Thèses sur le sujet « Singole cellule »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Singole cellule.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleures thèses pour votre recherche sur le sujet « Singole cellule ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.

1

Antoniolli, Francesca. « PROGETTAZIONE E CARATTERIZZAZIONE DI UN BIOSENSORE MEMS ». Doctoral thesis, Università degli studi di Trieste, 2008. http://hdl.handle.net/10077/2755.

Texte intégral
Résumé :
2003/2004
Negli ultimi anni, le cellule sono state oggetto di studio approfondito e, in taluni casi, di esperimenti molto sofisticati. Tuttavia, benché si conosca molto circa la loro struttura, poche sono le informazioni sulla meccanica cellulare e sulla risposta cellulare agli stimoli meccanici. Le cellule, infatti, possono sentire forze meccaniche e convertirle in risposte biologiche, oppure, viceversa, è da tempo noto come segnali biologici e biochimici influenzino l’abilità cellulare nel sentire, generare e sopportare forze di tipo meccanico. Negli ultimi anni sono stati ideati e realizzati svariati meccanismi per l’applicazione di forze meccaniche su cellule e la rilevazione delle conseguenti deformazioni. Questi sistemi, però, presentano dei limiti: - la forza esercitata non è adeguata al fenomeno investigato; - lo studio viene effettuato su un’intera popolazione di cellule; - la forza è esercitata localmente e non sull’intera cellula. Il presente lavoro di tesi, avente come obiettivo primo lo sviluppo, la progettazione e la realizzazione di un dispositivo per la sollecitazione meccanica della singola cellula e la rilevazione delle conseguenti deformazioni, si è focalizzato sullo studio di dispositivi che potessero bypassare i suddetti limiti. La scelta è ricaduta nei Sistemi Micro Elettro Meccanici, dal momento che, oltre ad avere dimensioni compatibili con le caratteristiche cellulari ed assicurare modesti costi realizzativi ed operativi, garantiscono - la possibilità di applicare forze in un ampio range (pN-µN); - la possibilità di effettuare studi sulla singola cellula, ed in particolare su cellule aderenti; - la possibilità di stimolare l’intera cellula, e non soltanto una porzione locale di questa. La prima parte del lavoro è stata rivolta alla messa a punto di dispositivi che, concepiti in maniera analoga a quelle che sono le tradizionali macchine universali per test meccanici, potessero consentire l’ancoraggio della singola cellula su di una piattaforma di geometrie differenti a seconda che si volesse applicare una sollecitazione di trazione uniassiale, biassiale, pluriassiale oppure di taglio. Tali dispositivi tuttavia hanno riscontrato diverse problematiche quando operanti in soluzioni saline quali i medium cellulari. Sono stai quindi concepiti e sviluppati dei nuovi dispositivi che potessero bypassare le problematiche riscontrate con i primi: il MEMS è stato quindi sdoppiato su due outline di 2x2 mm, di cui una ospitante il motore per l’attuazione del dispositivo operante in aria l’altra ospitante la piattaforma per la collocazione della cellula in esame. Per completare il funzionamento di tali dispositivi è stata sviluppata e realizzata con successo una tecnica di collegamento di questi mediante una fibra di carbonio ancorata ai MEMS mediante wire bonding. Infine sono state acquisite e messe a punto la strumentazione e le tecniche che potessero consentire di operare con cellule viventi: è stato individuato un materiale tale da consentire un ancoraggio ottimale della cellula e con il quale si potesse funzionalizzate localmente la piattaforma per la cellula; è stato allestito un laboratorio per colture cellulari presso il Dipartimento dei Materiali e delle Risorse Naturali; è stata messa a punto una tecnica per la manipolazione di singole cellule; sono state infine eseguite alcune preliminari prove di trazione sulla singola cellula.
XX Ciclo
1979
Styles APA, Harvard, Vancouver, ISO, etc.
2

Moussy, Alice. « Caractérisation des premières étapes de différenciation des cellules hématopoïétiques à l'échelle de la cellule unique ». Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEP029/document.

Texte intégral
Résumé :
Bien que largement étudiés, les mécanismes fondamentaux de prise de décision dans les processus de différenciation cellulaire restent mal compris. Les théories déterministes, souvent basées sur des études populationnelles, atteignent rapidement leur limite lorsqu’il s’agit d’expliquer les différences de choix individuels de cellules, pourtant exposées au même environnement. L’objectif de ma thèse est donc d’étudier les premières étapes de la différenciation des cellules hématopoïétiques à l’échelle de la cellule unique, par des analyses transcriptomiques, protéomiques et morphologiques. Ce travail a été effectué sur deux modèles de différenciation : les lymphocytes T régulateurs et les cellules CD34+ humaines issues de sang de cordon. Nous avons observé le comportement de ces cellules uniques après stimulation. Grâce à la combinaison de la microscopie en time lapse et des analyses moléculaires réalisées à l’échelle de la cellule individuelle, nous avons pu démontrer que le choix du devenir cellulaire n’était pas unique, programmé. La cellule passe d’abord par un état dit « multi-primed », métastable où elle exprime des gènes de plusieurs lignées différentes, puis elle passe par une phase dite « incertaine », instable où elle hésite entre deux phénotypes avant de se stabiliser dans un état fixe. Nos observations sont cohérentes avec une explication stochastique de la prise de décision. La différenciation serait donc un processus spontané, dynamique, fluctuant et non un processus prédéterminé. Les décisions du destin cellulaire sont prises séparément par les cellules individuelles
Despite intensively studies, the fundamental mechanisms of cell fate decision during cellular differentiation still remain unclear. The deterministic mechanisms, often based on studies of large cell populations, cannot explain the difference between individual cell fates choices placed in the same environment. The aim of my thesis work is to study the first steps of hematopoietic cell differentiation at the single cell level thanks to transcriptomic, proteomic and morphological analyses. Two differentiation models have been used: T regulatory lymphocytes and human cord blood-derived CD34+ cells. The behavior of individual cells following stimulation has been analyzed. Using time-lapse microscopy coupled to single cell molecular analyses, we could demonstrate that the cell fate choice is not a unique, programmed event. First, the cell reaches a metastable “multi-primed” state, which is characterized by a mixed lineage gene expression pattern. After transition through an “uncertain”, unstable state, characterized by fluctuations between two phenotypes, the cell reaches a stable state. Our observations are coherent with a stochastic model of cell fate decision. The differentiation is likely to be a spontaneous, dynamic, fluctuating and not a deterministic process. The cell fate decisions are taken by individual cells
Styles APA, Harvard, Vancouver, ISO, etc.
3

MALLIA, SELENE. « La genomica su singola cellula rivela la gerarchia e l'architettura clonale nelle Neoplasie Mieloproliferative ». Doctoral thesis, Università degli studi di Modena e Reggio Emilia, 2022. http://hdl.handle.net/11380/1278821.

Texte intégral
Résumé :
Le Neoplasie Mieloproliferative (MPN) sono disordini ematologici caratterizzati dalla presenza di mutazioni somatiche che colpiscono le cellule staminali ematopoietiche e comprendono la Policitemia Vera, la Trombocitemia Essenziale e la Mielofibrosi Primaria (PMF). La PMF è una neoplasia eterogenea, contraddistinta dalla presenza di fibrosi midollare, iperplasia megacariocitaria e ematopoiesi extramidollare, e mostra la peggiore prognosi tra tutte le MPN. I pazienti spesso non rispondono ai trattamenti e nel 15-20% dei casi sviluppano una Leucemia Mieloide Acuta (LMA). Le mutazioni ricorrenti, conosciute come “mutazioni drivers”, interessano i geni JAK2, CALR e MPL, ma a complicare il profilo mutazionale intervengono altre alterazioni che sono spesso responsabili del peggioramento del quadro clinico e della trasformazione leucemica. La progressione della malattia e l’evoluzione leucemica nella PMF è accompagnata da un aumento della complessità genomica e dell’eterogeneità clonale. Molti studi hanno confermato come l’ordine di acquisizione delle mutazioni influenzi il decorso clinico. Tuttavia sono ancora poco conosciute le caratteristiche dei cloni che determinano la malattia e che guidano la trasformazione leucemica. Studi recenti hanno dimostrato come la genomica su singola cellula sia una tecnica sensibile per studiare l’eterogeneità clonale e l’evoluzione delle leucemie. Per questa ragione, abbiamo adottato un approccio di genomica su singola cellula per risolvere la complessità clonare della PMF. Dapprima abbiamo sviluppato un metodo di isolamento delle cellule staminali e progenitori ematopoietici CD34+ dal sangue cordonale, di fissazione e marcatura del CD34, al fine di ottenere una popolazione cellulare adatta alla separazione in singole cellule, sfruttando il sistema del DEP-array (Menarini Silicon Biosystem). In seguito, abbiamo confrontato diversi protocolli di amplificazione dell’intero genoma su singola cellula al fine di ottenere un’amplificazione omogenea, minimizzando l’effetto di allele drop out, per proseguire con il sequenziamento Sanger. Usando questa procedura, abbiamo analizzato le cellule CD34+ di un paziente affetto da PMF, positivo per la mutazione JAK2V617F e per altre alterazioni genetiche, caratteristiche delle MPN. Il paziente, nonostante il trattamento con il JAK2-inibitore Ruxolitinib, ha sviluppato una LMA. Al fine di ricostruire la gerarchia e l’architettura clonale, abbiamo analizzato le cellule CD34+ alla diagnosi (T1), durante la fase accelerata (T2) e nella fase di LMA (T3). Grazie alla analisi su singola cellula, abbiamo stabilito che il primo evento mutazionale investa TET2, precedendo la mutazione di JAK2, e probabilmente influenzando negativamente la risposta alla terapia. Abbiamo osservato, inoltre, un aumento dei cloni mutati per TP53 durante la progressione della malattia, suggerendo che siano stati questi cloni a supportare la fase T2. Inaspettatamente, già nella fase T1, abbiamo riscontrato una piccola popolazione cellulare recante una mutazione pro-leucemica su FLT3, alterazione che non era stata evidenziata dall'analisi in NGS ma che verosimilmente ha guidato lo sviluppo della fase T3. Infine, abbiamo evidenziato una mutazione omozigote su SRSF2 non ancora descritta. Tutti i nostri dati, confermano quindi come la genomica su singola cellula sia una tecnologia promettente di analisi della eterogeneità clonale delle MPN e che permetta sia di evidenziare precocemente caratteristiche leucemiche sia di ottenere un quadro chiaro degli eventi mutazioni che interessano i disordini ematologici.
Somatic mutations in Hematopoietic Stem Cells (HSCs) cause Myeloproliferative Neoplasms (MPNs), including Polycythemia Vera, Essential Thrombocythemia and Primary Myelofibrosis (PMF). PMF is a heterogeneous disorder consisting of bone marrow fibrosis, megakaryocyte hyperplasia and extramedullary hematopoiesis and is characterized by the worst prognosis among MPNs. About 15-20% of patients are unresponsive to conventional therapies and develop Acute Myeloid Leukemia (AML). In HSCs the main mutations, identified as “driver mutations” during MPNs pathogenesis, involve JAK2, CALR and MPL genes; in addition, many other genetic alterations contribute to the prognosis worsening and the development of AML. Disease progression and leukemic evolution in PMF results from an increase of the genomic complexity and clonal heterogeneity. Many studies confirmed that the mutational acquisition order affects the clinical outcome. However, the clonal architecture determining disease evolution and the clones guiding leukemic transformation are poorly understood. Recent studies demonstrate that single-cell (sc) genomics is a sensitive technique suitable to study clonal heterogeneity and to detect the evolution of the malignant cells in hematological neoplasms. For this reason, we used the sc-genomics approach to clarify the clonal complexity in PMF. Firstly, we developed a workflow for CD34+ Hematopoietic Stem Progenitor Cells (HSPCs) isolation from cord blood, fixation and immunostaining for CD34, in order to singularly separate the cells by DEP-array system (Menarini Silicon Biosystem) and to obtain a cell population suitable for sc-analysis. Then, we compared different whole genome amplification (WGA) protocols for single cells in order to obtain a uniform DNA amplification for Sanger sequencing and minimize allele drop out effect. Based on this method, we analyzed the CD34+ HSPCs of a PMF patient carrying JAK2V617F and other MPN frequent mutations. This patient was treated with JAK2-inhibitor Ruxolitinib but he was unresponsive to therapy and evolved to AML. In order to reconstruct the clonal hierarchy and architecture, we analyzed CD34+ cells during chronic phase (T1), the accelerated phase (T2) and the AML phase (T3). By means to sc-analysis, we established that TET2 was the first mutated gene, preceding JAK2 mutation, and this probably conferred a lower sensitivity to treatment. Moreover, we identified an increase of the allele burden of the TP53 mutation during disease progression, suggesting that TP53-mutated clones supported the accelerated (T2) phase. Interestingly, we already detected in T1 phase a small cell fraction, undetectable by bulk NGS and carrying the leukemogenic FLT3 mutation, probably driving the T3 phase. Finally, we characterized SRSF2 homozygous mutation that has not been described yet. Altogether our data demonstrate that sc-genomics is a promising method to uncover clonal heterogeneity in MPNs, highlighting the early occurrence of pro-leukemic mutations and to describe the real scenario of mutational events in hematological diseases.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Caccianini, Laura. « Imagerie de l'architecture dynamique de la chromatine dans la cellule unique ». Thesis, Paris Sciences et Lettres (ComUE), 2019. https://tel.archives-ouvertes.fr/tel-02896692.

Texte intégral
Résumé :
La structure de la chromatine joue un rôle crucial dans la régulation de plusieurs fonctions cellulaires chez les cellules de mammifères. Perturber l’organisation spatiale de la chromatine peut avoir des conséquences dramatiques sur la vie d’une cellule et peut amener`des pathologies graves chez les organismes. Deux facteurs nucléaires, CTCF et Cohesine, sont parmi les principaux acteurs dans la régulation et le maintien de l’architecture de l’ADN. Des avancements importants ont révélé ́la complexité ́des mécanismes qui régulent l’organisation de la chromatine, mais le domaine manque encore d’une description dynamique à l’échelle de la cellule et de la molécule unique. Cette étude est centrée sur la description de la dynamique de CTCF et Cohesin réalisé ́avec de méthodes de suivi de la molécule unique dans des cellules souche embryonnaires vivantes de souris. L’interaction entre ces deux facteurs a été étudiée à travers la caractérisation de la dynamique de Cohesin en absence de CTCF et dans le contexte d’autres altérations biologiques
Chromatin structure and cellular function are tightly linked in the nucleus of mammalian cells. Disruption of chromatin spatial organisation dramatically affects the life of a cell and eventually leads to severe pathologies in entire organisms. Two nuclear factors, CTCF and Cohesin, have been found to play a crucial role in the regulation and maintenance of DNA architecture. Huge advancements have been made in the understanding of the mechanisms behind chromatin arrangement but the field is still lacking a dynamic picture at the single cell and single molecule level. This study provide this study provides insight into the dynamics of CTCF and Cohesin through single particle tracking of CTCF and Cohesin dynamics achieved with single molecule tracking in living mouse embryonic stem cells. The interplay between these two factors was studied by looking at Cohesin’s behaviour in the absence of CTCF and in the context of other biological alterations
Styles APA, Harvard, Vancouver, ISO, etc.
5

Holt, Brian D. « Cellular Processing of Single Wall Carbon Nanotubes ». Research Showcase @ CMU, 2014. http://repository.cmu.edu/dissertations/397.

Texte intégral
Résumé :
Nanostructured materials are hailed to be the solutions of the future for many research areas, and single wall carbon nanotubes (SWCNTs) are one of the more interesting materials due to their highly desirable electronic, optical, thermal and mechanical properties. For instance, this combination of properties is of wide interest for biological applications, including cellular technologies. However, understanding cellular processing of SWCNTs is limited. In this thesis, quantification of sub-cellular events–including SWCNT uptake rates, altered mitosis, redistribution of sub-cellular components and reduced cellular functionalities–is used to formulate insight into how cells internalize and process SWCNTs. By understanding sub-cellular processing of SWCNTs, new basic science endeavors and SWCNT-based biological applications can be more effectively developed, and the insights can be generalized to other nanostructured materials.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Geisler, Hubert. « Structuration d'hydrogels thermoactivables pour l'analyse de cellules uniques ». Electronic Thesis or Diss., Université Paris sciences et lettres, 2020. http://www.theses.fr/2020UPSLS001.

Texte intégral
Résumé :
Dans cette thèse est présentée une nouvelle technologie microfluidique de capture de cellules uniques basée sur l’utilisation d’hydrogels thermoactivables. Nous utilisons notamment le PolyNIPAM, un polymère dont le volume est augmenté dans l'eau de 400% lorsque la température est inférieure à 32°C et est dégonflé lorsque la température est supérieure à 34°C. Nous exploitons ce gonflement réversible pour ouvrir et fermer des compartiments intégrés dans une chambre microfluidique.Le greffage et la structuration de ces motifs d’hydrogel repose sur la chimie click thiol-ène, initiée par voie thermique ou par irradiation UV. Nous avons développé des méthodes et procédés de microfabrication dans le but de diversifier les substrats d’accroche (du verre vers le PDMS, COC, PMMA, etc), d’élargir la gamme des épaisseurs des structures réalisables (de quelques microns vers la dizaine de microns d’épaisseur) et de renforcer nos connaissances concernant l'incidence de la fabrication sur le comportement de l’hydrogel. Un protocole de photolithographie robuste est finalement obtenu permettant le design de toute sorte de motif 2D sur différents choix de substrat. Une application possible détaillée par la suite est le développement de ces puces microfluidiques capables de capturer des cellules uniques dans des compartiments en hydrogel. (confidentiel)
We present in this work a new microfluidic technology aiming at isolating single cells by the use of thermoactuable polymers. One of the polymers we use is polyNIPAM, a polymer that can expand its volume by 400% in water when the temperature is set under 32°C and can shrink down when it is set over 34°C. We use this reversible swelling capability to open and close compartments embedded in a microfluidic chip.Grafting and structuring these hydrogel features relies on thiol-en click chemistry, initiated thermally or by UV irradiation. We have developed methods and microfabrication protocols in order to diversify the substrate materials (from glass to PDMS, COC, PMMA, etc), to expand the structures thickness range (from few microns to a tenth of microns) and to strengthen our knowledge regarding the fabrication impact on the hydrogel’s behavior. A robust protocol of photolithography has finally been worked on allowing the design of any type of 2D features on a large choice of substrates.One of the realistic applications detailed here is the development of microfluidic chips aiming at isolating single cells in hydrogel compartments. (confidential)
Styles APA, Harvard, Vancouver, ISO, etc.
7

Boltyanskiy, Rostislav. « Mechanical Response of Single Cells to Stretch ». Thesis, Yale University, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10160860.

Texte intégral
Résumé :

A living cell is a complex soft matter system far from equilibrium. While its components have definite mechanical properties such as stiffness and viscosity, cells consume energy to generate force and exhibit adaptation by modulating their mechanical properties through regulatory pathways. In this dissertation, we explore cell mechanics by stretching single fibroblast cells and simultaneously measuring their traction stresses. Upon stretch, there is a sudden, drastic increase in traction stresses, often followed by a relaxation over a time scale of about 1 minute. Upon release of stretch, traction stresses initially drop and often recover on a similar time scale of about 1 minute. We show that a minimal active linear viscoelastic model captures essential features of cell response to stretch. This model is most successful in describing the response of cells within the first 30 seconds of stretch. While perturbations of myosin and vinculin change quiescent traction stresses, they surprisingly have no significant impact on the stiffness or viscoelastic timescale of the cells. On longer time scales, cells may show an adaptive response to stretch that contradicts the minimal mechanical model. The probability of an adaptive response is significantly reduced by myosin de-activation and vinculin knockout. Therefore, we find that while vinculin and myosin are not important in determining passive mechanical properties of cells, such as stiffness and viscosity, they play a significant role in the adaptive mechanisms of cell response to stretch. To perform this work, we have built a novel micro stretching device compatible with live cell microscopy and developed a computational tool to analyze data from large traction stresses. Therefore, this dissertation's contribution is two-fold: (1) a novel experimental approach to explore the mechanics of living cells, and (2) a new model and framework for understanding the mechanical response of cells to stretch.

Styles APA, Harvard, Vancouver, ISO, etc.
8

Pagliaro, Sarah Beatriz De Oliveira. « Transcriptional control induced by bcr-abl and its role in leukemic stem cell heterogeneity. Single-Cell Transcriptome in Chronic Myeloid Leukemia : Pseudotime Analysis Reveals Evidence of Embryonic and Transitional Stem Cell States Single Cell Transcriptome in Chronic Myeloid Leukemia (CML) : Pseudotime Analysis Reveals a Rare Population with Embryonic Stem Cell Features and Druggable Intricated Transitional Stem Cell States A novel neuronal organoid model mimicking glioblastoma (GBM) features from induced pluripotent stem cells (iPSC) Experimental and integrative analyses identify an ETS1 network downstream of BCR-ABL in chronic myeloid leukemia (CML) ». Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASQ032.

Texte intégral
Résumé :
La leucémie myéloïde chronique est une hématopoïèse maligne clonale, caractérisée par l'acquisition de la translocation t (9;22) conduisant au chromosome Ph1 et à son homologue l'oncogène BCR-ABL, dans une cellule souche hématopoïétique très primitive. La LMC est un modèle de thérapies ciblées, car il a été démontré que la preuve de la faisabilité du ciblage de l'activité tyrosine kinase (TK) BCR-ABL à l'aide d'inhibiteurs de TK (TKI) entraîne des réponses et des rémissions majeures. Cependant, les problèmes actuels rencontrés dans ces thérapies sont la résistance des cellules souches leucémiques primitives et leur persistance qui serait liée à l'hétérogénéité des cellules souches au moment du diagnostic, ce qui conduit à la sélection clonale de cellules résistant aux thérapies TKI. J'ai appliqué la technologie de l'analyse du transcriptome des cellule uniques aux cellules de la LMC en utilisant un panel de gènes impliqués dans différentes voies, combinée à l'analyse d'inférence de trajectoire au modèle d'expression des gènes. Les résultats ont montré un état transitoire des cellules souches comprenant des gènes embryonnaires identifiés dans les cellules de la LMC au moment du diagnostic, ce qui pourrait contribuer à la résistance et à la persistance de la LSC. En outre, l'oncoprotéine Bcr-Abl est la tyrosine kinase constitutivement active produite par le gène chimérique BCR-ABL dans la leucémie myéloïde chronique (LMC). Les cibles transcriptionnelles de Bcr-Abl dans les cellules leucémiques n'ont pas été étudiées de manière approfondie. Une expérience de transcriptome utilisant la lignée cellulaire UT7 hématopoïétique exprimant BCR-ABL, a identifié la surexpression du facteur d'élongation eucaryote kinase 2 (eEF2K) qui joue un rôle majeur dans la survie des cellules en cas de privation de nutriments. Dans l'ensemble, les données suggèrent que la surexpression de eEF2K dans la LMC est associée à une sensibilité accrue à la privation de nutriments
Chronic myeloid leukemia is a clonal hematopoietic malignancy, characterized by the acquisition of the t (9;22) translocation leading to Ph1 chromosome and its counterpart BCR-ABL oncogene, in a very primitive hematopoietic stem cell. CML is a model of targeted therapies as the proof of concept of the feasibility of targeting the tyrosine kinase (TK) activity BCR-ABL using TK inhibitors (TKI) has been shown to lead to major responses and remissions. However, the current problems encountered in these therapies are primitive leukemic stem cells resistance and their persistence which is thought to be related to the heterogeneity of the stem cells at diagnosis leading to clonal selection of cells resisting to TKI therapies. I have applied the technology of single cell transcriptome analysis to CML cells using a panel of genes involved in different pathways combined with trajectory inference analysis to the gene expression pattern. The results showed a transitional stem cell states including embryonic genes identified in CML cells at diagnosis which could contribute to LSC resistance and persistence. Furthermore, the oncoprotein Bcr-Abl is the constitutively active tyrosine kinase produced by the chimeric BCR-ABL gene in chronic myeloid leukemia (CML). The transcriptional targets of Bcr-Abl in leukemic cells have not been extensively studied. A transcriptome experiment using the hematopoietic UT7 cell line expressing BCR-ABL, has identified the overexpression of eukaryotic elongation factor kinase 2 (eEF2K) which plays a major role in the survival of cells upon nutrient deprivation. Overall, the data suggest that overexpression of eEF2K in CML is associated with an increased sensitivity to nutrient-deprivation
Styles APA, Harvard, Vancouver, ISO, etc.
9

Simon-Desbois, Linda. « Development of a microfluidic device for single cell transcriptome analysis ». Thesis, Lille 2, 2013. http://www.theses.fr/2013LIL2S007.

Texte intégral
Résumé :
L’hétérogénéité cellulaire au sein d’une même population cellulaire a été observée chez des organismes procaryotes, chez des organismes plus complexes tels que les mammifères et chez les cellules cancéreuses. L’expression des gènes est un phénomène stochastique ou « bruité ». La connaissance, à l’échelle d’une cellule isolée, des variations stochastiques de l’expression génique, ses oscillations dans le temps et en fonction des fluctuations extérieures constitue un enjeu majeur. Elle permettrait de connaitre les mécanismes de croissance, de différenciation et de migration cellulaire et par voie de conséquence de développer de nouveaux outils thérapeutiques. Par ailleurs, les techniques actuelles d’analyses sur cellule unique nécessitent des protocoles longs et laborieux. Cependant, l’avènement des microcircuits dans les années 80, puis celle de la microfluidique dans les années qui ont suivi, ont ouvert les portes des analyses (chimiques, biologiques et biochimiques) à haut débit, sur de très petits volumes (pl à fl). Nous avons développé un microsystème fluidique, permettant la génération de micro gouttelettes ultrastables et facilement manipulables ; et ce, en utilisant les qualités de changement de phase de l’agarose. Par ailleurs, nous avons conçu un system innovant de génération de microgouttelettes le système « push-pull » qui permet de réduire les volumes morts. Le très petit volume des microgouttelettes font d’elles des microréacteurs dans lesquels nous avons pu encapsuler des suspensions d’ADN, puis des cellules isolées, réaliser des réactions biochimiques, et analyser leur transcriptome ; et améliorer encore l’efficacité et l’intérêt des microémulsions, une technique à très haut débit, et en plein essor.L’hétérogénéité cellulaire au sein d’une même population cellulaire a été observée chez des organismes procaryotes, chez des organismes plus complexes tels que les mammifères et chez les cellules cancéreuses. L’expression des gènes est un phénomène stochastique ou « bruité ». La connaissance, à l’échelle d’une cellule isolée, des variations stochastiques de l’expression génique, ses oscillations dans le temps et en fonction des fluctuations extérieures constitue un enjeu majeur. Elle permettrait de connaitre les mécanismes de croissance, de différenciation et de migration cellulaire et par voie de conséquence de développer de nouveaux outils thérapeutiques. Par ailleurs, les techniques actuelles d’analyses sur cellule unique nécessitent des protocoles longs et laborieux. Cependant, l’avènement des microcircuits dans les années 80, puis celle de la microfluidique dans les années qui ont suivi, ont ouvert les portes des analyses (chimiques, biologiques et biochimiques) à haut débit, sur de très petits volumes (pl à fl). Nous avons développé un microsystème fluidique, permettant la génération de micro gouttelettes ultrastables et facilement manipulables ; et ce, en utilisant les qualités de changement de phase de l’agarose. Par ailleurs, nous avons conçu un system innovant de génération de microgouttelettes le système « push-pull » qui permet de réduire les volumes morts. Le très petit volume des microgouttelettes font d’elles des microréacteurs dans lesquels nous avons pu encapsuler des suspensions d’ADN, puis des cellules isolées, réaliser des réactions biochimiques, et analyser leur transcriptome ; et améliorer encore l’efficacité et l’intérêt des microémulsions, une technique à très haut débit, et en plein essor
In the post-genomic era, it is now critical to characterize living organisms at the singlecell level. CAGE (Cap Analysis of Gene Expression) is a technology developed by agroup of RIKEN instituteto get genome-wide profile of gene expression. It can beused for profiling of gene expression and identifying the TSS (transcription start site)to analyze promoters architecture. By using the CAGE technology, it could be foundthat different tissues and families of genes differentially use distinct types ofpromoters. Applying CAGE technology against single cells is an ideal way tounderstand life phenomenon based on genome and will have a major impact inbiology. To address this, a novel platform to manipulate single cell and analyze itsown transcriptome with higher precision and efficiency is required.This project aims to develop a microfluidic platform to realize the protocol of CAGEtechnology against single cells with higher-throughput and sensitivity overconventional microtube-based way. For this, we encapsulated single cells inmicrodroplets, lysed them, and performed RT reaction in order to sequence andanalyze their transcriptome
Styles APA, Harvard, Vancouver, ISO, etc.
10

Chen, Peng. « Single cell assays of exocytosis / ». free to MU campus, to others for purchase, 2002. http://wwwlib.umi.com/cr/mo/fullcit?p3074384.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Traboulsi, Abdel-Meneem. « Étude à moyen-débit de la localisation d'ARNm dans les cellules humaines ». Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT117.

Texte intégral
Résumé :
La localisation d’ARNm a été découverte en 1983 dans les ovocytes et les embryons des ascidies. Depuis, plusieurs exemples d'ARN localisés ont été trouvés dans de nombreux organismes, y compris les plantes, les levures, les champignons, les insectes, les poissons et les mammifères. Les ARNm localisés contribuent à de nombreuses fonctions biologiques, telles que le développement embryonnaire, la division cellulaire asymétrique, la migration cellulaire, la signalisation, la plasticité neuronale et plein d’autres ...Jusqu'à présent, quelques études ont analysé la localisation d’ARNm de manière systématique. Trois d'entre eux ont été effectués chez la drosophile pendant l'embryogenèse, l'oogenèse ou le stade larvaire et ont analysé environ 16000 ARN au total. Les deux autres études ont été réalisées dans des cellules de mammifères et ont analysé près de 1000 ARNm chacune. Ces études ont montré l'importance de la localisation d’ARNm dans les cellules humaines et son implication dans différents processus biologiques. L'objectif de ma thèse était donc d'augmenter le débit des techniques FISH à l’échelle de molécule unique (smFISH) et d'étudier la localisation d’ARNm dans les cellules HeLa de manière systématique.Une limitation de smFISH est le coût de sondes fluorescentes, qui limite le nombre d'ARNm qui peut être analysé. Par conséquent, j'ai développé un protocole alternatif dans lequel des sondes pour de nombreux gènes ont été synthétisées comme un pool d'oligonucléotides (40 par gène en moyenne, plus de 12000 au total). Les sondes spécifiques d’un ARNm donné ont ensuite été amplifiées par PCR et converties en simple brin par transcription in vitro. J'ai généré un protocole complet, à partir de la conception de la sonde et jusqu'à l'acquisition de l'image. Je me suis intéressé à l’étude des ARNm du cycle cellulaire. En effet, les gènes du cycle cellulaire ont été largement étudiés au niveau de la protéine, mais on sait peu de choses sur la localisation de leurs ARNm. Pendant la mitose, les cellules subissent d'importantes modifications morphologiques et la traduction locale pourrait être un moyen d'atteindre la localisation des protéines. Le screening sur ces ARNm est en cours.Parallèlement à ces expériences, j'ai réalisé des expériences de smFISH sur 100 gènes choisis au hasard et 50 régulateurs de la transition G2/M du cycle cellulaire, en utilisant un protocole de smFISH classique. Dans cette configuration, on disposait d'une collection de lignées cellulaires HeLa, dans laquelle chaque cellule contient un chromosome artificiel bactérien avec le gène d'intérêt marqué au GFP. Par conséquent, en utilisant des sondes qui s'hybridaient à la séquence GFP, je pourrais utiliser le même ensemble de sondes marquées pour étudier la localisation de tous les ARNm. Un autre avantage est que la localisation des protéines pourrait être évaluée simultanément. Mes résultats indiquent que 4 ARNm ont montré une localisation spécifique lors du screening de 100 gènes choisis d’une manière aléatoire et 15 ARNm parmi les 54 régulateurs de la transition G2 / M. Ces ARNm appartiennent à cinq classes de localisation: "blobs", qui sont des agrégats d'ARNm cytoplasmiques; «clusters», qui sont des zones de concentration locale élevée d'ARNm, mais où une molécule unique d’ARNm peut encore être résolu; «nuclear membrane », où les ARNm se concentrent autour de l'enveloppe nucléaire; "spindle", qui sont des ARNm accumulés sur l'appareil de division mitotique, “spots" qui sont des agrégats d'ARNm cytoplasmiques où une molécule unique d’ARNm ne peut pas être résolu, et qui sont plus grands que les blobs. La colocalisation entre l'ARNm et la GFP, qui suggère une traduction locale, n'a été trouvée que pour 1 ARNm.Ces screenings aléatoires et ciblés effectués à petite échelle montrent une fréquence et une diversité inattendues dans les modèles de localisation d’ARNm. Cela ouvre la voie pour effectuer des screenings à plus grande échelle
MRNA localization was discovered in 1983 in ascidian oocytes and early embryos. Since then many examples of localized RNAs have been found in many organisms, including plants, yeast, fungi, insects, fish and mammals. Localized mRNAs contribute to many biological functions, such as embryonic patterning, asymmetric cell division, cell migration, signaling, neuronal plasticity and others…Until now, only few studies analyzed RNA localization in a systematic manner. Three of them were done in Drosophila, during embryogenesis, oogenesis or larval stage and analyzed around 16000 mRNAs in total. The two other studies were done in mammalian cells and analyzed nearly 1000 mRNAs each. These studies opened a door and raised questions regarding the importance of mRNA localization in human cells and its implication in different biological processes. The goal of my thesis was thus to increase the throughput of single molecule FISH techniques (smFISH) and to study mRNA localization in HeLa cells in a systematic manner.One limitation in smFISH is the cost of the fluorescent oligonucleotide probes, which limits the number of mRNAs that can be analyzed. Therefore, I developed an alternative protocol in which probes for many genes were synthesized as a pool of oligonucleotides (40 per gene in average, more than 12000 in total). Gene-specific probes were then amplified by PCR and converted into single strand by in vitro transcription. I generated a complete protocol, starting from probe design and up to image acquisition. I was interested in studying cell cycle genes. Indeed, cell cycle genes have been extensively studied at the protein level but little is known concerning the localization of their mRNAs. During mitosis, cells go through important morphological modifications and local translation could be a mean of achieving protein localization. This screen is ongoing.In parallel to these experiments, I performed a smFISH based screen on 100 randomly chosen genes and 50 regulators of the G2/M transition of the cell cycle, using a traditional smFISH protocol. In this set-up, I took advantage of a library of HeLa cell lines, in which each cell line contains a bacterial artificial chromosome with the gene of interest tagged with GFP. Therefore, using oligonucleotides hybridizing to the GFP sequence, I could use the same probe set to study the localization of all the tagged mRNAs. A further advantage is that protein localization could be assessed simultaneously. My results indicate that two mRNAs showed a specific localization when screening 100 random genes, and 16 mRNAs among the 50 regulators of the G2/M transition. These mRNAs belong to five localization classes: "blobs", which are cytoplasmic mRNA aggregates; "clusters", which are areas of high local mRNA concentration but where individual mRNA can still be resolved; "nuclear envelope", where mRNAs concentrate around the nuclear envelope; "spindle", which are mRNAs accumulating on the cell division apparatus during mitosis, “spots" which are cytoplasmic mRNA aggregates where individual mRNA can’t be resolved and are bigger than blobs. Interestingly, colocalization between mRNA and GFP, which suggests local translation, was only found for 1 mRNA.These random and targeted screens performed at small-scale show an unexpected frequency and diversity in mRNA localization patterns, therefore pointing to new functions related to this process. This will stimulate future studies aiming at performing screenings at a higher scale
Styles APA, Harvard, Vancouver, ISO, etc.
12

Ben, Meriem Zacchari. « Memory of stress response in the budding yeast Saccharomyces cerevisiae ». Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCC311.

Texte intégral
Résumé :
La mémoire cellulaire est une capacité critique dont font preuve les micro-organismes pour s'adapter aux fluctuations environnementales potentiellement néfastes. Chez l'eucaryote unicellulaire S. cerevisiae, il a été montré à l’échelle d’une population que la mémoire cellulaire peut prendre la forme d'une réponse plus rapide ou moins prononcée suite à des stress répétés. Nous présentons ici une étude sur la façon dont les levures réagissent à des stress hyperosmotiques de courte durée à l’échelle de la cellule unique. Nous avons analysé le comportement dynamique du promoteur STL1, exprimé en condition de stress osmotique, et fusionné à un rapporteur fluorescent en faisant usage de microfluidique et de microscopie à fluorescence. Nous avons établi que pSTL1 présente une variabilité dynamique dans ses activations successives après deux stress courts. Malgré cette variabilité, la plupart des cellules présentent une mémoire des stress passés caractérisée par une diminution de l'activité de pSTL1. Nous avons montré que cette mémoire ne nécessite pas de nouvelle synthèse de protéines. L'emplacement génomique est important pour cette mémoire puisque le déplacement du promoteur vers un domaine chromatinien péricentromérique entraîne une diminution de sa force transcriptionnelle ainsi que la perte de la mémoire. Nos résultats indiquent aussi une implication non rapportée du complexe SIR sur l'activité de pSTL1 lorsqu'il est déplacé dans le domaine péricentromérique, dans nos conditions expérimentales. Cette étude fournit une description quantitative d'une mémoire cellulaire qui inclut la variabilité cellulaire et prend en compte la contribution de la structure de la chromatine sur la mémoire du stress. Nos travaux pourraient servir de base à des études plus larges sur le positionnement des gènes de réponse au stress en positions subtélomériques dans la levure, tant d'un point de vue génétique qu'évolutif
Cellular memory is a critical ability displayed by micro-organisms in order to adapt to potentially detrimental environmental fluctuations. In the unicellular eukaryote S. cerevisiae, it has been shown at the population level that cellular memory can take the form of a faster or a decreased response following repeated stresses. We here present a study on how yeasts respond to short, pulsed hyperosmotic stresses at the single-cell level. We analyzed the dynamical behavior of the stress responsive STL1 promoter fused to a fluorescent reporter using microfluidics and fluorescence time-lapse microscopy. We established that pSTL1 displays a dynamical variability in its successive activations following two short and repeated stresses. Despite this variability, most cells displayed a memory of past stresses through a decreased activity of pSTL1 upon repeated stresses. We showed that this memory does not require do novo protein synthesis. Rather, the genomic location is important for the memory since promoter displacement to a pericentromeric chromatin domain leads to its decreased transcriptional strength and to the loss of the memory. Interestingly, our results points towards an unreported involvement of the SIR complex on the activity of pSTL1 only when displaced to the pericentromeric domain in our experimental conditions. This study provides a quantitative description of a cellular memory that includes single-cell variability and points towards the contribution of the chromatin structure in stress memory. Our work could serve as a basis to broader studies on the positioning of stress response genes at subtelomeric positions in the budding yeast, from a genetic point of view as well as an evolutionary one
Styles APA, Harvard, Vancouver, ISO, etc.
13

Svensson, Valentine. « Probabilistic modelling of cellular development from single-cell gene expression ». Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/267937.

Texte intégral
Résumé :
The recent technology of single-cell RNA sequencing can be used to investigate molecular, transcriptional, changes in cells as they develop. I reviewed the literature on the technology, and made a large scale quantitative comparison of the different implementations of single cell RNA sequencing to identify their technical limitations. I investigate how to model transcriptional changes during cellular development. The general forms of expression changes with respect to development leads to nonparametric regression models, in the forms of Gaussian Processes. I used Gaussian process models to investigate expression patterns in early embryonic development, and compared the development of mice and humans. When using in vivo systems, ground truth time for each cell cannot be known. Only a snapshot of cells, all being in different stages of development can be obtained. In an experiment measuring the transcriptome of zebrafish blood precursor cells undergoing the development from hematopoietic stem cells to thrombocytes, I used a Gaussian Process Latent Variable model to align the cells according to the developmental trajectory. This way I could investigate which genes were driving the development, and characterise the different patterns of expression. With the latent variable strategy in mind, I designed an experiment to study a rare event of murine embryonic stem cells entering a state similar to very early embryos. The GPLVM can take advantage of the nonlinear expression patterns involved with this process. The results showed multiple activation events of genes as cells progress towards the rare state. An essential feature of cellular biology is that precursor cells can give rise to multiple types of progenitor cells through differentiation. In the immune system, naive T-helper cells differentiate to different sub-types depending on the infection. For an experiment where mice were infected by malaria, the T-helper cells develop into two cell types, Th1 and Tfh. I model this branching development using an Overlapping Mixture of Gaussian Processes, which let me identify both which cells belong to which branch, and learn which genes are involved with the different branches. Researchers have now started performing high-throughput experiments where spatial context of gene expression is recorded. Similar to how I identify temporal expression patterns, spatial expression patterns can be identified nonparametrically. To enable researchers to make use of this technique, I developed a very fast method to perform a statistical test for spatial dependence, and illustrate the result on multiple data sets.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Faddah, Dina Adel. « Single-cell analyses of cellular reprogramming and embryonic stem cells ». Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/89941.

Texte intégral
Résumé :
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Biology, 2014.
Vita. Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references.
Three years before the start of this thesis, Yamanaka and Takahashi published a groundbreaking paper entitled "Induced of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors." A mere two scientists reprogrammed somatic cells to an embryonic stem-cell like state (termed induced pluripotent stem cells, iPSCs) by simply overexpressing four transcription factors: Oct4, Sox2, c-Myc, and Klf4. During cellular reprogramming, only a small fraction of cells become iPSCs. Previous analyses of gene expression during reprogramming were based on populations of cells, impeding single-cell level identification of reprogramming events. Using single-cell analysis, we found Esrrb, Utf1, Lin28 and Dppa2 to be predictive markers of reprogramming. We found that single cells exhibit high variation in gene expression early in reprogramming and this heterogeneity decreases are the cell reaches pluripotency. Our results show that a stochastic phase of gene activation is followed by a late hierarchical phase, initiated by activation of the Sox2 locus, leading to the activation of the pluripotency circuitry. Finally, we reprogram cells without Oct4, Klf4, Sox2, c-Myc, and Nanog. Embryonic stem cells (ESCs) are the gold standard comparison for iPSCs. Our investigation of ESCs must continue in parallel to that of iPSCs since we cannot truly understand iPSCs if we do not understand the molecular mechanisms that regulate ESC pluripotency. The homeodomain transcription factor Nanog is a central part of the core pluripotency transcriptional network and plays a critical role in ESC self-renewal. Several reports have suggested that Nanog expression is allelically regulated and that transient downregulation of Nanog in a subset of pluripotent cells predisposes them toward differentiation. Using single-cell gene expression analyses combined with different reporters for the two alleles of Nanog, we show that Nanog is biallelically expressed in ESCs independently of culture condition. We also show that the overall variation in endogenous Nanog expression in ESCs is very similar to that of several other pluripotency markers. Our analysis suggests that reporter-based studies of gene expression in pluripotent cells can be significantly influenced by the gene-targeting strategy and genetic background employed. Our results show that single-cell analysis is essential for deciphering the mechanisms of reprogramming and understanding gene regulation of ESCs, exposing important rarities typically masked by population-based assays.
by Dina Adel Faddah.
Ph. D.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Meehan, Sean. « Structural Stiffness Gradient along a Single Nanofiber and Associated Single Cell Response ». Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/23105.

Texte intégral
Résumé :
Cell-substrate interactions are important to study for development of accurate in vitro research platforms.  Recently it has been demonstrated that physical microenvironment of cells directly affects cellular motility and cytoskeletal arrangement.  Specifically, previous studies have explored the role of material stiffness (Young\'s modulus: N/m2) on cell behavior including attachment, spreading, migration, cytoskeleton arrangement (stress fiber and focal adhesion distribution) and differentiation.
In this study using our recently described non-electrospinning fiber manufacturing platform, customized scaffolds of suspended nanofibers are developed to study single cell behavior in a tunable structural stiffness (N/m) environment.  Suspended fibers of three different diameters (400, 700 and 1200 nm) are deposited in aligned configurations in two lengths of 1 and 2 mm using the previously described STEP (Spinneret based Tunable Engineered Parameters) platform.  These fibers present a gradient of structural stiffness to the cells at constant material stiffness.   Single cells attached to fibers are constrained to move along the fiber axis and with increase in structural stiffness are observed to spread to longer lengths, put out longer focal adhesions, have elongated nucleus with decreased migration rates. Furthermore, more than 60% of cell population is observed to migrate from areas of low to high structural stiffness. Additionally dividing cells are observed to round up and daughter cells are observed to migrate away from each other after division. Interestingly, dividing rounded cells are found to be anchored to the fibers through thin protrusions emanating from the focal adhesion sites.
These results indicate a substrate stiffness sensing mechanism that goes beyond the traditionally accepted modulus sensing that cells have been shown to respond to previously.  From this work, the importance of structural stiffness in cellular mechanosensing at the single cell-nanofiber scaled warrants consideration of the above factors in accurate design of scaffolds in future.  

Master of Science
Styles APA, Harvard, Vancouver, ISO, etc.
16

Wu, Zhanghan. « Understanding molecular and cellular processes using statistical physics ». Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/27745.

Texte intégral
Résumé :
Using statistical physics principles to solve problems in biology is one of the most promising directions due to the complexity and non-equilibrium fluctuations in biological systems. In this work, we try to describe the dynamics at both cellular and molecular levels. Microtubule dynamics and dynamic disorder of enzyme proteins are two of the examples we investigated. The dynamics of microtubules and the mechanical properties of these polymers are essential for many key cellular processes. However, critical discrepancies between experimental observations and existing models need to be resolved before further progress towards a complete model can be made. We carried out computational studies to compare the mechanical properties of two alternative models, one corresponding to the existing, conventional model, and the other considering an additional type of tubulin lateral interaction described in a cryo-EM structure of a proposed trapped intermediate in the microtubule assembly process. Our work indicates that a class of sheet structures is transiently trapped as an intermediate during the assembly process in physiological conditions. In the second part of the work, we analyzed enzyme slow conformational changes in the context of regulatory networks. A single enzymatic reaction with slow conformational changes can serve as a basic functional motif with properties normally discussed with larger networks in the field of systems biology. The work on slow enzyme dynamics fills the missing gap between studies on intramolecular and network dynamics. We also showed that enzyme fluctuations could be amplified into fluctuations in phosphorylation networks. This can be used as a novel biochemical â reporterâ for measuring single enzyme conformational fluctuation rates.
Ph. D.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Gielen, Fabrice Matthieu. « Single cell dielectrophoretic trapping for the analysis of cellular membrane dynamics ». Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/9532.

Texte intégral
Résumé :
Cellular membrane dynamics has been subject to an ever-growing research interest since the introduction of the fluid mosaic model in the early seventies. The recognition that individual components of a cell membrane are able to diffuse in a two-dimensional matrix led to the crucial questioning of the structure-function relationship. The stunning diversity of lipid or proteins making up the plasma membrane of mammalian cells prevents theoretical treatment to apprehend membrane organization and dynamics. For this reason, membrane dynamics has remained up to now predominantly an experimental field of study. The presence of membrane micro-domains including lipid rafts and the co-existence of several phases has for instance been recently confirmed using single-molecule fluorescence detection methods. These domains as well as overall membrane fluidity are thought to be essential in many key cellular processes such as signal transduction, pathogen entry or trafficking. This thesis focuses on the development, characterization and applications of novel microfluidic tools for probing cellular plasma membrane structure and dynamics. We successfully demonstrated dielectrophoretic trapping of single mammalian cells (typically 10μm in diameter) as a means to facilitate time-resolved studies on living cell membranes for timescales of minutes. Firstly, microfluidic devices embedding micro-electrodes have been fabricated. These dielectrophoretic (DEP) traps were characterized to assess their potential as a tool for performing in-vitro membrane bio-assays. DEP traps have been subsequently used to trap single-cells near a defined surface and reagents were introduced via microfluidic channels. Incorporation of a Förster Resonance Energy transfer (FRET) acceptor dye within a donor labelled cellular membrane allowed for time-resolved observation of colocalization events using a scanning confocal microscope and fluorescence lifetime imaging. The presence of cholesterol was shown to influence probes localization. Such microfluidic devices coupled with high-resolution imaging of single cells can potentially be used to study the organization dynamics of individual molecules on the membrane of live cells.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Martineau, Eugénie. « Linking single cell directionality to dynamic multicellular transitions in Myxococcus xanthus : a multiscale analysis ». Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0089.

Texte intégral
Résumé :
La δ-proteobactérie Myxococcus xanthus est étudiée depuis des décennies pour sa capacité à s’auto-organiser en réponse à des stimuli environnementaux. Cette bactérie colonise des niches écologiques favorables grâce à sa capacité à se mouvoir sur des surfaces. Cette motilité lui permet d’avoir un comportement prédateur envers des organismes proies, alors qu’en absence de nutriments, elle met en place un processus développemental permettant la formation de corps fructifères contenant des myxospores résistant aux stress environnementaux. Tous ces comportements multicellulaires requièrent un contrôle dynamique de la polarité de la cellule, établi par trois protéines polaires : MglA, MglB et RomR. Ensemble, elles définissent la direction de la cellule, qui peut être rapidement inversée sous l’action du système chimiotactique Frz (réversion). Dans ce travail de thèse, à travers une approche expérimentale et computationnelle, nous avons mis en évidence que le système de régulation forme un nouveau type d’oscillateur protéique, contrôlé par deux protéines RomR et FrzX, qui agissent ensemble et de manière complémentaire pour déclencher la réversion à l’arrière des cellules. L’architecture unique de ce système permet une réponse très large à différents stimuli, essentielle pour de nombreux comportements multicellulaires. Afin de comprendre l’importance de ces transitions, nous avons mis au point un outil à haute résolution spatiale et temporelle afin de connecter les cellules individuelles aux comportements multicellulaires, et ainsi comprendre le rôle du système Frz dans un modèle multicellulaire de prédation
The δ-proteobacteria Myxococcus xanthus has been a model of study for decades for its self-organized behavior as a response of environmental stimuli. It colonizes favorable ecological niches by using surface motility. In particular, this motility allows M.xanthus to predate collectively over prey microorganisms, while under starvation they start a developmental process to form macroscopic fruiting bodies, filled with environmental resistant myxospores. All these multicellular behaviors require a dynamic control of the cell polarity established by the polarity proteins MglA, MglB and RomR. Together, they define the direction of movement of the cell, which can be rapidly inverted by the Frz chemosensory system (reversion). In this thesis work, through combined computational/experimental approaches, we highlight that the regulation system forms a new type of biochemical oscillator, controlled by two proteins RomR and FrzX, which act together through complementary action to trigger the reversion at the lagging pole. The unique architecture of this system allows a wide response to various stimuli, which could be very beneficial for collective cell behaviors. To understand the importance of these transitions, we have developed a new high-resolution single cell assay linking single cMARTINEAU EUGENIE 2018AIXM0089/016ED62 2018/03/21 62 SCES SCHell behaviors to multicellular structures at unprecedented spatial and temporal resolutions. This way, we have investigated the role of the newly identified biochemical oscillator in the multicellular model of predation
Styles APA, Harvard, Vancouver, ISO, etc.
19

Tomba, Caterina. « Primary brain cells in in vitro controlled microenvironments : single cell behaviors for collective functions ». Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENY039/document.

Texte intégral
Résumé :
Du fait de sa complexité, le fonctionnement du cerveau est exploré par des méthodes très diverses, telles que la neurophysiologie et les neurosciences cognitives, et à des échelles variées, allant de l'observation de l'organe dans son ensemble jusqu'aux molécules impliquées dans les processus biologiques. Ici, nous proposons une étude à l'échelle cellulaire qui s'intéresse à deux briques élémentaires du cerveau : les neurones et les cellules gliales. L'approche choisie est la biophysique, de part les outils utilisés et les questions abordées sous l'angle de la physique. L'originalité de ce travail est d'utiliser des cellules primaires du cerveau dans un souci de proximité avec l'in vivo, au sein de systèmes in vitro dont la structure chimique et physique est contrôlé à l'échelle micrométrique. Utilisant les outils de la microélectronique pour un contrôle robuste des paramètres physico-chimiques de l'environnement cellulaire, ce travail s'intéresse à deux aspects de la biologie du cerveau : la polarisation neuronale, et la sensibilité des cellules gliales aux propriétés mécaniques de leur environnement. A noter que ces deux questions sont étroitement imbriquées lors de la réparation d'une lésion. La première est cruciale pour la directionalité de la transmission de signaux électriques et chimiques et se traduit par une rupture de symétrie dans la morphologie du neurone. La seconde intervient dans les mécanismes de recolonisation des lésions, dont les propriétés mécaniques sont altérées., Les études quantitatives menées au cours de cette thèse portent essentiellement sur la phénoménologie de la croissance de ces deux types de cellules et leur réponse à des contraintes géométriques ou mécaniques. L'objectif in fine est d'élucider quelques mécanismes moléculaires associés aux modifications de la structure cellulaire et donc du cytosquelette. Un des résultats significatifs de ce travail est le contrôle de la polarisation neuronale par le simple contrôle de la morphologie cellulaire. Ce résultat ouvre la possibilité de développer des architectures neuronales contrôlées in vitro à l'échelle de la cellule individuelle
The complex structure of the brain is explored by various methods, such as neurophysiology and cognitive neuroscience. This exploration occurs at different scales, from the observation of this organ as a whole entity to molecules involved in biological processes. Here, we propose a study at the cellular scale that focuses on two building elements of brain: neurons and glial cells. Our approach reachs biophysics field for two main reasons: tools that are used and the physical approach to the issues. The originality of our work is to keep close to the in vivo by using primary brain cells in in vitro systems, where chemical and physical environments are controled at micrometric scale. Microelectronic tools are employed to provide a reliable control of the physical and chemical cellular environment. This work focuses on two aspects of brain cell biology: neuronal polarization and glial cell sensitivity to mechanical properties of their environment. As an example, these two issues are involved in injured brains. The first is crucial for the directionality of the transmission of electrical and chemical signals and is associated to a break of symmetry in neuron morphology. The second occurs in recolonization mechanisms of lesions, whose mechanical properties are impaired. During this thesis, quantitative studies are performed on these two cell types, focusing on their growth and their response to geometrical and mechanical constraints. The final aim is to elucidate some molecular mechanisms underlying changes of the cellular structure, and therefore of the cytoskeleton. A significant outcome of this work is the control of the neuronal polarization by a simple control of cell morphology. This result opens the possibility to develop controlled neural architectures in vitro with a single cell precision
Styles APA, Harvard, Vancouver, ISO, etc.
20

Fogelson, Benjamin Marc Feder. « Mechanical Models in Single-Cell Locomotion, Adhesion, and Force Production ». Thesis, New York University, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10190369.

Texte intégral
Résumé :

Here we present the results of two distinct projects in the field of cellular mechanics. In the first project, we describe a non-monotonicity in the scaling of force production in actomyosin stress fibers. We develop a continuum mechanical model to explain that non-monotonicity and, using both analytical and numerical techniques, conclude that the scaling is due to an interaction between different physical lengthscales inherent in the actomyosin force-production system. Using singular perturbation methods, we study the model further to make predictions about the physical conditions under which a cell can break symmetry. In the second project, we explore how lipid flow in the plane of the plasma membrane contributes to membrane translocation during cell migration. By numerically solving the Stokes equations, we quantify the magnitude of the force necessary to generate this flow, and analyze how the presence of transmembrane protein obstacles influences the resulting front-to-rear membrane tension gradient. We make several analytic estimates of the mechanical importance of this membrane tension for cell motility.

Styles APA, Harvard, Vancouver, ISO, etc.
21

Dodeller, Marc. « Analyse par spectrométrie de masse de l'oxygène moléculaire singulet et de protéines potentiellement ciblées au sein de cellules tumorales lors de la thérapie photodynamique ». Metz, 2007. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/2007/Dodeller.Marc.SMZ0753.pdf.

Texte intégral
Résumé :
La thérapie photodynamique (PDT) repose sur l'utilisation d'une molécule photoactive telle que le Foscan® (m-THPC). Ce médicament de seconde génération combiné à la lumière et à l'oxygène, induit la mort cellulaire soit par nécrose soit par apoptose. La première étape de nos études consiste à détecter par MALDI-TOF/MS, dans des cellules HT29 intactes (acénocarcinome du colon humain), l'oxygène singulet produit par le Foscan® (Biolitec Pharma Ldt, Dublin, Irlande) ainsi que la distribution des protéines des cellules après PDT. Le MALDI-TOF/MS a été utilisé pour mettre en évidence l'ortho-benzoylbenzène(o-BB) produit de réaction entre l'oxygène singulet généré par le Foscan® pendant le traitement PDT et le 1. 3-diphenylisobenzofurane (1,3-DPBF, sonde spécifique de l'oxygène singulet). Cette technique permet non seulement le suivi du comportement du photosensibilisateur in situ mais également la détection directe de l'oxygène singulet dans les cellules HT29 intactes. La seconde partie de nos travaux aborde le stress oxydatif induit au niveau des cellules HT29 après PDT. Pour ce faire, nous avons eu recours au gel 2D SDS-PAGE afin d'accéder à la distribution de protéines des HT29, une approche protéomique a ensuite été effectuée par spectrométrie de masse de MALDI-FT-ICR (9. 4 T, Ion Spec Varian, Californie, USA). Grâce au logiciel Imagemaster 2D platinium, la visualisation de la sous expression de quelques protéines a été possible. L'empreinte protéique spécifique de ces protéines fut caractérisée par MALDI-FT-ICR/MS) et les premiers résultats indiqueraient que les protéines de la famille des disulfides isomérases seraient sollicitées lors des processus de PDT
Photodynamic therapy (PDT), uses a photosensitizing molecule such as 5,10,15,20-tetrakis(m-hydroxyphenyl) chlorin (m-THPC, Foscan®), a second generation drug which is specially targeted tumoural tissue with a good selectivity, light and oxygen, inducing cell death by necrosis or apoptosis. Firstly, our studies consist to detect by MALDI-TOF/MS, in intact HT29 cells (adenocarcinoma human colon), singlet oxygen generated by Foscan® (Biolitec Pharma Ldt, Dublin, Irlande) and the protein cells distribution after PDT treatment. A MALDI-TOF mass spectrometer was used to highlight ortho-benzoïbenzene (o-BB) resulting from the reaction between singlet oxygen generated by Foscan® during PDT treatment and 1,3-diphenylisobenzofurane (1,3-DPBF, a specific singlet oxygen quencher). This technique allows the following of the in situ behaviour of the photosensitizer and to detect the presence of singlet oxygen directly in intact HT29 cells. We have also studied the oxidative stress induced by PDT treatment on HT29 cells. After 2D gel SDS-PAGE step in order to observe the protein distribution, proteomic approach is carried out by MALDI-FTICR mass spectrometry (9,4 T, Ion Spec Varian, California). Thnaks to ImageMaster 2D platinium software, we are able to visualize under expression of some proteins. The proteinic finger printings is then characterized by MALDI-FT-ICR/MS and the first results indicate that proteins of dislfide Isomerase family should be implied in PDT processes. MALDI-TOF/MS and MALDI-FTICRMS (9,4 T) appear to be a sensitive and reliable analytical tool (add to UV/Visible anf fluorescence spectroscopy) for the mechanism of PDT understanding
Styles APA, Harvard, Vancouver, ISO, etc.
22

Marcy, Guillaume. « Etude des spécificités transcriptionnelles et de la compétence des progéniteurs neuraux postnataux du cerveau antérieur chez la souris ». Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEP070/document.

Texte intégral
Résumé :
Lors du développement, la coordination d’évènements moléculaires et cellulaires mène à la production du cortex qui orchestre les fonctions sensori-motrices et cognitives. Son développement s’effectue par étapes : les cellules gliales radiaires (RGs) – les cellules souches neurales (NSCs) du cerveau en développement – et les cellules progénitrices de la zone ventriculaire (VZ) et de la zone sous ventriculaire (SVZ) génèrent séquentiellement des vagues distinctes de nouveaux neurones qui formeront les différentes couches corticales. Autour de la naissance, les RGs changent de devenir et produisent des cellules gliales. Cependant, une fraction persiste tout au long de la vie dans la SVZ qui borde le ventricule, perdant au passage leur morphologie radiale. Ces NSCs produisent ensuite les différents sous types d’interneurones du bulbe olfactif ainsi que des cellules gliales en fonction de leur origine spatiale dans la SVZ. Ces observations soulèvent d’importantes questions non résolues sur 1) le codage transcriptionnel régulant la régionalisation de la SVZ, 2) le potentiel des NSCs postnatales dans la réparation cérébrale, et 3) le lignage et les spécificités transcriptionnelles entre les NSCs et leur descendants. Mon travail de doctorat repose sur une étude transcriptionnelle des domaines de la SVZ postnatale. Celle-ci soulignait le fort degré d’hétérogénéité des NSCs et progéniteurs et identifiait des régulateurs transcriptionnels clés soutenant la régionalisation. J’ai développé des approches bio-informatiques pour explorer ces données et connecter l’expression de facteurs de transcription (TFs) avec la genèse régionale de lignages neuraux distincts. J’ai ensuite développé un modèle d’ablation ciblée pour étudier le potentiel régénératif des progéniteurs postnataux dans divers contextes. Finalement, j’ai participé au développement d’une procédure pour explorer et comparer des progéniteurs pré et postnataux à l’échelle de la cellule unique. Objectif 1 : Des expériences de transcriptomique et de cartographie ont été réalisées pour étudier la relation entre l’expression régionale de TFs par les NSCs et l’acquisition de leur devenir. Nos résultats suggèrent un engagement précoce des NSCs à produire des types cellulaires définis selon leur localisation spatiale dans la SVZ et identifient HOPX comme un marqueur d’une sous population biaisé à générer des astrocytes. Objectif 2 : J’ai mis au point un modèle de lésion corticale qui permet l’ablation ciblée de neurones de couches corticales définies pour étudier la capacité régénérative et la spécification appropriée des progéniteurs postnataux. Une analyse quantitative des régions adjacentes, incluant la région dorsale de la SVZ, a révélé une réponse transitoire de progéniteurs définis. Objectif 3 : Nous avons développé la lignée de souris transgénique Neurog2CreERT2Ai14, qui permet le marquage de cohortes de progéniteurs glutamatergiques et de leurs descendants. Nous avons montré qu’une large fraction de ces progéniteurs persiste dans le cerveau postnatal après la fermeture de neurogénèse corticale. Ils ne s’accumulent pas pendant le développement embryonnaire mais sont produits par des RGs qui persistent après la naissance dans la SVZ et qui continuent de générer des neurones corticaux, bien que l’efficacité soit faible. Le séquençage d’ARN sur cellule unique a révélé une dérégulation transcriptionnelle qui corrèle avec le déclin progressif observé in vivo de la neurogénèse corticale. Ensemble, ces résultats soulignent le potentiel des études transcriptomiques à résoudre mais aussi à soulever des questions fondamentales comme les changements trancriptionnels intervenant dans une population de progéniteurs au cours du temps et participant aux changements de leur destinée. Cette connaissance sera la clé du développement d’approches novatrices pour recruter et promouvoir la génération de types cellulaires spécifiques, incluant les sous-types neuronaux dans un contexte pathologique
During development, a remarkable coordination of molecular and cellular events leads to the generation of the cortex, which orchestrates most sensorimotor and cognitive functions. Cortex development occurs in a stepwise manner: radial glia cells (RGs) - the neural stem cells (NSCs) of the developing brain - and progenitor cells from the ventricular zone (VZ) and the subventricular zone (SVZ) sequentially give rise to distinct waves of nascent neurons that form cortical layers in an inside-out manner. Around birth, RGs switch fate to produce glial cells. A fraction of neurogenic RGs that lose their radial morphology however persists throughout postnatal life in the subventricular zone that lines the lateral ventricles. These NSCs give rise to different subtypes of olfactory bulb interneurons and glial cells, according to their spatial origin and location within the postnatal SVZ. These observations raise important unresolved questions on 1) the transcriptional coding of postnatal SVZ regionalization, 2) the potential of postnatal NSCs for cellular regeneration and forebrain repair, and 3) the lineage relationship and transcriptional specificities of postnatal NSCs and of their progenies. My PhD work built upon a previously published comparative transcriptional study of defined microdomains of the postnatal SVZ. This study highlighted a high degree of transcriptional heterogeneity within NSCs and progenitors and revealed transcriptional regulators as major hallmarks sustaining postnatal SVZ regionalization. I developed bioinformatics approaches to explore these datasets further and relate expression of defined transcription factors (TFs) to the regional generation of distinct neural lineages. I then developed a model of targeted ablation that can be used to investigate the regenerative potential of postnatal progenitors in various contexts. Finally, I participated to the development of a pipeline for exploring and comparing select populations of pre- and postnatal progenitors at the single cell level. Objective 1: Transcriptomic as well as fate mapping were used to investigate the relationship between regional expression of TFs by NSCs and their acquisition of distinct neural lineage fates. Our results supported an early priming of NSCs to produce defined cell types depending of their spatial location in the SVZ and identified HOPX as a marker of a subpopulation biased to generate astrocytes. Objective 2: I established a cortical lesion model, which allowed the targeted ablation of neurons of defined cortical layers to investigate the regenerative capacity and appropriate specification of postnatal cortical progenitors. Quantitative assessment of surrounding brain regions, including the dorsal SVZ, revealed a transient response of defined progenitor populations. Objective 3: We developed a transgenic mouse line, i.e. Neurog2CreERT2Ai14, which allowed the conditional labeling of birth-dated cohorts of glutamatergic progenitors and their progeny. We used fate-mapping approaches to show that a large fraction of Glu progenitors persist in the postnatal forebrain after closure of the cortical neurogenesis period. Postnatal Glu progenitors do not accumulate during embryonal development but are produced by embryonal RGs that persist after birth in the dorsal SVZ and continue to give rise to cortical neurons, although with low efficiency. Single-cell RNA sequencing revealed a dysregulation of transcriptional programs, which correlates with the gradual decline in cortical neurogenesis observed in vivo. Altogether, these data highlight the potential of transcriptomic studies to unravel but also to approach fundamental questions such as transcriptional changes occurring in a population of progenitors over time and participating to changes in their fate potential. This knowledge will be key in developing innovative approaches to recruit and promote the generation of selected cell types, including neuronal subtypes in pathologies
Styles APA, Harvard, Vancouver, ISO, etc.
23

Tamra, Amar. « Spectroscopie diélectrique hyperfréquence de cellules individualisées sous électroporation ». Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30011/document.

Texte intégral
Résumé :
L'électroporation est un procédé physique qui consiste à appliquer des impulsions de champ électrique pour perméabiliser de manière transitoire ou permanente la membrane plasmique. Ce phénomène est d'un grand intérêt dans le domaine clinique ainsi que dans l'industrie en raison de ses diverses applications, notamment l'électrochimiothérapie qui combine les impulsions électriques à l'administration d'une molécule cytotoxique, dans le cadre du traitement des tumeurs. L'analyse de ce phénomène est traditionnellement réalisée à l'aide des méthodes optique et biochimique (microscopie, cytométrie en flux, test biochimique). Elles sont très efficaces mais nécessitent l'utilisation d'une large gamme de fluorochromes et de marqueurs dont la mise en œuvre peut être laborieuse et coûteuse tout en ayant un caractère invasif aux cellules. Durant ces dernières années, le développement de nouveaux outils biophysiques pour l'étude de l'électroporation a pris place, tels que la diélectrophorèse et la spectroscopie d'impédance (basse fréquence). Outre une facilité de mise en œuvre, ces méthodes représentent un intérêt dans l'étude des modifications membranaires de la cellule. De là vient l'intérêt d'opérer au-delà du GHz, dans la gamme des micro-ondes, pour laquelle la membrane cytoplasmique devient transparente et le contenu intracellulaire est exposé. L'extraction de la permittivité relative suite à l'interaction champ électromagnétique/cellules biologiques reflète alors l'état cellulaire. Cette technique, la spectroscopie diélectrique hyperfréquence, se présente comme une méthode pertinente pour analyser les effets de l'électroporation sur la viabilité cellulaire. De plus, elle ne nécessite aucune utilisation des molécules exogènes (non-invasivité) et les mesures sont directement réalisées dans le milieu de culture des cellules. Deux objectifs ont été définis lors de cette thèse dont les travaux se situent à l'interface entre trois domaines scientifiques : la biologie cellulaire, l'électronique hyperfréquence et les micro-technologies. Le premier objectif concerne la transposition de l'électroporation conventionnelle à l'échelle micrométrique, qui a montré une efficacité aussi performante que la première. La deuxième partie du travail concerne l'étude par spectroscopie diélectrique HyperFréquence de cellules soumises à différents traitements électriques (combinés ou non à une molécule cytotoxique). Ces travaux présentent une puissance statistique et montrent une très bonne corrélation (R2 >0 .94) avec des techniques standards utilisées en biologie, ce qui valide 'biologiquement' la méthode d'analyse HF dans le contexte d'électroporation. Ces travaux montrent en outre que la spectroscopie diélectrique hyperfréquence s'avère être une technique puissante, capable de révéler la viabilité cellulaire suite à un traitement chimique et/ou électrique. Ils ouvrent la voie à l'analyse 'non-invasive' par spectroscopie diélectrique HyperFréquence de cellules électroporées in-situ
Electroporation is a physical process that consists in applying electric field pulses to transiently or permanently permeabilize the plasma membrane. This phenomenon is of great interest in the clinical field as well as in the industry because of its various applications, in particular electrochemotherapy which combines electrical pulses with the administration of a cytotoxic molecule in the treatment of tumors. The evaluation of this phenomenon is raditionally carried out using optical and biochemical methods (microscopy, flow cytometry, biochemical test). They are very effective but require the use of a wide range of fluorochromes and markers, which can be laborious and costly to implement, while being invasive to the cells. In recent years, the development of new biophysical tools for the study of electroporation has taken place, such as dielectrophoresis and impedance spectroscopy (low frequency). In addition to the ease of implementation, these methods are of interest in the study of membrane modifications of the cell. Hence the advantage of operating beyond the GHz, in the range of microwaves, for which the cytoplasmic membrane becomes transparent and the intracellular content is exposed. The extraction of the relative permittivity as a result of the electromagnetic field / biological cell interaction then reflects the cell state. This technique, microwave dielectric spectroscopy, is a relevant method for analyzing the effects of electroporation on cell viability. Moreover, it does not require any use of the exogenous molecules (non-invasive) and the measurements are directly carried out in the culture medium of the cells. Two objectives were defined during this thesis whose work is located at the interface between three scientific fields: cellular biology, microwave electronics and micro-technologies. The first objective concerns the transposition of conventional electroporation to the micrometric scale, which has shown an efficiency as efficient as the first. The second part of the work concerns the study by HighFrequency dielectric spectroscopy of cells subjected to different electrical treatments (combined or not with a cytotoxic molecule). This work presents a statistical power and shows a very good correlation (R2> 0.94) with standard techniques used in biology, which biologically validates the HF analysis method in the context of electroporation. This work also shows that microwave dielectric spectroscopy proves to be a powerful technique capable of revealing cell viability following chemical and / or electrical treatment. They open the way to 'non-invasive' analysis by hyper-frequency dielectric spectroscopy of electroporated cells in situ
Styles APA, Harvard, Vancouver, ISO, etc.
24

Timofeeva, Yulia. « Oscillations and waves in single- and multi-cellular systems with free calcium ». Thesis, Loughborough University, 2003. https://dspace.lboro.ac.uk/2134/33829.

Texte intégral
Résumé :
Calcium ions are an important second messenger in living cells. Indeed calcium signals in the form of waves have been the subject of much recent experimental interest. A fundamental approach for studying cellular signalling is the combination of state-of-the-art experimental techniques, in particular high-resolution fluorescence imaging, with spatio-temporal mathematical models of intracellular calcium regulation. Experimental findings can be incorporated into mathematical models and, vice versa, model predictions can be directly tested in experiments. This approach provides a powerful tool to clarify the very complex mechanisms involved in cellular Ca2+ signalling. The aim of this thesis is to provide insight into oscillations and waves of cytosolic Ca2+ in both single- and multi-cellular systems from a mathematical perspective.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Grosselin, Kevin. « Cartographie épigénétique de cellules cancéreuses résistantes rares par microfluidique en gouttelettes ». Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLET015.

Texte intégral
Résumé :
La nature dynamique de la chromatine est un acteur majeur de la régulation de la transcription et est suspectée de contribuer à l'évolution tumorale. L'étude des modifications de la chromatine à l'échelle de la cellule unique est indispensable pour comprendre l'impact de la plasticité épigénétique au cours de la tumorigénèse.Dans ce manuscrit, je décris le développement d'un système basé sur la microfluidique en gouttelettes permettant d'obtenir la cartographie des modifications de la chromatine à l'échelle de la cellule unique.Le système a été évalué pour cartographier des modifications d'histones associées à un état transcriptionnel actif (H3K4me3) ou réprimé (H3K27me3) de cellules B et T humaines. Les données ont permis de classer >99% des cellules sur la base de leur profil épigénétique, définissant ainsi avec une grande précision des états de la chromatine propres à chaque type cellulaire.A partir de xénogreffes dérivées de patient atteint du cancer du sein et ayant acquis une résistance thérapeutique, le système a permis la détection de sous-populations rares de cellules parmi les tumeurs non-traitées, présentant un profil chromatinien similaire aux cellules cancéreuses résistantes.Cette étude démontre l'importance de l'hétérogénéité cellulaire sur la progression tumorale et met en évidence une signature épigénétique associée à la résistance et susceptible d'être la cible d'un traitement thérapeutique
The dynamic nature of chromatin and transcriptional features play a critical role in normal differentiation and are expected to contribute to tumor evolution. Studying the heterogeneity of chromatin alterations with single-cell resolution is mandatory to understand the contribution of epigenetic plasticity in cancer.In this thesis, I describe a droplet microfluidics approach to profile chromatin landscapes of thousands of cells at single-cell resolution, with an unprecedented coverage of 10,000 loci per cell.The system was evaluated to profile histone modifications associated with active (H3K4me3) and inactive transcription (H3K27me3) of human B cells and T cells, and revealed that >99% of the cells were correctly assigned to one cell type, defining distinct chromatin states of immune cells with high accuracy.In patient-derived xenograft (PDX) models of breast cancer with acquired drug resistance, the system enabled the detection of a rare subpopulation of cells in the untreated, drug-sensitive tumors with chromatin features characteristic of resistant cancer cells. These cells had lost chromatin marks (H3K27me3) associated with stable transcriptional repression for a number of genes known to promote resistance, potentially priming them for transcriptional activation.These results highlight the potential selection of cells with specific chromatin marks in response and in resistance to cancer therapy
Styles APA, Harvard, Vancouver, ISO, etc.
26

Foulon, Sophie. « Développement du séquençage ARN ciblé sur cellules uniques en microfluidique de gouttes et applications ». Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLET037.

Texte intégral
Résumé :
Les technologies d'analyse à l'échelle de la cellule unique ont vu le jour il y a quelques années et sont depuis en constante évolution. Ces technologies permettent de mieux comprendre le fonctionnement d'ensemble de cellules très hétérogènes. Elles permettent par exemple de découvrir et suivre des sous types cellulaires, avec des applications en cancérologie ou encore en neurobiologie. Nous avons développé une technologie pour étudier le profil d'expression de gènes d'intérêt au niveau d'une cellule unique, en utilisant la microfluidique en gouttes. En limitant le nombre de gènes étudiés comparé aux technologies commerciales de transcriptome entier, l’approche ciblée a plusieurs avantages potentiels : gagner en profondeur de séquençage, augmenter le nombre de cellules étudiées, optimiser la détection pour les bas niveaux d’expression, tout en réduisant la complexité des données et des coûts. Le ciblage est parfois indispensable, notamment lorsque les ARNs ne portent pas de séquence d’amorce générique, comme dans le cas des ARNs viraux. Deux applications sont présentées : l'analyse de l'inflammation des cellules immunitaires du cerveau aux premières étapes du développement, ainsi que l'étude de la recombinaison génétique chez le virus
Single cells technologies were introduced a few years ago and have been dramatically evolving ever since. These technologies have revolutionized biology, making it possible to better understand how heterogeneous cell systems works. For example, they permit to discover and follow cell subtypes, with applications in oncology or neurobiology. We have developed a technology to study the expression profile of genes of interest at the level of a single cell, using droplet-based microfluidics. By limiting the number of genes studied compared to commercial whole-transcriptome technologies, the targeted approach has several potential benefits: gaining deeper sequencing, increasing the number of cells studied, optimizing detection for low levels of expression, while reducing the complexity of data and costs. Targeting is sometimes essential, especially when the RNAs do not carry a generic primer sequence, as in the case of viral RNAs. Two applications are presented: the analysis of inflammation of the immune cells of the brain in the early stages of development, as well as the study of genetic recombination in the virus
Styles APA, Harvard, Vancouver, ISO, etc.
27

Park, Clara S. M. Massachusetts Institute of Technology. « A multiplex platform based on cellular barcoding for measuring single cell drug susceptibility ». Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/113754.

Texte intégral
Résumé :
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2017.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 43-44).
Predicting individual patient response to cancer drugs has been challenging. As many anticancer drugs aim to modulate cell deaths or growth inhibition, a useful assay for drug susceptibility would require direct assessment of phenotypic changes to cells upon drug treatment, such as cell viability or growth rate. Previously, the serial microfluidic mass sensor arrays have been used to measure single-cell mass accumulation rates over ~20 minute intervals to assess drug susceptibility. Here, we present a multiplexing platform that allows evaluation of multiple drug response conditions in a single experiment by utilizing fluorescent barcodes based on cell surface labeling. Fluorescence microscopy was integrated with the serial microfluidic mass sensor arrays to match a given barcode (which corresponds to a drug condition) with its mass accumulation rate as each cell flows through the microfluidic channel. To validate our approach, we show that the dynamics of drug response can be obtained from a single experiment by multiplexing drug treatment durations. Our validation highlights the capability of our platform to both eliminate measurement bias due to time differences in drug exposure and reduce the operation time when compared to standard time point assays.
by Clara Park.
S.M.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Parutto, Pierre. « Statistical analysis of single particle trajectories reveals sub-cellular nanodomain organisation and function ». Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLEE055.

Texte intégral
Résumé :
Les trajectoires de molécules individuelles obtenues par microscopie super-résolution permettent de suivre des protéines avec une précision nanométrique dans des cellules vivantes. Dans cette thèse, j’ai étudié les régions de hautes densités présentes dans ces trajectoires, dont un modèle possible est celui des puits de potentiel. Pour les caractériser à partir de trajectoires, j’ai développé une nouvelle méthode hybride basée sur la densité de points et le champ de force local puis je l’ai comparé aux méthodes d’état de l’art. Ensuite, j’ai utilisé celle-ci pour caractériser les puits maintenant les canaux calciques Cav au niveau des zones actives des terminaux présynaptiques ce qui a permis de mieux comprendre le rôle des variantes d’épissage de ces canaux dans la transmission synaptique. Dans une autre étude, j’ai analysé des trajectoires de protéines résidant dans le lumen du Réticulum Endoplasmique (RE). J’ai créé une méthode pour reconstruire le réseau du RE à partir des trajectoires que j’ai utilisé pour caractériser le mouvement de ces molécules par un modèle de saut-diffusion qui a pour conséquence une meilleure redistribution du contenu luminal par rapport à un mouvement diffusif. Enfin, je discute d’autres analyses de trajectoires pour les intéractions lysosome-ER, les canaux Cav à la jonction neuro-musculaire de la drosophile et les protéines composant le complexe NuRD
Single-Particle Trajectories (SPTs) obtained from super-resolution microscopy allow to track proteins with nanometer precision in living cells and are used in neuroscience and cellular biology. In this thesis, I was interested in the high-density nanodomains found in these trajectories that can be modeled as potential wells. To characterize them, I developed a new hybrid method based on the point density and local drift field and compared it to the other state-of-the-art methods. Then, I used it to identify transient potential wells in SPTs of voltage-gated calcium channels (CaV) contributing to a better understanding of the role of the different CaV splice variants in synaptic transmission. In another study, I looked at SPTs from Endoplasmic Reticulum (ER) luminal resident proteins where I developed a method to reconstruct the network from trajectories and used it to characterize the luminal motion as a jump-diffusion process, which allows for a better redistribution of the luminal content than the previously assumed diffusive model. Finally, I discuss other analyses of motions for lysosome-ER interactions, CaV2.1 channels at drosophila’s neuromuscular junctions and the description of the motion of the constituent proteins of the NuRD chromatin remodeling complex
Styles APA, Harvard, Vancouver, ISO, etc.
29

Woringer, Maxime. « Tools to analyze single-particle tracking data in mammalian cells ». Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS419.

Texte intégral
Résumé :
Ce travail présente des outils pour analyser la régulation de la transcription dans les cellules eucaryotes, en particulier pour le suivi de facteurs de transcription (TF) individuels dans les cellules de mammifères. Un noyau de cellule eucaryote est complexe et contient de nombreuses molécules (ADN, ARN, protéines, ATP, etc). Ces molécules interagissent avec des TF et influencent la transcription. Certaines de ces interactions peuvent être étudiées par des techniques de biochimie. La plupart, en particulier les interactions faibles, non covalentes, sont invisibles par ces méthodes. La microscopie de cellules vivantes et le suivi de molécules uniques (SPT en anglais) sont de plus en plus utilisées pour étudier ces phénomènes. L'inférence des paramètres biophysiques d'un facteur de transcription, par exemple son coefficient de diffusion, son nombre de sous-populations ou son temps de résidence sur l'ADN sont cruciaux pour comprendre sa dynamique et son influence sur la transcription. Des outils validés et précis sont donc nécessaires pour analyser les données de SPT. Pour être utile, un outil de SPT doit être non seulement validé, mais aussi accessible à des non-programmeurs. Ils doivent aussi tenir compte des biais expérimentaux présents dans les données. Nous proposons un outil d'analyse de SPT, qui se fonde sur l'estimation du propagateur de la diffusion. Ce outil a été validé et est accessible par une interface web. Nous avons montré qu'il donne des résultats proches de l'état de l'art. Il a été testé dans deux cadres : (1) l'étude de la diffusion augmentée par la catalyse enzymatique in vitro et (2) l'analyse de la dynamique du TF c-Myc dans des cellules de mammifères
This work aims at providing tools to dissect the regulation of transcription in eukaryotic cells, with a focus on single-particle tracking of transcription factors in mammalian cells. The nucleus of an eukeryotic cell is an extremely complex medium, that contains a high concentration of macromolecules (DNA, RNA, proteins) and other small molecules (ATP, etc). How these molecules interact with transcription factors, and thus influence transcription rates is an area of intense investigations. Although some of these interactions can be captured by regular biochemistry, many of them, including weak, non-covalent interactions remain undetected by these methods. Live-cell imaging and single-particle tracking (SPT) techniques are increasingly used to characterize such effects. The inference of biophysical parameters of a given transcription factor (TF), such as its diffusion constant, the number of subpopulations or its residence time on DNA, are crucial to understanding how TF dynamics and transcription intertwine. Accurate and validated SPT analysis tools are needed. To be used by the community, SPT tools should not only be carefully validated, but also be easily accessible to non-programmers. They should also be designed to take into account known biases of the imaging techniques. In this work, we first propose a tool, accessible through a web interface, based on the modeling of the diffusion propagator. We validate it extensively and show that it exhibits state-of-the art performance. We apply this tool to two experimental settings: (1) the study of catalysis-enhanced diffusion in-vitro and (2) the analysis of the dynamics of the c-Myc transcription factor in mammalian cells
Styles APA, Harvard, Vancouver, ISO, etc.
30

Boddington, Christopher. « An interdisciplinary analysis of inflammatory signalling dynamics in single cells ». Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/an-interdisciplinary-analysis-of-inflammatory-signalling-dynamics-in-single-cells(c2cad496-b993-42d9-b4fd-2c16e1f9fd42).html.

