart antennas and adaptive modulation. Chichester, West Sussex, England : John Wiley & Sons, Ltd., 2002.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Siuli, Roy, et Ueda Tetsurō, dir. Enhancing the performance of ad hoc wireless networks with smart antennas. Boca Raton, FL : Auerbach Publications, 2006.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Matin, Mohammad A. Wideband, multiband, and smart reconfigurable antennas for modern wireless communications. Hershey, PA : Information Science Reference, 2015.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Radiowave propagation and smart antennas for wireless communications. Boston : Kluwer Academic Publishers, 2001.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Janaswamy, Ramakrishna. Radiowave propagation and smart antennas for wireless communications. New York : Kluwer Academic, 2002.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Smart Antenna System"

1

Tan, Moh Chuan, Minghui Li, Qammer H. Abbasi et Muhammad Ali Imran. « Designing the Smart Antenna System ». Dans Antenna Design Challenges and Future Directions for Modern Transportation Market, 31–41. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61581-9_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Benisha, M., R. Thandaiah Prabu et V. Thulasi Bai. « Analytical Survey on Parameters for Designing an Efficient 5G Antenna System ». Dans Smart Intelligent Computing and Applications, 335–44. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1921-1_34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Han, Shuangfeng, Youzheng Wang, Jing Wang, Osamu Kato et Akihiko Nishio. « Capacity and Coverage of TD-SCDMA System with Smart Antenna ». Dans Mobile Communications, 84–93. Berlin, Heidelberg : Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-36555-9_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Samal, S., H. K. Sahoo et Pradipta Kumar Das. « Hybrid Optimization Approach for Adaptive Beamforming in Smart Antenna System ». Dans Lecture Notes in Networks and Systems, 573–84. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1412-6_50.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Fu, Jeffrey S., Weixian Liu et Nemai Chandra Karmakar. « Design of Portable Smart Antenna System for RFID Reader : A New Approach ». Dans Handbook of Smart Antennas for RFID Systems, 301–16. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470872178.ch11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Savazzi, C. « High speed optical data link for Smart Antenna Mobile Radio System ». Dans Multiaccess, Mobility and Teletraffic in Wireless Communications : Volume 4, 33–40. Boston, MA : Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-5920-4_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Gite, Shruti, et Mansi Subhedar. « Smart Apron Using Embroidered Textile Fractal Antenna for E-Health Monitoring System ». Dans Lecture Notes in Electrical Engineering, 987–96. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5558-9_83.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Sridevi, K., et A. Jhansi Rani. « Performance Analysis of LMS and Fractional LMS Algorithms for Smart Antenna System ». Dans Lecture Notes in Electrical Engineering, 181–87. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1906-8_20.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Roy, B., G. A. Raja, I. Vasu, S. K. Chowdhury et A. K. Bhattacharjee. « Compact Slotted Microstrip Patch Antenna with Multiband Characteristics for WLAN/WiMAX ». Dans Proceedings of First International Conference on Smart System, Innovations and Computing, 297–305. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5828-8_29.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Errifi, Hayat, Abdennaceur Baghdad, Abdelmajid Badri et Aicha Sahel. « Smart Antenna System Using Butler Matrix Based Beamforming Network for X Band Applications ». Dans Lecture Notes in Electrical Engineering, 387–99. Singapore : Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1627-1_30.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Smart Antenna System"

1

Zhou, Li, et Chuanhua Wen. « Smart antenna system ». Dans Asia Pacific Optical Communications, sous la direction de Ken-ichi Kitayama, Pierpaolo C. Ghiggino, Kim Roberts et Yikai Su. SPIE, 2008. http://dx.doi.org/10.1117/12.804206.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Loy Kai Soon, Liew Yew Pheng, J. S. Fu et Cai Chengjie. « A portable smart antenna system ». Dans 2004 International Conference on Communications, Circuits and Systems. IEEE, 2004. http://dx.doi.org/10.1109/icccas.2004.1346015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Ye, Yi-Feng, Zong-Rui Xu, Lin-Sheng Wu et Jun-Fa Mao. « Smart Antenna System with Memcapacitors ». Dans 2020 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP). IEEE, 2020. http://dx.doi.org/10.1109/imws-amp49156.2020.9199651.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Sulic, E., B. Pell, S. John, Rahul K. Gupta, W. Rowe, K. Ghorbani et K. Zhang. « Performance of Embedded Multi-Frequency Communication Devices in Smart Composite Structures ». Dans ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2008. http://dx.doi.org/10.1115/smasis2008-402.

Texte intégral
Résumé :
Lately, there has been an increased demand for vehicle manufacturers to incorporate a large number of communication, security, guidance and entertainment devices in their new vehicle models. In recent decades, the list has expanded from the AM and FM radio antennas to include GPS, mobile phone, collision avoidance radar, Digital Radio and Digital TV antennas. In addition, new technologies such as vehicle to vehicle and vehicle to road side communication are being implemented at 5.9 GHz in the next generation of vehicles. In the past the AM/FM antenna was typically a mast antenna protruding from the vehicle’s exterior, recently however, the trend has been to limit the visibility of vehicular antennas as much as possible to improve vehicle design and aerodynamics. This has lead to integration of antennae so that they become a seamless part of the vehicle structure. This paper reports on a parametric study of embedding an antenna in a polymeric composite substrate in relation to several material processing and coating parameters.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Mujahid, Umar, Jameel Ahmed Mudassir Mukhtar, Abdul Rehman, Muhammad Abbas et Umair Shahid. « Spectral estimation for smart antenna system ». Dans 2013 3rd IEEE International Conference on Computer, Control & Communication (IC4). IEEE, 2013. http://dx.doi.org/10.1109/ic4.2013.6653759.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

BOUSTANI, Btissam, Abdennaceur BAGHDAD, Aicha SAHEL, Abdelmajid BADRI et Abdelhakim BALLOUK. « Adaptive algorithm for smart antenna system ». Dans 2018 6th International Conference on Multimedia Computing and Systems (ICMCS). IEEE, 2018. http://dx.doi.org/10.1109/icmcs.2018.8525905.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Lu, Xiaoyu, et Zufan Zhang. « Research on Smart Antenna in FDD System ». Dans 2008 International Symposium on Intelligent Information Technology Application Workshops (IITAW). IEEE, 2008. http://dx.doi.org/10.1109/iita.workshops.2008.154.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Castaneda-Camacho, J., M. Carro, D. Lara-Rodriguez et H. Azucena. « CDMA 1xEVDO System with Smart Antenna Array ». Dans 2010 IEEE Vehicular Technology Conference (VTC 2010-Fall). IEEE, 2010. http://dx.doi.org/10.1109/vetecf.2010.5594296.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Na, Shun, Mengdi Guo, Yang Liu et Yinghui Zhang. « Adaptive Beamforming Algorithms for Smart Antenna System ». Dans 6th International Conference on Information Engineering for Mechanics and Materials. Paris, France : Atlantis Press, 2016. http://dx.doi.org/10.2991/icimm-16.2016.58.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Schacht, M., A. Dekorsy et P. Jung. « System capacity from UMTS smart antenna concepts ». Dans 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484). IEEE, 2003. http://dx.doi.org/10.1109/vetecf.2003.1286201.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Smart Antenna System"

1

Esener, Sadik. Optical Interconnects for Smart Antenna Driver-Receiver-Switch System for Wireless Communication. Fort Belvoir, VA : Defense Technical Information Center, décembre 2002. http://dx.doi.org/10.21236/ada412178.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie