Littérature scientifique sur le sujet « Small wind system »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Small wind system ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Small wind system"
P, Senthilkumar. « Hybrid based Small Wind Generator with Boost Converter System ». International Journal of Psychosocial Rehabilitation 23, no 4 (20 décembre 2019) : 605–15. http://dx.doi.org/10.37200/ijpr/v23i4/pr190395.
Texte intégralCarr, David, et Kenneth Starcher. « Small Wind Power Considerations ». Journal of Green Building 4, no 2 (1 mai 2009) : 1–22. http://dx.doi.org/10.3992/jgb.4.2.1.
Texte intégralASO, Toshiyuki, Katsuya IIDA, Toshiya TANAKA, Akihiro UNNO, Keisuke HAYASAKA, Kneji HORIUCHI et Kazuichi SEKI. « A104 Experimental study on small wind turbine generation system under real wind condition system ». Proceedings of the National Symposium on Power and Energy Systems 2010.15 (2010) : 9–10. http://dx.doi.org/10.1299/jsmepes.2010.15.9.
Texte intégralMo, Qiu Yun, Shuai Shuai Li, Fei Deng, Liang Bao Tang et Ke Yan Zhang. « Key Technology of LCA on Small Wind Power Generation System ». Applied Mechanics and Materials 571-572 (juin 2014) : 925–29. http://dx.doi.org/10.4028/www.scientific.net/amm.571-572.925.
Texte intégralAl Mubarok, Abdul Goffar, Wisnu Djatmiko et Muhammad Yusro. « Design of Arduino-based small wind power generation system ». E3S Web of Conferences 67 (2018) : 01006. http://dx.doi.org/10.1051/e3sconf/20186701006.
Texte intégralHsiao, Yung Chia. « Control and System Integration of a Small Vertical-Axis Wind Rotor Coupled a Generator Having Two Windings ». Applied Mechanics and Materials 284-287 (janvier 2013) : 1072–76. http://dx.doi.org/10.4028/www.scientific.net/amm.284-287.1072.
Texte intégralIWAKAWA, Akira, Takeshi OSUKA, Tatsuro SHODA, Akihiro SASOH et Hiromitsu KAWAZOE. « Ring-Force Balance System for Small Wind Tunnels ». TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN 13 (2015) : 51–60. http://dx.doi.org/10.2322/tastj.13.51.
Texte intégral�ERNELI�, Jernej. « Control for Grid Connected Small Wind Turbine System ». PRZEGLĄD ELEKTROTECHNICZNY 1, no 5 (5 mai 2015) : 176–80. http://dx.doi.org/10.15199/48.2015.05.39.
Texte intégralQi, Zhiyuan, et Eerduntaokesu Lin. « Integrated power control for small wind power system ». Journal of Power Sources 217 (novembre 2012) : 322–28. http://dx.doi.org/10.1016/j.jpowsour.2012.06.039.
Texte intégralKitajima, Takahiro, et Takashi Yasuno. « Maximum power control system for small wind turbine using predicted wind speed ». IEEJ Transactions on Electrical and Electronic Engineering 10, no 1 (25 novembre 2014) : 55–62. http://dx.doi.org/10.1002/tee.22065.
Texte intégralThèses sur le sujet "Small wind system"
Taylor, Jennifer M. « The characteristics and perception of small wind system noise ». Thesis, University of Nottingham, 2012. http://eprints.nottingham.ac.uk/12614/.
Texte intégralFerrigno, Kevin J. (Kevin James). « Challenges and strategies for increasing adoption of small wind turbines in urban areas ». Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/59240.
Texte intégral"May 2010." Cataloged from PDF version of thesis.
Includes bibliographical references (p. 77-80).
A student group at MIT in cooperation with the MIT Department of Facilities is currently working to install a Skystream 3.7 wind turbine on MIT's campus. This has raised several questions about how to best develop small wind projects in urban environments. The best wind resources in the country exist in relatively remote locations and require large investments in electricity transmission infrastructure to be effectively utilized. In the meantime, several large and small projects have been developed in the Boston area. The urban environment presents many challenges to development including the interaction of urban buildings with wind flow, concerns from neighbors and government over the aesthetics and safety of turbines that are installed near human populations, environmental effects including wildlife, noise, and shadows. There are also many opportunities including the ability to use net metering, little or no transmission infrastructure costs, and the ability to build on existing wind resource data and project assessments to develop a large number of installations. This document presents an overview of how the challenges of small wind turbine development in urban, suburban, and rural neighborhoods are currently being addressed by research in new and improved technology for turbines and siting, business strategies of existing companies, financing, and government policy. It looks at the strategy options available to businesses involved development of small wind turbines and evaluates the relative strengths and weaknesses of these strategies in a rapidly changing marketplace.
by Kevin Ferrigno.
S.M.in System Design and Management
Ehlers, P., CG Richards et DV Nicolae. « Small power, three to one phase matrix converter for wind generators ». International Review of Electrical Engineering, 2013. http://encore.tut.ac.za/iii/cpro/DigitalItemViewPage.external?sp=1001152.
Texte intégralAhmed-Mahmoud, Ashraf. « Power conditioning unit for small scale hybrid PV-wind generation system ». Thesis, Durham University, 2011. http://etheses.dur.ac.uk/580/.
Texte intégralDalala', Zakariya Mahmoud. « Design and Analysis of a Small-Scale Wind Energy Conversion System ». Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/51846.
Texte intégralPh. D.
Stander, Johan Nico. « The specification of a small commercial wind energy conversion system for the South African Antarctic Research Base SANAE IV ». Thesis, Stellenbosch : Stellenbosch University, 2008. http://hdl.handle.net/10019.1/1583.
Texte intégralThe sustainability and economy of the current South African National Antarctic Expedition IV (SANAE IV) base diesel-electric power system are threatened by the current high fuel prices and the environmental pollution reduction obligations. This thesis presents the potential technical, environmental and economical challenges associated with the integration of small wind energy conversion system (WECS) with the current SANAE IV diesel fuelled power system. Criteria derived from technical, environmental and economic assessments are applied in the evaluation of eight commercially available wind turbines as to determine the most technically and economically feasible candidates. Results of the coastal Dronning Maud Land and the local Vesleskarvet cold climate assessments based on long term meteorological data and field data are presented. Field experiments were performed during the 2007-2008 austral summer. These results are applied in the generation of a wind energy resource map and in the derivation of technical wind turbine evaluation criteria. The SANAE IV energy system and the electrical grid assessments performed are based on long term fuel consumption records and 2008 logged data. Assessment results led to the identification of SANAE IV specific avoidable wind turbine grid integration issues. Furthermore, electro-technical criteria derived from these results are applied in the evaluation of the eight selected wind turbines. Conceptual wind turbine integration options and operation modes are also suggested. Wind turbine micro-siting incorporating Vesleskarvet specific climatological, environmental and technical related issues are performed. Issues focusing on wind turbine visual impact, air traffic interference and the spatial Vesleskarvet wind distribution are analysed. Three potential sites suited for the deployment of a single or, in the near future, a cluster of small wind turbines are specified. Economics of the current SANAE IV power system based on the South African economy (May 2008) are analysed. The life cycle economic impact associated with the integration of a small wind turbine with the current SANAE IV power system is quantified. Results of an economic sensitivity analysis are used to predict the performance of the proposed wind-diesel power systems. All wind turbines initially considered will recover their investment costs within 20 years and will yield desirable saving as a result of diesel fuel savings, once integrated with the SANAE IV diesel fuelled power system. Finally, results of the technical and economical evaluation of the selected commercially available wind turbines indicated that the Proven 6 kWrated, Bergey 10 kWrated and Fortis 10 kWrated wind turbines are the most robust and will yield feasible savings.
Wang, Xuntuo. « Physical modeling of wind turbine generators in a small scale analog system ». Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/90168.
Texte intégral24
Cataloged from PDF version of thesis. Title as it appears in June 6, 2014 commencement exercises program: Analysis of stability and dynamics of double-fed induction machines in the wind turbine system.
Includes bibliographical references (pages 76-77)
This project represents the physical modeling and experimental test of a Doubly-fed Induction Machine (DFIM), in order to substantially analyze the characteristic behaviors of wind turbines and its use in the micro-grid network. The environment set-up is based on a smart micro-grid system, which consists of the grid, a diesel generator, a solar panel, and a wind farm. The hardware work includes the design of a 2.5kW inverter and a L-C-L grid filter (including inductor design and construction). The goal of this research is to better emulate the operation principles of wind turbine system. Future work proposes developing a better control method to improve the stability and reliability of the wind turbine system. Keywords: DFIM, micro-grid, space vector PWM, DTC-SVM, back-to-back inverter, inductor design, and grid filter.
by Xuntuo Wang.
S.M.
De, Klerk Martinus Gerhardus. « Development of a simulation model for a small scale renewable energy system / Martinus Gerhardus de Klerk ». Thesis, North-West University, 2012. http://hdl.handle.net/10394/8731.
Texte intégralThesis (MIng (Computer and Electronic Engineering))--North-West University, Potchefstroom Campus, 2013
Cozens, Nicola J. « Development of a sophisticated tool for siting small-scale, embedded wind projects using a geographical information system ». Thesis, Loughborough University, 2004. https://dspace.lboro.ac.uk/2134/12690.
Texte intégralMandefro, Bezie Yalewayker. « Feasibility Study of Small Hydropower/PV/Wind Hybrid System for Off-Grid Electrification of Liben and MedaWoulabu Villages ». Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-23841.
Texte intégralLivres sur le sujet "Small wind system"
C, Howard Brian, dir. Build your own small wind power system. New York : McGraw-Hill, 2012.
Trouver le texte intégralShea, Kevin. Build your own small wind power system. New York : McGraw-Hill, 2012.
Trouver le texte intégralTodd, R. W. Small wind energy systems. Machynlleth (Powys) : Centre for Alternative Technology, 1993.
Trouver le texte intégralEnergy Efficiency and Renewable Energy Clearinghouse (U.S.), dir. Small wind energy systems for the homeowner. Merrifield, VA : Energy Efficiency and Renewable Energy Clearinghouse, 1997.
Trouver le texte intégralSimon, Dunnett, Piggott Hugh et Intermediate Technology Development Group, dir. Small wind systems for rural energy services. London : ITDG Pub., 2003.
Trouver le texte intégralThomas, Newell. Introduction to small wind systems : Basic operating principles. Washington, D.C : American Wind Energy Association, 1993.
Trouver le texte intégralJohn, Twidell, et British Wind Energy Association, dir. A Guide to small wind energy conversion systems. Cambridge [Cambridgeshire] : Cambridge University Press, 1987.
Trouver le texte intégralRoheim, Cathy A. Economic feasibility of small wind energy generator systems. Bozeman, Mont : Montana State University, Agricultural Economics & Economics Dept., 1985.
Trouver le texte intégralOregon. Dept. of Energy. et United States. Dept. of Energy., dir. Small wind electric systems : An Oregon consumer's guide. Salem, OR : Oregon Dept. of Energy, 2005.
Trouver le texte intégralSmall wind : Planning & building successful installations, with case studies from the field. Waltham, MA : Academic Press, 2013.
Trouver le texte intégralChapitres de livres sur le sujet "Small wind system"
Wood, David. « Generator and Electrical System ». Dans Small Wind Turbines, 227–50. London : Springer London, 2011. http://dx.doi.org/10.1007/978-1-84996-175-2_11.
Texte intégralBhiladvala, Rustom B., Elsa Assadian et Ali Etrati. « Small Scale Sensing for Wind Turbine Active Control System ». Dans Research Topics in Wind Energy, 103–8. Berlin, Heidelberg : Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54696-9_15.
Texte intégralLi, Peiqiang, Lu-Qi Jie, Zheng-Bang Xia et Cai-Jie Weng. « Influence of Wind Farm Access on System Small Signal Stability ». Dans Advances in Intelligent Systems and Computing, 113–22. Singapore : Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5841-8_12.
Texte intégralWu, Rong-Ching, Yen-Ming Tseng, En-Chih Chang et Chih-Yang Hsiao. « Building of a Practical Monitoring System for the Small Wind Turbine ». Dans Advances in Intelligent Information Hiding and Multimedia Signal Processing, 255–63. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63859-1_32.
Texte intégralCravens, T. E. « The Solar Wind Interaction with Non-Magnetic Bodies and the Role of Small-Scale Structures ». Dans Solar System Plasma Physics, 353–66. Washington, D. C. : American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm054p0353.
Texte intégralPrabaakaran, K., R. Srividhya, R. Senthil Kumar, D. Hemanth Kumar, D. Mohan Raj et A. Sham Prabu. « Energy Management System for Small-Scale Hybrid Wind Solar Battery-Based Microgrid ». Dans International Conference on Computing, Communication, Electrical and Biomedical Systems, 493–501. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-86165-0_42.
Texte intégralMad Zain, Mohd Nurhadi, Norzanah Rosmin, Nor Khairunnisa Sidek, Aede Hatib Musta’amal@Jamal, Maherah Hussin et Dalila Mat Said. « Maximum Power Point Tracking (MPPT) Battery Charger for a Small Wind Power System ». Dans Communications in Computer and Information Science, 39–52. Singapore : Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6502-6_4.
Texte intégralMazur, Damian, Lesław Gołębiowski, Andrzej Smoleń, Marek Gołębiowski et Zygmunt Szczerba. « Modeling and Analysis of the AFPM Generator in a Small Wind Farm System ». Dans Lecture Notes in Electrical Engineering, 202–10. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11187-8_16.
Texte intégralDu, Wenjuan, Haifeng Wang et Siqi Bu. « Small-Signal Stability of a Power System with a VSWG Affected by the PLL ». Dans Small-Signal Stability Analysis of Power Systems Integrated with Variable Speed Wind Generators, 201–41. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94168-4_6.
Texte intégralDu, Wenjuan, Haifeng Wang et Siqi Bu. « Linearized Model of a Power System with a Grid-Connected Variable Speed Wind Generator ». Dans Small-Signal Stability Analysis of Power Systems Integrated with Variable Speed Wind Generators, 27–62. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94168-4_2.
Texte intégralActes de conférences sur le sujet "Small wind system"
Ehlers, Pieter, Coneth G. Richards et Dan V. Nicolae. « Isolated Small Wind Power System ». Dans Power and Energy Systems. Calgary,AB,Canada : ACTAPRESS, 2011. http://dx.doi.org/10.2316/p.2011.714-098.
Texte intégralSchaf, Frederico M., Claiton M. Franchi, Humberto Pinheiro, Andre J. Ramos et Juliano Grigulo. « Small wind turbine communication system implementation ». Dans 2015 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE). IEEE, 2015. http://dx.doi.org/10.1109/icsgce.2015.7454289.
Texte intégralOlaofe, Z. O., et K. A. Folly. « Energy storage technologies for small scale wind conversion system ». Dans 2012 IEEE Power Electronics and Machines in Wind Applications (PEMWA). IEEE, 2012. http://dx.doi.org/10.1109/pemwa.2012.6316391.
Texte intégralZdenko Simic et Vladimir Mikulicic. « Small wind off-grid system optimization regarding wind turbine power curve ». Dans AFRICON 2007. IEEE, 2007. http://dx.doi.org/10.1109/afrcon.2007.4401601.
Texte intégralIoakimidis, Christos S., Fivos Galatoulas et Robert R. Porter. « Evaluation of Small Modular Wind Energy Conversion System ». Dans 7th International Conference on Smart Cities and Green ICT Systems. SCITEPRESS - Science and Technology Publications, 2018. http://dx.doi.org/10.5220/0006774502780285.
Texte intégralHarrouz, Abdulkader, Ilhami Colak et Korhan Kayisli. « Control of a small wind turbine system application ». Dans 2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA). IEEE, 2016. http://dx.doi.org/10.1109/icrera.2016.7884509.