Texte intégral
Résumé :
Immune cells must accurately interpret environmental signals to make robust cell fate decisions and control inflammatory signalling. Many signals (e.g. Tumor Necrosis Factor alpha (TNFα) or interferon gamma (IFNγ)) converge on just a few key signalling systems such as Nuclear Factor kappa B (NF-κB) or Signal Transducers and Activators of Transcription (STAT), which exhibit complex activation dynamics that control patterns of downstream gene expression. Often, seemingly identical cells show heterogeneous or random behaviour to a common stimulus. Therefore, a key question is how can immune cells coordinate inflammatory signalling in the presence of this noise. The NF-kB system dynamics were studied in response to rapidly changing inflammatory signals. It was shown that pulsed TNFa cytokine stimulations induced digital single-cell NF-kB responses, with only a fraction of cells able to respond to repeated pulses. These responses appeared to be reproducible in individual cells, but heterogeneous in the population. Mathematical models of the NF-kB signalling network suggested that single-cell responses were governed through a refractory state potentially encoded via 'extrinsic' noise in the levels of signalling molecules related to the TNFa signal transduction pathway. Such signal processing enabled robust and reproducible single cell responses and maintained acute tissue-level signalling, with fewer cells responding to shorter pulsing intervals. The NF-kB system is involved in effector cytokine propagation in response to pathogen infection. It was shown that in macrophages, the dose of TLR4 stimulation (mimicking the pathogen infection) was encoded in graded (yet heterogeneous) NF-kB dynamics in single cells. This resulted in analogue inflammatory gene expression patterns in the population. However, individual cells substantially differed in their ability to encode TLR4 signal and to regulate TNFa expression, which was explained by extrinsic noise in the NF-kB system. Quantitative mathematical modelling showed that tissue-level environment modulates heterogeneous single-cell TNFa outputs; by effectively removing it from circulation. This may determine the interaction distance between tissue-resident immune cells to enable propagation of cellular inflammation. Heterogeneity of single cell macrophage signalling was also observed in NF-kB and STAT1 system responses to a range of IFN stimulation doses. Although each system showed substantial variability between cells, their responses were surprisingly well correlated in individual cells. It was however apparent (based on gene expression studies) that individual cells may not be able to precisely discriminate different IFNg doses. Overall, this work suggests that heterogeneity in the NF-kB (and other) regulatory networks might be a part of an inherent design motif in the inflammatory response, which enables robust control of the tissue-level inflammatory response by preventing homogeneous and thus potentially harmful activation.
Styles APA, Harvard, Vancouver, ISO, etc.
31

Wen, Mary Mei. « New strategies for tagging quantum dots for dynamic cellular imaging ». Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/52150.

Texte intégral
Résumé :
In recent years, semiconductor quantum dots (QDs) have arisen as a new class of fluorescent probes that possess unique optical and electronic properties well-suited for single-molecule imaging of dynamic live cell processes. Nonetheless, the large size of conventional QD-ligand constructs has precluded their widespread use in single-molecule studies, especially on cell interiors. A typical QD-ligand construct can range upwards of 35 nm in diameter, well exceeding the size threshold for cytosolic diffusion and posing steric hindrance to binding cell receptors. The objective of this research is to develop tagging strategies that allow QD-ligand conjugates to specifically bind their target proteins while maintaining a small overall construct size. To achieve this objective, we utilize the HaloTag protein (HTP) available from Promega Corporation, which reacts readily with a HaloTag ligand (HTL) to form a covalent bond. When HaloTag ligands are conjugated to size-minimized multidentate polymer coated QDs, compact QD-ligand constructs less than 15 nm in diameter can be produced. These quantum dot-HaloTag ligand (QD-HTL) conjugates can then be used to covalently bind and track cellular receptors genetically fused to the HaloTag protein. In this study, size-minimized quantum dot-HaloTag ligand conjugates are synthesized and evaluated for their ability to bind specifically to purified and cellular HTP. The effect of QD-HTL surface modifications on different types of specific and nonspecific cellular binding are systematically investigated. Finally, these QD-HTL conjugates are utilized for single-molecule imaging of dynamic live cell processes. Our results show that size-minimized QD-HTLs exhibit great promise as novel imaging probes for live cell imaging, allowing researchers to visualize cellular protein dynamics in remarkable detail.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Morgan, Kenneth J. « Design and Analysis of Four Architectures for FPGA-Based Cellular Computing ». Thesis, Virginia Tech, 2004. http://hdl.handle.net/10919/35578.

Texte intégral
Résumé :
The computational abilities of today's parallel supercomputers are often quite impressive, but these machines can be impractical for some researchers due to prohibitive costs and limited availability. These researchers might be better served by a more personal solution such as a "hardware acceleration" peripheral for a PC. FPGAs are the ideal device for the task: their configurability allows a problem to be translated directly into hardware, and their reconfigurability allows the same chip to be reprogrammed for a different problem.

Efficient FPGA computation of parallel problems calls for cellular computing, which uses an array of independent, locally connected processing elements, or cells, that compute a problem in parallel. The architecture of the computing cells determines the performance of the FPGA-based computer in terms of the cell density possible and the speedup over conventional single-processor computation.

This thesis presents the design and performance results of four computing-cell architectures. MULTIPLE performs all operations in one cycle, which takes the least amount of time but requires the most chip area. BIT performs all operations bit-serially, which takes a long time but allows a large cell density. The two other architectures, SINGLE and BOOTH, lie within these two extremes of the area/time spectrum.

The performance results show that MULTIPLE provides the greatest speedup over common calculation software, but its usefulness is limited by its small cell density. Thus, the best architecture for a particular problem depends on the number of computing cells required. The results also show that with further research, next-generation FPGAs can be expected to accelerate single-processor computations as much as 22,000 times.
Master of Science

Styles APA, Harvard, Vancouver, ISO, etc.
33

Sedlachek, Kelly M. « The effect of hemicelluloses and cyclic humidity on the creep of single fibers ». Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/5802.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Hung, Yin Pun. « Single Cell Imaging of Metabolism with Fluorescent Biosensors ». Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10147.

Texte intégral
Résumé :
Cells utilize various signal transduction networks to regulate metabolism. Nevertheless, a quantitative understanding of the relationship between growth factor signaling and metabolic state at the single cell level has been lacking. The signal transduction and metabolic states could vary widely among individual cells. However, such cell-to-cell variation might be masked by the bulk measurements obtained from conventional biochemical methods. To assess the spatiotemporal dynamics of metabolism in individual intact cells, we developed genetically encoded biosensors based on fluorescent proteins. As a key redox cofactor in metabolism, NADH has been implicated in the Warburg effect, the abnormal metabolism of glucose that is a hallmark of cancer cells. To date, however, sensitive and specific detection of NADH in the cytosol of individual live cells has been difficult. We engineered a fluorescent biosensor of NADH by combining a circularly permuted green fluorescent protein variant with a bacterial NADH-binding protein Rex. The optimized biosensor Peredox reports cytosolic \(NADH:NAD^+\) ratios in individual live cells and can be calibrated with exogenous lactate and pyruvate. Notably pH resistant, this biosensor can be used in several cultured and primary cell types and in a high-content imaging format. We then examined the single cell dynamics of glycolysis and energy-sensing signaling pathways using Peredox and other fluorescent biosensors: AMPKAR, a sensor of the AMPK activity; and FOXO3-FP, a fluorescently-tagged protein domain from Forkhead transcription factor FOXO3 to report on the PI3K/Akt pathway activity. With perturbation to growth factor signaling, we observed a transient response in the cytosolic \(NADH:NAD^+\) redox state. In contrast, with partial inhibition of glycolysis by iodoacetate, individual cells varied substantially in their responses, and cytosolic \(NADH:NAD^+\) ratios oscillated between high and low states with a regular, approximately half-hour period, persisting for hours. These glycolytic NADH oscillations appeared to be cell-autonomous and coincided with the activation of the PI3K/Akt pathway but not the AMPK pathway. These results suggest a dynamic coupling between growth factor signaling and metabolic parameters. Overall, this thesis presents novel optical tools to assess metabolic dynamics – and to unravel the elaborate and complex integration of glucose metabolism and signaling pathways at the single cell level.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Zuttion, Francesca. « Effet inhibiteur des glycoclusters dans l'adhésion bactérienne des Pseudomonas aeruginosa caractérisé par microscopie à force atomique : de la molécule à la cellule ». Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEC031/document.

Texte intégral
Résumé :
La bactérie Pseudomonas aeruginosa (PA) est un pathogène responsable de 20%-30% des infections nosocomiales en milieu hospitalier. Pour les individus sains, elle ne présente pas de réel danger, mais pour les personnes atteintes par la mucoviscidose et les patients immunodéprimés, elle est la cause principale de mortalité et des infections pulmonaires. PA a développé des souches multi-résistantes aux antibiotiques et des nouvelles approches thérapeutiques plus efficaces sont donc nécessaires. Elle se fixe à la surface des cellules-hôtes par une interaction entre des protéines (lectines) présentes sur sa membrane et des sucres présents sur la membrane cellulaire. L’interaction lectine-sucre joue un rôle important dans l’adhésion de la bactérie puis dans la fabrication d’un biofilm pathogène.Une nouvelle approche thérapeutique consiste à créer des molécules synthétiques (glycomimes) de plus grande affinité que les sucres présents sur les cellules. Pour cela, plus de 150 glycomimes ont été synthétisés et examinés afin de trouver le meilleur candidat pour empêche le processus d'infection de bactéries. Certains d'entre eux ont été choisis et étudiés par la Microscopie à Force Atomique (AFM). Cette thèse est consacrée à l’étude des interactions lectine-glycomime et aussi cellule-bactérie par AFM. L’imagerie combinée avec la modélisation permet de comprendre le rôle du glycomime sur la géométrie des complexes créés et la spectroscopie permet de mesurer les forces d’interaction présentes lors de l’adhésion, au niveau moléculaire et cellulaire. Une réduction de l’adhésion bactérienne a été observée après l’introduction du glycomime, confirmant son rôle d’inhibiteur et la validité de toute la démarche. L’objectif ultime est l’identification des meilleurs glycomimes à introduire afin de développer de nouveaux médicaments
Pseudomonas aeruginosa (PA) is a human opportunistic pathogen responsible for 20% -30% of nosocomial infections in French hospitals. For healthy people, it presents no real danger, but for people with cystic fibrosis disease and immune-compromised patients, it is the leading cause of mortality and lung infections. PA has developed antibiotic multi-resistant strains and new and more effective therapeutic approaches are needed. It binds to the surface of the host cells by an interaction between proteins (lectins) present on the membrane and sugars of the host-cell membrane. The lectin-sugar interaction plays an important role in adherence of the bacteria and in the manufacture of a pathogenic biofilm.A new therapeutic approach is to create synthetic molecules (glycoclusters) of greater affinity than the natural sugars present on the cells. To this aim, more than 150 glycoclusters have been synthetized and screened to find the best candidate to inhibit the bacteria infection process. Some of them have been selected and studied by Atomic Force Microscopy (AFM). In particular, this thesis is devoted to study the lectin-glycocluster and cell-bacteria interactions by AFM. The combination of AFM imaging with molecular dynamic simulations let understanding the role of the geometry of the glycoclusters on the complex formation, while AFM spectroscopy accesses the lectin-glycocluster interaction forces at the molecular and cellular levels. The reduction of bacterial adhesion has been observed upon the addition of the glycocluster. This confirms the anti-adhesive properties of the glycocluster and validates the procedure. The ultimate goal is the identification of the best glycoclusters in order to develop new drugs
Styles APA, Harvard, Vancouver, ISO, etc.
36

Walter, Ulrich Josef. « On the molecular mechanisms of β cell destruction in autoimmune diabetes : a single cell approach ». Paris 5, 2001. http://www.theses.fr/2001PA05N033.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Carroll, Jean. « Investigating aprataxin function : roles in DNA single strand break repair and functional cellular effects ». Thesis, University of Sussex, 2013. http://sro.sussex.ac.uk/id/eprint/46135/.

Texte intégral
Résumé :
Aprataxin protects nuclear and mitochondrial DNA against genotoxic stress, and loss-of-function mutations in the APTX gene cause the autosomal recessive cerebellar ataxia, Ataxia Oculomotor Apraxia 1 (AOA1) in humans. In an effort to extend current understanding of aprataxin function, this thesis examines the roles of aprataxin, especially in response to oxidative damage. Firstly, involvement of aprataxin during the gap-filling as well as the end-processing steps of single strand break repair were demonstrated using an in vitro single strand break repair assay using synthetic DNA substrates, cell-free lysates and/or recombinant proteins. Next, loss-of-function studies were conducted in Aptx-/- mouse embryonic fibroblasts (MEFs) and tissues from adult mice harbouring a toxic gain-of-function mutant form of superoxide dismutase1 (SOD1G93A). Expression of the mutant SOD1G93A enhanced sensitivity to oxidative damage in aprataxin-deleted cells and revealed an accelerated senescence and attenuated somatic growth phenotype. Together these findings suggest that aprataxin function is involved in optimal repair of single strand breaks and is therefore critical in maintaining cell function in situations of elevated oxidative stress.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Garcia, Ellen Brook. « Investigating the cellular toxicology of silver nanoparticles using a single-cell, mitosis-focused approach ». Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/102095.

Texte intégral
Résumé :
Proper cell division is a fundamental process for the development and sustainability of healthy living organisms. Defective cell division can have deleterious effects on tissue homeostasis and can represent the first step towards disease development. The overall goal of this work was to develop and validate a new, mitosis-based, single-cell toxicity approach. This contributes to the current need of toxicology research to replace animal testing with predictive in vitro models. Cell division-based assays would be better at predicting risk than other commonly used in vitro measurements, such as persistent cell cycle arrest or cell death. Finally, single-cell microscopic analysis provides far deeper insight into the underlying toxicity mechanism(s) than bulk cell population measurements. To meet our goal, we investigated the toxicity of silver nanoparticles (AgNPs) on immortalized human retinal pigmented epithelial (RPE-1) cells. AgNPs are a major nanomaterial employed in product manufacturing due to desirable antimicrobial properties, yet toxicity reports are still confounding. RPE-1 cells were cultured in the presence of low and high doses of polyvinylpyrrolidone (PVP)-coated AgNPs for a single 24-hour treatment (acute treatment), for six 24-hour treatments administered over a period of 3 weeks (moderate treatment), or for twelve 24-hour treatments administered over a period of 6 weeks (chronic treatment). Time-lapse, phase-contrast microscopy of acutely treated cells showed that 100% of cells engulfed AgNPs, which was further confirmed by electron microscopy. Moreover, we found that higher concentrations of AgNPs resulted in large numbers of acutely treated cells becoming arrested in mitosis, dying, or dividing abnormally. In contrast, untreated cells displayed normal mitotic behavior. High-resolution fluorescence microscopy performed in treated cell populations identified an increased percentage of abnormal nuclear morphologies compared to the untreated cells. Further live-cell analysis indicated that treated cells failed cytokinesis or slipped out of mitosis more often than untreated cells. Overall, our results indicate that AgNPs impair cell division, not only further confirming toxicity to human cells, but also revealing previously unreported toxicity mechanisms and highlighting the propagation of adverse phenotypes within the cell population after exposure. Furthermore, this work illustrates that cell division-based single-cell analysis could provide an alternative to animal experimentation in the future.
Master of Science
Multiple agencies, including the U.S. Environmental Protection Agency and the National Academy of Science, are urging for a radical paradigm shift from standard, whole-animal testing to alternative and novel technologies. To meet this urgent need, we aimed to develop a new, cell division-focused toxicity assay by investigating the mechanism of toxicity from silver nanoparticles (AgNPs) on human retinal pigment epithelial (RPE-1) cells. Cultured RPE-1 cells were treated with varying concentrations of AgNPs and live-cell microscopy was used to analyze the behavior of cells undergoing cell division over a 24 hour time period. Physical interaction between cells and particles was visually observed and 100% of treated cells appeared to engulf particles. We found that higher concentrations of AgNPs resulted in large numbers of cells stalling in mitosis and/or dying. In contrast, untreated cells displayed normal mitotic behavior. High-resolution fluorescence microscopy performed in chronically treated cell populations identified an increased percentage of binucleated cells. Further live-cell analysis indicated that one major cell division defect could explain the binucleated cell phenotype. Indeed, treated cells failed cytokinesis (cytoplasmic division following mitotic chromosome segregation) more often than control cells. Overall, our results indicate that AgNPs specifically impair cell division, not only further confirming toxicity to human cells, but also revealing specific, previously unreported toxicity mechanisms and highlighting the propagation of adverse phenotypes within the cell population after exposure. Furthermore, this work illustrates that cell division-based assays and ingle-cell analysis could greatly benefit chemical safety experimentation in the future.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Lanoiselée, Yann. « Revealing the transport mechanisms from a single trajectory in living cells ». Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX081/document.

Texte intégral
Résumé :
Cette thèse est dédiée à l’analyse et la modélisation d'expériences où la position d'un traceur dans le milieu cellulaire est enregistrée au cours du temps. Il s’agit de pouvoir de retirer le maximum d’information à partir d’une seule trajectoire observée expérimentalement. L’enjeu principal consiste à identifier les mécanismes de transport sous-jacents au mouvement observé. La difficulté de cette tâche réside dans l’analyse de trajectoires individuelles, qui requiert de développer de nouveaux outils d’analyse statistique. Dans le premier chapitre, un aperçu est donné de la grande variété des dynamiques observables dans le milieu cellulaire. Notamment, une revue de différents modèles de diffusion anormale et non-Gaussienne est réalisée. Dans le second chapitre, un test est proposé afin de révéler la rupture d'ergodicité faible à partir d’une trajectoire unique. C’est une généralisation de l’approche de M. Magdziarz et A. Weron basée sur la fonction caractéristique du processus moyennée au cours du temps. Ce nouvel estimateur est capable d’identifier la rupture d’ergodicité de la marche aléatoire à temps continu où les temps d'attente sont distribués selon une loi puissance. Par le calcul de la moyenne de l’estimateur pour plusieurs modèles typiques de sous diffusion, l’applicabilité de la méthode est démontrée. Dans le troisième chapitre, un algorithme est proposé afin reconnaître à partir d’une seule trajectoire les différentes phases d'un processus intermittent (e.g. le transport actif/passif à l'intérieur des cellules, etc.). Ce test suppose que le processus alterne entre deux phases distinctes mais ne nécessite aucune hypothèse sur la dynamique propre dans chacune des phases. Les changements de phase sont capturés par le calcul de quantités associées à l’enveloppe convexe locale (volume, diamètre) évaluées au long de la trajectoire. Il est montré que cet algorithme est efficace pour distinguer les états d’une large classe de processus intermittents (6 modèles testés). De plus, cet algorithme est robuste à de forts niveaux de bruit en raison de la nature intégrale de l’enveloppe convexe. Dans le quatrième chapitre, un modèle de diffusion dans un milieu hétérogène où le coefficient de diffusion évolue aléatoirement est introduit et résolu analytiquement. La densité de probabilité des déplacements présente des queues exponentielles et converge vers une Gaussienne au temps long. Ce modèle généralise les approches précédentes et permet ainsi d’étudier en détail les hétérogénéités dynamiques. En particulier, il est montré que ces hétérogénéités peuvent affecter de manière drastique la précision de mesures effectuées sur une trajectoire par des moyennes temporelles. Dans le dernier chapitre, les méthodes d’analyses de trajectoires individuelles sont utilisées pour étudier deux expériences. La première analyse effectuée révèle que les traceurs explorant le cytoplasme montrent que la densité de probabilité des déplacements présente des queues exponentielles sur des temps plus longs que la seconde. Ce comportement est indépendant de la présence de microtubules ou du réseau d’actine dans la cellule. Les trajectoires observées présentent donc des fluctuations de diffusivité témoignant pour la première fois de la présence d’hétérogénéités dynamiques au sein du cytoplasme. La seconde analyse traite une expérience dans laquelle un ensemble de disques de 4mm de diamètre a été vibré verticalement sur une plaque, induisant un mouvement aléatoire des disques. Par une analyse statistique approfondie, il est démontré que cette expérience est proche d'une réalisation macroscopique d'un mouvement Brownien. Cependant les densités de probabilité des déplacements des disques présentent des déviations par rapport à la Gaussienne qui sont interprétées comme le résultat des chocs inter-disque. Dans la conclusion, les limites des approches adoptées ainsi que les futures pistes de recherches ouvertes par ces travaux sont discutées en détail
This thesis is dedicated to the analysis and modeling of experiments where the position of a tracer in the cellular medium is recorded over time. The goal is to be able to extract as much information as possible from a single experimentally observed trajectory. The main challenge is to identify the transport mechanisms underlying the observed movement. The difficulty of this task lies in the analysis of individual trajectories, which requires the development of new statistical analysis tools. In the first chapter, an overview is given of the wide variety of dynamics that can be observed in the cellular medium. In particular, a review of different models of anomalous and non-Gaussian diffusion is carried out. In the second chapter, a test is proposed to reveal weak ergodicity breaking from a single trajectory. This is a generalization of the approach of M. Magdziarz and A. Weron based on the time-averaged characteristic function of the process. This new estimator is able to identify the ergodicity breaking of continuous random walking where waiting times are power law distributed. By calculating the average of the estimator for several subdiffusion models, the applicability of the method is demonstrated. In the third chapter, an algorithm is proposed to recognize the different phases of an intermittent process from a single trajectory (e.g. active/passive transport within cells, etc.).This test assumes that the process alternates between two distinct phases but does not require any hypothesis on the dynamics of each phase. Phase changes are captured by calculating quantities associated with the local convex hull (volume, diameter) evaluated along the trajectory. It is shown that this algorithm is effective in distinguishing states from a large class of intermittent processes (6 models tested). In addition, this algorithm is robust at high noise levels due to the integral nature of the convex hull. In the fourth chapter, a diffusion model in a heterogeneous medium where the diffusion coefficient evolves randomly is introduced and solved analytically. The probability density function of the displacements presents exponential tails and converges towards a Gaussian one at long time. This model generalizes previous approaches and thus makes it possible to study dynamic heterogeneities in detail. In particular, it is shown that these heterogeneities can drastically affect the accuracy of measurements made by time averages along a trajectory. In the last chapter, single-trajectory based methods are used for the analysis of two experiments. The first analysis carried out shows that the tracers exploring the cytoplasm show that the probability density of displacements has exponential tails over periods of time longer than the second. This behavior is independent of the presence of both microtubules and the actin network in the cell. The trajectories observed therefore show fluctuations in diffusivity, indicating for the first time the presence of dynamic heterogeneities within the cytoplasm. The second analysis deals with an experiment in which a set of 4mm diameter discs was vibrated vertically on a plate, inducing random motion of the disks. Through an in-depth statistical analysis, it is demonstrated that this experiment is close to a macroscopic realization of a Brownian movement. However, the probability densities of disks’ displacements show deviations from Gaussian which are interpreted as the result of inter-disk shocks. In the conclusion, the limits of the approaches adopted as well as the future research orientation opened by this thesis are discussed in detail
Styles APA, Harvard, Vancouver, ISO, etc.
40

Bost, Pierre. « Decoding cellular communications and interactions between immune cells by using single-cell approaches ». Electronic Thesis or Diss., Sorbonne université, 2020. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2020SORUS020.pdf.

Texte intégral
Résumé :
Les communications cellulaires sont indispensables au bon fonctionnement des organismes multicellulaires, notamment pour s’adapter à un environnement changeant en permanence. Les cellules du système immunitaire n’échappent pas à cette règle mais les interactions entre cellules immunitaires restent peu connues et compliquée à étudier. La récente apparition des technologies de séquençage dites ‘cellules uniques’ représente une opportunité unique pour étudier ces communications. Dans cette thèse, différentes approches expérimentales et analytiques ont été développées pour étudier ces communications à une échelle de cellules uniques. Ces stratégies ont ensuite été appliquées à différents contextes pathologiques, incluant le COVID-19, la maladie d’Alzheimer ou une immunisation par des pathogènes inactivés, et ont permis d’identifier des voies de communications cellulaires jusqu’ici inconnues ou mal comprises. Néanmoins, l’efficacité de ces approches est limitée par l’absence d’informations sur la localisation des cellules et des travaux supplémentaires intégrant ce genre de données est essentiel pour aller plus loin dans la dissection des communications entre cellules immunitaires
Cellular communications are essential to the proper functioning of multi-cellular organisms, particularly in order to adapt to a constantly changing environment. The cells of the immune system are no exception to this rule, but the interactions between immune cells remain little known and complicated to study. The recent emergence of 'single cell' sequencing technologies represents a unique opportunity to study these communications. In this thesis, different experimental and analytical approaches have been developed to study these communications on a single cell scale. These strategies were then applied to different disease contexts, including COVID-19, Alzheimer's disease or immunisation with inactivated pathogens, and identified previously unknown or poorly understood cellular communication pathways. However, the effectiveness of these approaches is limited by the lack of information on cell location and further work integrating such data will be essential to go further in the dissection of immune cell communications
Styles APA, Harvard, Vancouver, ISO, etc.
41

Kelich, Joseph M. « Single-Molecule Studies on Nuclear Pore Complex Structure and Function ». Diss., Temple University Libraries, 2018. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/511772.

Texte intégral
Résumé :
Biology
Ph.D.
Nuclear pore complexes (NPCs) are large macromolecular gateways embedded in the nuclear envelope of Eukaryotic cells that serve to regulate bi-directional trafficking of particles to and from the nucleus. NPCs have been described as creating a selectively permeable barrier mediating the nuclear export of key endogenous cargoes such as mRNA, and pre-ribosomal subunits as well as allow for the nuclear import of nuclear proteins and some viral particles. Remarkably, other particles that are not qualified for nucleocytoplasmic transport are repelled from the NPC, unable to translocate. The NPC is made up of over 30 unique proteins, each present in multiples of eight copies. The two primary protein components of the NPC can be simplified as scaffold nucleoporins which form the main structure of the NPC and the phenylalanine-glycine (FG) motif containing nucleoporins (FG-Nups) which anchor to the scaffold and together create the permeability barrier within the pore. Advances in fluorescence microscopy techniques including single-molecule and super-resolution microscopy have made it possible to label and visualize the dynamic components of the NPC as well as track the rapid nucleocytoplasmic transport process of importing and exporting cargoes. The focus of this dissertation will be on live cell fluorescence microscopy application in probing the dynamic components of the NPC as well as tracking the processes of nucleocytoplasmic transport.
Temple University--Theses
Styles APA, Harvard, Vancouver, ISO, etc.
42

Autissier, Patrick. « Phénotypage des cellules immunitaires par cytométrie en flux multiparamétrique : un outil indispensable dans l’immunopathologie du Sida ». Thesis, Paris, CNAM, 2010. http://www.theses.fr/2010CNAM0726/document.

Texte intégral
Résumé :
Le suivi des changements dans les populations de cellules immunitaires tels que les lymphocytes, monocytes et cellules dendritiques (DC) au cours de maladies infectieuses comme le virus de l'immunodéficience humaine (VIH) chez l’homme ou son équivalent chez le singe (VIS) est crucial. Grâce aux récentes avancées technologiques en cytométrie en flux, il est maintenant possible de mesurer et d’analyser simultanément jusqu'à 14 paramètres individuels à l’échelon cellulaire. L'objectif de ce travail consiste en la mise au point de 2 panels multicouleurs de 12 anticorps permettant d'analyser simultanément les principales populations de cellules immunitaires, respectivement chez l’humain et le macaque rhésus. Au terme de ce travail, il est maintenant possible de mesurer précisément tous les principaux acteurs du système immunitaire, à savoir les lymphocytes T CD4+ et T CD8+, les lymphocytes B, les cellules NK et NKT, les sous-populations de monocytes, et toutes les sous-populations de cellules dendritiques connues à ce jour, en utilisant une approche multiparamétrique de cytométrie en flux. Ce protocole d’analyse est réalisé sur du sang total, il est rapide, il n’implique pas de technique d’isolation cellulaire, et requiert une quantité minimum de sang. De plus, l’analyse de chaque population cellulaire est plus précise grâce à une contamination minimum entre les populations séparées. L’intérêt de ce travail est d’étudier les interactions entre les différentes populations de cellules immunitaires durant l’infection par VIH chez l’homme, ou VIS chez le singe ou potentiellement d‘autres maladies, et en particulier de mieux comprendre le rôle important que les cellules dendritiques jouent dans la progression de ces maladies
Monitoring changes in immune cell populations such as lymphocytes, monocytes and dendritic cells (DC) during infectious diseases like human immunodeficiency virus (HIV) or its counterpart in rhesus monkeys (SIV) is crucial. Thanks to recent technological advances in flow cytometry, it is now possible to measure and analyze simultaneously up to 14 individual parameters at the single cell level.The goal of this work is to develop 2 multicolor flow cytometry panels comprising of 12 antibodies, allowing measuring simultaneously the main immune cells population, respectively in humans and rhesus monkeys. After 2 years of development and optimization, we can now measure precisely all the main actors of the immune system, that is CD4+ and CD8+ T lymphocytes, B lymphocytes, NK and NKT cells, the 3 monocyte subsets, and all the dendritic cell subsets known today, by using a multicolor flow cytometry approach. This assay is done on whole blood, it is rapid to do, it does not involve a cell isolation technique, and it requires only a minimum amount of blood. Moreover, the analysis of each population is much more precise because of a minimum contamination between different cell populations. The advantage of this work is to study interactions between different cell populations of immune cells during HIV infection in humans, or SIV infection in monkeys, or potentially other diseases, and in particular to better understand the important role that dendritic cells might play in disease progression
Styles APA, Harvard, Vancouver, ISO, etc.
43

Bonnaffoux, Arnaud. « Inférence de réseaux de régulation de gènes à partir de données dynamiques multi-échelles ». Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEN054/document.

Texte intégral
Résumé :
L'inférence des réseaux de régulation de gènes (RRG) à partir de données d'expression est un défi majeur en biologie. L’arrivée des technologies de mesure de transcriptomique à l’échelle de la cellule a suscité de nombreux espoirs, mais paradoxalement elles montrent une nouvelle complexité du problème d’inférence des RRG qui limite encore les approches existantes. Nous avons commencé par montrer, à partir de données d'expression en cellules uniques acquises sur un modèle aviaire de différenciation érythrocytaire, que les RRG sont des systèmes stochastiques à l'échelle de la cellule et qu'il y a une évolution dynamique de cette stochasticité au cours du processus de différenciation (Richard et al, PLOS Comp.Biol., 2016). C'est pourquoi nous avons développé par la suite un modèle de RRG mécaniste qui inclus cette stochasticité afin d'exploiter au maximum l'information des données expérimentales à l'échelle de la cellule (Herbach et al, BMC Sys.Biol., 2017). Ce modèle décrit les interactions entre gènes comme un couplage de processus de Markov déterministes par morceaux. En régime stationnaire une formule explicite de la distribution jointe est dérivée du modèle et peut servir à inférer des réseaux simples. Afin d'exploiter l'information dynamique et d'intégrer d'autres données expérimentales (protéomique, demi-vie des ARN), j’ai développé à partir du modèle précédent une approche itérative, intégrative et parallèle, baptisée WASABI qui est basé sur le concept de vague d'expression (Bonnaffoux et al, en révision, 2018). Cette approche originale a été validée sur des modèles in-silico de RRG, puis sur nos données in-vitro. Les RRG inférés affichent une structure de réseau originale au regard de la littérature, avec un rôle central du stimulus et une topologie très distribuée et limitée. Les résultats montrent que WASABI surmonte certaines limitations des approches existantes et sera certainement utile pour aider les biologistes dans l’analyse et l’intégration de leurs données
Inference of gene regulatory networks from gene expression data has been a long-standing and notoriously difficult task in systems biology. Recently, single-cell transcriptomic data have been massively used for gene regulatory network inference, with both successes and limitations.In the present work we propose an iterative algorithm called WASABI, dedicated to inferring a causal dynamical network from timestamped single-cell data, which tackles some of the limitations associated with current approaches. We first introduce the concept of waves, which posits that the information provided by an external stimulus will affect genes one-byone through a cascade, like waves spreading through a network. This concept allows us to infer the network one gene at a time, after genes have been ordered regarding their time of regulation. We then demonstrate the ability of WASABI to correctly infer small networks, which have been simulated in-silico using a mechanistic model consisting of coupled piecewise-deterministic Markov processes for the proper description of gene expression at the single-cell level. We finally apply WASABI on in-vitro generated data on an avian model of erythroid differentiation. The structure of the resulting gene regulatory network sheds a fascinating new light on the molecular mechanisms controlling this process. In particular, we find no evidence for hub genes and a much more distributed network structure than expected. Interestingly, we find that a majority of genes are under the direct control of the differentiation-inducing stimulus. Together, these results demonstrate WASABI versatility and ability to tackle some general gene regulatory networks inference issues. It is our hope that WASABI will prove useful in helping biologists to fully exploit the power of time-stamped single-cell data
Styles APA, Harvard, Vancouver, ISO, etc.
44

Marra, Vincenzo. « Cellular and molecular mechanisms of different memory phases after single-trial classical conditioning in Lymnaea ». Thesis, University of Sussex, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.505909.