Texte intégralMyschik, S., M. Heller, F. Holzapfel et G. Sachs. « Low-Cost Wind Measurement System For Small Aircraft ». Dans AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, Virigina : American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-5240.
Texte intégralMa, Ning, et Qinzhi Zhai. « A multifunction testing system of small wind generator ». Dans 2011 International Conference on Electrical Machines and Systems (ICEMS). IEEE, 2011. http://dx.doi.org/10.1109/icems.2011.6073712.
Texte intégralLara-Mendoza, Oscar, Juan Carlos Jáuregui-Correa, Ernesto Chavero-Navarrete et José R. García-Martínez. « Methodology for the Pitch Controller Wind Prediction System in Small Wind Turbines ». Dans ASME Turbo Expo 2022 : Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/gt2022-81874.
Texte intégralAmirul Bin Mohd Adnan, Wan Mohammad, Anees Bt Abdul Aziz et Lilysuriazna Binti Raya. « Feasibility Study of Wind Power Generation System Using Small Scale Wind Turbines ». Dans 2022 IEEE 10th Conference on Systems, Process & Control (ICSPC). IEEE, 2022. http://dx.doi.org/10.1109/icspc55597.2022.10001785.
Texte intégralRapports d'organisations sur le sujet "Small wind system"
Author, Not Given. Small Wind Electric Systems : A Michigan Consumer's Guide. Office of Scientific and Technical Information (OSTI), mars 2005. http://dx.doi.org/10.2172/15015996.
Texte intégralAuthor, Not Given. Small Wind Electric Systems : A Utah Consumer's Guide. Office of Scientific and Technical Information (OSTI), mars 2005. http://dx.doi.org/10.2172/15016008.
Texte intégralHuijser, Marcel, E. R. Fairbank et K. S. Paul. Best Practices Manual to Reduce Animal-Vehicle Collisions and Provide Habitat Connectivity for Wildlife. Nevada Department of Transportation, septembre 2022. http://dx.doi.org/10.15788/ndot2022.2.
Texte intégralAuthor, Not Given. Small Wind Electric Systems : A Guide Produced for the Tennessee Valley Authority (Revised) (Brochure). Office of Scientific and Technical Information (OSTI), juin 2009. http://dx.doi.org/10.2172/15007775.
Texte intégraledu, Janet twomey@wichita. Sustainable Energy Solutions Task 1.0 : Networked Monitoring and Control of Small Interconnected Wind Energy Systems. Office of Scientific and Technical Information (OSTI), avril 2010. http://dx.doi.org/10.2172/991638.
Texte intégralHuijser, M. P., Robert J. Ament, M. Bell, A. P. Clevenger, E. R. Fairbank, K. E. Gunson et T. McGuire. Animal Vehicle Collision Reduction and Habitat Connectivity Pooled Fund Study – Literature Review. Nevada Department of Transportation, décembre 2021. http://dx.doi.org/10.15788/ndot2021.12.
Texte intégralForsyth, T. L., M. Pedden et T. Gagliano. Effects of Net Metering on the Use of Small-Scale Wind Systems in the United States. Office of Scientific and Technical Information (OSTI), novembre 2002. http://dx.doi.org/10.2172/15002481.
Texte intégralTanksley, Steven D., et Dani Zamir. Development and Testing of a Method for the Systematic Discovery and Utilization of Novel QTLs in the Production of Improved Crop Varieties : Tomato as a Model System. United States Department of Agriculture, juin 1995. http://dx.doi.org/10.32747/1995.7570570.bard.
Texte intégralWhitham, Steven A., Amit Gal-On et Tzahi Arazi. Functional analysis of virus and host components that mediate potyvirus-induced diseases. United States Department of Agriculture, mars 2008. http://dx.doi.org/10.32747/2008.7591732.bard.
Texte intégralChaparro, Rodrigo, Maria Netto, Patricio Mansilla et Daniel Magallon. Energy Savings Insurance : Advances and Opportunities for Funding Small- and Medium-Sized Energy Efficiency and Distributed Generation Projects in Chile. Inter-American Development Bank, décembre 2020. http://dx.doi.org/10.18235/0002947.
Texte intégral