Texte intégral
Résumé :
An in vitro conditioning paradigm was developed to investigate the different phases of memory leading to associative long-term memory formation in the feeding system of the pond snail, Lymnaea stagnails. Using a one-trial chemical conditioning paradigm, a paired application of the CS (amyl acetate) and US (sucrose) to the lips/oesophagus in a semi-intact preparation was carried out. The conditioned response was measured as an increase in the frequency of fictive feeding cycles in feeding motoneurons following application of the CS to the lips. The time course of expression of the memory trace from 10 min to 4 hr after conditioning was followed. Importantly, the expression of the in vitro memory trace was shown to be intermittent unlike the one observed in behavioural experiments that was continuous. The in vitro memory trace was detected at 10 min, 1 hr and up to 4hr but not at 30 min and 2 hr. Protein synthesis was required for the expression of a memory trace from 1 hr after raining and for later time points, but not at 10 min. This result suggests a correspondence between the inability to detect an in vitro memory trace at 30 min and the transition from a protein independent mechanism for memory expression to a protein-dependent one. Experiments using RNA-synthesis blockers have shown a requirement for de novo synthesis of RNA from 4 hr after training and onward. Based on in vitro and in vivo data, a model for associative conditioning is presented, suggesting the presence of a short-term memory trace at 10 min after conditioning (protein synthesis and RNA synthesis-independent), an intermediate-term memory trace at 1-3 hr after conditioning (protein synthesis-dependent, RNA synthesis-independent) and a long-term memory trace (protein synthesis-dependent, RNA synthesis-dependent) at 4 hr and up to 24 hr after conditioning.
Styles APA, Harvard, Vancouver, ISO, etc.
45

Chen, Wenli. « Spectroscopie diélectrique hyperfréquence de cellules uniques cancéreuses : de l'optimisation du capteur en sensibilité et répétabilité jusqu'au suivi en temps réel de stimuli chimiques ». Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30219/document.

Texte intégral
Résumé :
La mesure de cellules biologiques constitue une étape de routine dans de nombreuses investigations en biologie. Les techniques actuelles utilisées par les biologistes sont principalement basées sur l'utilisation marqueurs optiques de coloration ou fluorescents, qui fournissent des observations moléculaires et cellulaires très précises et efficaces. Dans ce contexte, la spectroscopie diélectrique micro-ondes pour analyse cellulaire constitue une méthode nouvelle et attrayante, en raison du manque de préparation et manipulation des cellules, sans besoin d'ajout de produits chimiques, qui pourraient interférer avec d'autres constituants cellulaires. Sa compatibilité avec l'analyse de cellules uniques, potentiellement en temps réel, constitue également deux atouts importants de la technique d'analyse. Les travaux de cette thèse ont donc porté sur l'optimisation d'un biocapteur hyperfréquence microfluidique, dédié à la spectroscopie diélectrique de cellules biologiques uniques, et au développement de sa métrologie pour accéder au comportement diélectrique de cellule soumise à des stimuli chimique. Après un état de l'art sur les techniques courantes d'analyse de cellule individuelle, nous nous sommes attachés à optimiser le biocapteur hyperfréquence pour en améliorer les performances en sensibilité et en répétabilité. Ces optimisations ont porté sur le procédé de micro-fabrication, l'architecture du composant, que ce soit au niveau mécanique vis à vis de l'efficacité de blocage d'une cellule unique, mais aussi d'un point de vue électromagnétique avec une étude paramétrique. Ces études ont été validées dans un premier temps expérimentalement par la mesure de billes de polystyrène, modèle diélectrique simplifié par rapport à la complexité d'une cellule biologique, puis sur cellules individuelles vivantes dans leur milieu de culture. Le banc de caractérisation a également été optimisé afin de permettre la mesure diélectrique de cellules au cours du temps, et notamment en réaction à un stimulus d'ordre chimique. La cinétique de réaction d'une cellule unique soumise à de la saponine a été enregistrée automatiquement pour différentes cellules. Ces travaux ouvrent ainsi la voie à l'analyse à l'échelle cellulaire par spectroscopie diélectrique micro-onde de processus biologiques complexes en temps réel
The measurement of biological cells is a routine step in many biological investigations. Current techniques used by biologists are mainly based on staining or fluorescent labelings, which provide very precise and effective molecular and cellular observations. Within this context, the microwave dielectric spectroscopy for cell analysis represents a new and attractive method, due to the lack of cells preparation and manipulation, without adding chemicals that could interfere with other cellular constituents. Its compatibility with the analysis of single-cells, potentially in real-time monitoring, constitute also two major assets of the analysis technique. This PhD thesis therefore focused on the optimization of a microfluidic and microwave based biosensor, which is dedicated to the dielectric spectroscopy of individual biological cells, and the development of its metrology to assess the dielectric behavior of cells subjected to chemical stimuli. After a state of the art on the current techniques available to analyze single cells, we focused on the optimization of the microwave biosensor to improve its performances in terms of sensitivity and repeatability. These optimizations dealt with the microfabrication process, the component architecture through the investigation of single cell loading efficacy as well as an electromagnetic parametric study. These developments were validated first experimentally with the measurement of polystyrene beads, which present a simplified dielectric model compared to the complexity of a biological cell, followed then by living individual cells in their culture medium. The test bench was also optimized to allow the dielectric measurement of cells over time, and especially in response to a chemical stimulus. The reaction kinetics of a single-cell subjected to saponin was recorded automatically for different cells. This work opens the door to single-cell analysis with microwave dielectric spectroscopy of complex biological processes in real-time
Styles APA, Harvard, Vancouver, ISO, etc.
46

Claudel, Julien. « Spectroscopie d'impédance électrique par biocapteur à micro-électrodes : application à la cytométrie de flux de cellules sanguines ». Thesis, Université de Lorraine, 2013. http://www.theses.fr/2013LORR0169/document.

Texte intégral
Résumé :
Ce travail de thèse porte sur la réalisation et la validation d'un capteur pour la mesure d'impédance en cytométrie de flux associée à un dispositif microfluidique pour des cellules sanguines dans la gamme de fréquences (100 kHz-10 MHz). Un premier chapitre introduit les propriétés électriques et diélectriques des tissus vivants. Les effets de chaque élément des cellules sur l'impédance globale mesurée sont décrits, ainsi que les modèles associés. Un état de l'art, sur les mesures de l'échelle macroscopique à la mesure unitaire de cellules, est exposé dans le second chapitre. Les mesures en cytométrie de flux et l'utilisation possible des actionneurs à ondes acoustiques de surface (SAW) y sont aussi étudiées. Le troisième chapitre concerne la modélisation analytique et la simulation par la méthode des éléments finis de cellules unitaires par des microélectrodes de différentes géométries. Les résultats de cette section ont permis de déterminer les meilleures géométries, leurs sensibilités, et leurs réponses. La fabrication du capteur est étudiée dans le quatrième chapitre. Les contraintes liées à la faisabilité par les techniques de micro-fabrication et la biocompatibilité des matériaux y sont développées. Des premiers tests de validation sur les écoulements y sont effectués. Le cinquième et dernier chapitre est centré sur la mesure de cellules et particules. Des tests de calibration ont été réalisés pour déterminer le facteur de forme des électrodes et les impédances parasites. Les mesures suivantes sur des cellules et particules ont permis de valider les résultats obtenus en simulation, ainsi que la discrimination des particules testées en fonction de leurs dimensions
This thesis focuses on the implementation and validation of a microfluidic bioimpedance sensor for cytometric measures in the frequency range ( 100kHz - 10MHz ) of biological cells ( blood cells) combined with a microfluidic device. The first chapter introduces the electrical and dielectric properties of living tissues and summarizes the state of the art. The effects of each element of the cells on the overall measured impedance are described, as well as the associated models. A state of the art, on the bioimpedance macroscopic measurements unit cell is outlined in the second chapter. Measurements by flow cytometry and the possible use of surface acoustic wave (SAW) devices as actuators are also studied. The third chapter deals with analytical modeling and simulation by the finite element method of unit cells by microelectrodes of different geometries. 3D simulations were done showing the best configuration for the electrodes design. The results of this section were used to determine the best geometry, their sensibilities, and their answers. The sensor design is described in the fourth chapter. Technological constraints related to its micro- fabrication techniques feasibility and biocompatibility of materials are developed. Flows validation tests were done and are described. The fifth and final chapter focuses on the measurement of cells and particles. In a first step, calibration tests were carried out to determine the form factor of the electrodes and the parasitic impedances. Measurements on cells and particles were used to validate the results obtained in simulation, as well as discrimination based particles tested their dimensions
Styles APA, Harvard, Vancouver, ISO, etc.
47

Vig, Dhruv Kumar. « Spanning the Continuum : From Single Cell to Collective Migration ». Diss., The University of Arizona, 2015. http://hdl.handle.net/10150/566259.

Texte intégral
Résumé :
A cell's ability to sense and respond to mechanical signals highlights the significance of physical forces in biology; however, to date most biomedical research has focused on genetics and biochemical signaling. We sought to further understand the physical mechanisms that guide the cellular migrations that occur in a number of biological processes, such as tissue development and regeneration, bacterial infections and cancer metastasis. We investigated the migration of single cells and determined whether the biomechanics of these cells could be used to elucidate multi-cellular mechanisms. We first studied Borrelia burgdorferi (Bb), the bacterium that causes Lyme disease. We created a mathematical model based on the mechanical interactions between the flagella and cell body that explained the rotation and undulation of the cell body that occurs as the bacterium swims. This model further predicts how the swimming dynamics could be affected by alterations in flagellar or cell wall stiffnesses. Fitting the model to experimental data allowed us to calculate the flagellar torque and drag for Bb, and showed that Treponema pallidum (Tp), the syphilis pathogen, is biomechanically similar to Bb. Next, we used experimentally-determined parameters of Bb's motility to develop a population-level model that accounts for the morphology and spreading of the "bulls-eye" rash that is typically the first indicator of Lyme disease. This work supported clinical findings on the efficacy of antibiotic treatment regimes. Finally, we investigated the dynamics of epithelial monolayers. We found that intracellular contractile stress is the primary driving force behind collective dynamics in epithelial layers, a result previously predicted from a biophysical model. Taken together, these findings identify the relevance of physics in cellular migration and a role of mechanical signaling in biomedical science.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Eid, Joelle. « Etude du relargage du VIH-1 en temps réel à l'échelle de la cellule unique par la Viro-fluidique ». Thesis, Université de Montpellier (2022-….), 2022. http://www.theses.fr/2022UMONT007.

Texte intégral
Résumé :
Le cycle de réplication du VIH-1 débute par l’entrée du virus dans la cellule hôte et s’achève par la libération des particules virales dans le milieu extracellulaire. L’étape cruciale de libération virale reste peu étudiée car elle nécessite une étude à l’échelle de la cellule unique. En effet, la quantification de la production virale réalisée à partir de populations de cellules dont les cinétiques de réplication du VIH-1 sont très hétérogènes, donnerait des résultats approximatifs. C’est pourquoi nous avons développé une approche microfluidique qui permet d’étudier la dynamique du relargage du VIH-1 en temps réel à l’échelle de la cellule unique.Les travaux réalisés durant ma thèse portent sur la combinaison de la virologie et la microfluidique continue afin de développer une technologie sensible et fiable pour visualiser et quantifier la production virale d’une cellule unique en temps réel. Trois types de puces ont été construites. La puce de capture nous a permis de déterminer les paramètres physiques et biologiques pour immobiliser une cellule (~10 µm) unique qui produit des VLP-GFP. La puce de détection, dont la performance a été comparée avec la technique du Nanoparticle Tracking Analysis, s’est avérée un outil précieux pour une quantification précise et reproductible de VLPs fluorescents (~140 nm) à l’échelle de la particule unique dans des surnageants de culture cellulaire. Et enfin, la puce multiplexe, qui couple les deux fonctions (capture de cellules uniques et détection de virus) m’a permis d’étudier la cinétique de relargage virale en temps réel, à l’échelle de la cellule unique. Des lignées HeLa et HEK 293 productrices de VLPs-GFP m’ont servi de modèles d’études. Pour la première fois la cinétique de production virale a pu être mesurée avec en moyenne 50 VLPs / cellule / h. Ce résultat a été validé par la mesure des virus produits par les mêmes cellules cultivées en boite de culture, confirmant la fiabilité et la sensibilité de notre approche. De façon intéressante, le profil de la cinétique du relargage montre un processus périodique (période ~4min) qui pourrait être expliqué par la présence d’une ou de plusieurs étapes limitantes dans le mécanisme de biogenèse des virions. Les nouveaux outils développés ici apportent des informations inédites sur la cinétique du relargage du VIH-1. Ils pourront être utilisés ou facilement adaptés pour l’étude d’autres pathogènes ou des vésicules extracellulaires
Upon its entry, HIV-1 replicates and produces new viral particles that are released into the extracellular environment. The crucial step of virus release remains poorly understood because it requires the study at the single cell level. Indeed, quantification of viral production from cell populations with very heterogeneous HIV-1 replication kinetics would give approximate results. This is why we have developed a microfluidic approach that allows the study of HIV-1 release dynamics in real-time at the single cell level. In this study, continuous microfluidics was combined to the virology in order to develop a sensitive and reliable technology to visualize and quantify virus production by a single cell. Three types of chips were fabricated: the trapping chip allowed us to determine the physical and biological parameters that ensure single cell trapping (~10 µm) producing VLPs-GFP. The detection chip, whose performance was compared with the Nanoparticle Tracking Analysis technique, proved to be a valuable tool for accurate and reproducible quantification of fluorescent VLPs (~140 nm) at the single particle scale in cell culture supernatants. The multiplex chip, which combines the two previous chips, allowed us to study in real-time the virus release kinetics at the single cell scale. VLPs-GFP producing HeLa and HEK 293 cell lines were used as study models. For the first time, viral production kinetics could be measured with an average of 50 VLPs / cell / h that was validated by the measurement of viruses produced by the same cells grown in culture dish, confirming the reliability and sensitivity of our approach. Interestingly, the release kinetics profile shows a periodic process (period ~4min) that could be explained by the presence of one or more limiting steps in the virion biogenesis mechanism. The new tools developed here provide novel information on the kinetics of HIV-1 salting-out. They can be used or easily adapted for the study of other pathogens or extracellular vesicles
Styles APA, Harvard, Vancouver, ISO, etc.
49

Fougeron, Denis. « Etude et mise en oeuvre de cellules résistantes aux radiations dans le cadre de l'évolution du détecteur à pixels d'Atlas technologie CMOS 65 nm ». Electronic Thesis or Diss., Toulon, 2020. http://www.theses.fr/2020TOUL0005.

Texte intégral
Résumé :
Cette étude s’inscrit dans le cadre d’une collaboration internationale, RD53, et qui vise à fournir à la communauté scientifique un ASIC « Front-End » de lecture du futur détecteur pixels courant 2022. La technologie 65 nm choisie par la communauté scientifique devra fonctionner dans un environnement extrêmement radioactif (10 MGray) pendant cinq ans d’exploitation sans maintenance possible.Deux approches expérimentales sont décrites dans ce mémoire : 1. Des études en irradiation ont été réalisées afin d'estimer la tolérance à la dose (TID) du process 65 nm pour fixer des règles de conception qui peuvent être respectées pour les cellules numériques et analogiques implantées dans le circuit final. Des véhicules de test (PCM) ont été définis pour être irradiés à l’aide d’une source de rayons X (10 keV – 3 kW) afin d'estimer les effets de dose. Les résultats obtenus sont synthétisés dans les chapitres concernés. 2. Dans le but d'optimiser l'immunité des points mémoires aux effets des SEU, plusieurs circuits prototypes ont été conçus. Ils incluent différentes architectures en vue d’être irradiées. Plusieurs campagnes d'irradiation ont été menées en utilisant un faisceau d'ions lourds et un faisceau de protons à dessein de comparer leur comportement et d’en extraire une cross-section la plus précise possible
This study is inside an international collaboration context, RD53, which its goal is to provide to the scientific community an electronic front-end for the readout of the future pixel detector in 2022. The 65 nm technology chosen by the collaboration will have to be operational in a highly radioactive environment (10 MGray) for five years without maintenance operation.Two experimental approaches are described in this thesis: 1. Irradiation studies were carried out to estimate the dose tolerance (TID) of the 65 nm process to fix all essentials design rules for digital and analog cells implanted in the final circuit. Test vehicles (PCM) were defined for irradiation using an X-ray source (10 keV - 3 kW) to estimate dose effects. The results we obtained are summarized in the document. 2. In order to optimize the tolerance of memories to the SEE effects, several ASIC prototypes havebeen designed. These prototypes include different architectures for irradiation characterization. Several irradiation campaigns have been carried out using a heavy ion beam and a proton beam in order to a cross-section as accurate as possible
Styles APA, Harvard, Vancouver, ISO, etc.
50

Sarma, Ashapurna. « A Single Molecule Study of Calcium Effect on Nuclear Transport ». Bowling Green State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1282326584.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie