Littérature scientifique sur le sujet « Singola molecola »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Singola molecola ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Singola molecola"
Marcucci, Guido, Drew Watson, Shweta Kapoor, Swaminathan Rajagopalan, Rajan Parashar, Aktar Alam, Diwyanshu Sahu et al. « Superior therapy response predictions for patients with acute myeloid leukemia (AML) using Cellworks Singula : MyCare-009-01. » Journal of Clinical Oncology 38, no 15_suppl (20 mai 2020) : e19502-e19502. http://dx.doi.org/10.1200/jco.2020.38.15_suppl.e19502.
Texte intégralStein, Anthony Selwyn, Drew Watson, Shweta Kapoor, Kunal Ghosh Ghosh Roy, Aftab Alam, Diwyanshu Sahu, Kabya Basu et al. « Superior therapy response predictions for patients with myelodysplastic syndrome (MDS) using Cellworks Singula : MyCare-009-02. » Journal of Clinical Oncology 38, no 15_suppl (20 mai 2020) : e19528-e19528. http://dx.doi.org/10.1200/jco.2020.38.15_suppl.e19528.
Texte intégralWen, Patrick Y., Drew Watson, Shweta Kapoor, Aftab Alam, Aktar Alam, Deepak Anil Lala, Diwyanshu Sahu et al. « Superior therapy response predictions for patients with glioblastoma (GBM) using Cellworks Singula : MyCare-009-03. » Journal of Clinical Oncology 38, no 15_suppl (20 mai 2020) : 2519. http://dx.doi.org/10.1200/jco.2020.38.15_suppl.2519.
Texte intégralAhluwalia, Manmeet Singh, Drew Watson, Shweta Kapoor, Rajan Parashar, Kunal Ghosh Ghosh Roy, Aftab Alam, Swaminathan Rajagopalan et al. « Superior therapy response predictions for patients with low-grade glioma (LGG) using Cellworks Singula : MyCare-009-04. » Journal of Clinical Oncology 38, no 15_suppl (20 mai 2020) : 2569. http://dx.doi.org/10.1200/jco.2020.38.15_suppl.2569.
Texte intégralMarcucci, Guido, Drew Watson, Prashant Ramachandran Nair, Kabya Basu, Yashaswini S. Ullal, Adity Ghosh, Yugandhara Narvekar et al. « Assessment of Cellworks Omics Biosimulation Therapy Response Predictions for Patients with Acute Myeloid Leukemia (AML) Using Cellworks Singula™ : Mycare-020-01 ». Blood 136, Supplement 1 (5 novembre 2020) : 35. http://dx.doi.org/10.1182/blood-2020-142184.
Texte intégralStein, Anthony S., Drew Watson, Prashant Ramachandran Nair, Kabya Basu, Yashaswini S. Ullal, Adity Ghosh, Yugandhara Narvekar et al. « Superior Therapy Response Predictions for Patients with Myelodysplastic Syndrome (MDS) Using Cellworks Singula™ : Mycare-020-02 ». Blood 136, Supplement 1 (5 novembre 2020) : 9–10. http://dx.doi.org/10.1182/blood-2020-142214.
Texte intégralVelcheti, Vamsidhar, Michael Castro, Drew Watson, Shweta Kapoor, Anuj Tyagi, Mohammed Sauban, Aftab Alam et al. « Superior overall survival (OS), progression-free survival (PFS), and clinical response (CR) predictions for patients with non-small cell lung cancer (NSCLC) using Cellworks Singula : myCare-022-05. » Journal of Clinical Oncology 39, no 15_suppl (20 mai 2021) : 9117. http://dx.doi.org/10.1200/jco.2021.39.15_suppl.9117.
Texte intégralWen, Patrick Y., Michael Castro, Drew Watson, Shweta Kapoor, Ashish Agrawal, Aftab Alam, Kunal Ghosh Roy et al. « Superior overall survival (OS) and disease-free survival (DFS) predictions for patients with glioblastoma multiforme (GBM) using Cellworks Singula : myCare-022-03. » Journal of Clinical Oncology 39, no 15_suppl (20 mai 2021) : 2017. http://dx.doi.org/10.1200/jco.2021.39.15_suppl.2017.
Texte intégralSu Yuting, 苏玉婷, et 盖宏伟 Gai Hongwei. « 单分子计数免疫分析 ». Laser & ; Optoelectronics Progress 59, no 6 (2022) : 0617011. http://dx.doi.org/10.3788/lop202259.0617011.
Texte intégralYanagida, Toshio. « S2h1-2 Single molecule study for elucidating the mechanism involved in utilizing fluctuations by biosystems(S2-h1 : "Single Molecule Analysis of Molecular Motor",Symposia,Abstract,Meeting Program of EABS & ; BSJ 2006) ». Seibutsu Butsuri 46, supplement2 (2006) : S127. http://dx.doi.org/10.2142/biophys.46.s127_1.
Texte intégralThèses sur le sujet "Singola molecola"
CHOUDHARY, DHAWAL. « Studio a livello di singola molecola del folding, misfolding e aggregazione di proteine e dell’attività chaperonica della HSPB8 ». Doctoral thesis, Università degli studi di Modena e Reggio Emilia, 2020. http://hdl.handle.net/11380/1199862.
Texte intégralOptical tweezers have evolved as an exemplary Single Molecule Force Spectroscopy (SMFS) technique over the past three decades. A distinct and bio medically relevant application of Optical Tweezers is their ability to observe directly at single molecule level the folding, misfolding and aggregation of protein molecules. Additionally the dynamic approach of Optical Tweezer setup also allows for the isolated study of interactions between two or more biomolecules, such as chaperone-protein interactions, in real time. The medical relevance of such studies stems from the fact that misfolding and aggregation of proteins are deleterious processes and have been linked to many neurodegenerative disorders. While molecular chaperones have evolved as an evolutionarily conserved sword and shield mechanism against such deleterious processes, wherein their holdase action acts as a shield preventing further aggregation of misfolded protein species and their foldase action acts as a sword and actively assists misfolded structure to regains their natively folded state. The dysfunction of this chaperone activity is also cytotoxic and can lead to loss of proteostasis. The present thesis dwells deeper in this specific application of Optical tweezer. The thesis will elaborate upon how optical tweezers can extract the mechanistic details of the folding and misfolding of protein molecules by reviewing the experiments performed on NCS-1 (Neuronal Calcium Sensor 1). It will also discuss the experimental approach taken by SMFS techniques like Optical Tweezers and AFM (Atomic Force Microscopy) to study the structural and functional dynamics of molecular chaperones. Furthermore, the thesis will explore the recent developments in Optical Tweezers and their biological applications. Finally, I describe the results of experiments we have carried out on the maltose binding protein to elucidate the mechanism of action of the chaperone HSPB8. We have mechanically denatured homotetramers of MBP as well as single MBP molecules and analyzed their folding and aggregation processes in the presence and absence of wild-type HSPB8 and its mutant form HSPB8-K141E/N. Our results reveal a strong holdase activity of wild type HSPB8, which either prevents completely the aggregation of denatured MBP molecules or allows the substrate to form only small and mechanically weak aggregates while this holdase activity is significantly suppressed in the mutant. Moreover, and importantly, a careful analysis of the data also discloses an unexpected foldase activity of both wild type and mutated forms of HSPB8, which guides the folding process of denatured MBP molecules into their native states. Our findings highlight new mechanisms of interaction between HSPB8 and its substrates and suggest a more complex physiological role for this chaperone than previously assumed.
BUGLIONE, ENRICO. « Nanomeccanica per la Ricerca sul Cancro ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2021. http://hdl.handle.net/10281/304787.
Texte intégralWith the term cancer are intended many species of diseases having quite different properties from each other. Despite such vast differences, the mechanisms beyond the onset of any kind of cancer are very similar and can be classified in two main groups depending on their stage. The first is related to the dysregulation of particular genes (oncogenes), that results in an impairment of the cell cycle. The second concerns the ability of cancer cells to continuously divide and migrate through tissues, that results in a highly invasive potential. From a mechanical point of view, the investigation of such features can be crucial for a deeper understanding of cancer onset and progression as well as for the study of novel pharmacological treatments. The outbreak of cancer is caused by a deficiency in the regulation of the cell cycle which, in turn, often depends on an abnormal expression of oncogenes. It is the case of the proto-oncogene c-KIT, that encodes for a mast/stem cell growth factor receptor. Its regulation relies mainly on its promoter, which is constituted by 3 distinct three-dimensional DNA structures called G-quadruplexes (G4s). Those structures can be studied by means of nanomechanical tools such as Magnetic Tweezers, which can recognize folded G4s at single-molecule level, thus enabling to study their role in the regulation of the oncogene. After the onset of cancer, a generic cell undergoes mechanical changes: it divides quickly, and it starts migrating. Both phenomena require a modification in the cell structural phenotype, eventually modifying its rigidity. Chronic lymphocytic leukemia is a case in point: malignant B lymphocytes continuously traffic between peripheral blood and lymphoid tissues. Such frequent migrations require a change in the rigidity of cells. In this case, Atomic Force Microscopy can provide a nanomechanical approach allowing to measure the stiffness of single cells from patients with leukemia, which is slightly decreased if compared to rigidity of cells from healthy donors. This feature can also allow to observe the effect of targeted therapies on the cells, evaluating their effect from a mechanical point of view.
CORTI, ROBERTA. « Single molecule force spectroscopy of proteins and DNA ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2020. http://hdl.handle.net/10281/273770.
Texte intégralIn the last few decades, the constant development of novel single molecule techniques has created the basis for a new paradigm in the field of biophysics. Among all, the nanomanipulation of individual biomolecules revealed new insights into the mechanics of biological molecules, in particular proteins and DNA, improving the understanding of the fundamental relation between structural properties and biological functions. Therefore, several single-molecule nanomanipulation methods have been developed, including Atomic Force Microscopy (AFM), Magnetic Tweezers (MT) and Flow Stretching (F-S) coupled with fluorescence. All these technique were employed in this Thesis for the characterisation of biological macromolecules by single molecule force spectroscopy (SMFS). In this Thesis I focus mainly on several aspects of a few different proteins trying to depict a frame in which the strong link between proteins function and their structure can be clarified. With this aim, I study the conformational states of an intrinsically disordered protein (IDP) involved in Parkinson's Disease, the a-synuclein (AS) and the structural change driving the DNA compaction mediated by structural maintenance protein, the condensin. Finally, I present a structural study of a DNA-analogue by thermal shifting essays and single molecule experiments. I included also a technical implementation of a (F-S) combined with TIRF set up to promote the high-speed exchanging buffer for study protein DNA interactions. In the AS single molecule force spectroscopy (SMFS) study, I afford the problem of AS lacking of well defined structure by stretching and unfolding a single polyprotein containing the human AS by employing a SMFS approach. The analysis of the different unfolding pathways gives information about the structural conformation of the protein before the mechanical denaturation. The AS was found to assume three distinct conformational states ranging from a random coil to a highly structured conformation. Since ligands, such as Epigallocatechin-3-Gallate (EGCG) and Dopamine (DA), are known to affect the fibrillation process of AS, I used this single molecule technique to investigate the effect of EGCG and DA on the conformational ensemble of the WT AS. Moreover, knowing from several studies that the presence of point mutations, linked to familial PD, correlate with the gaining of structure and therefore with AS aggregation, I SMFS studies also on AS with three different single point mutations (A30P, A53T and E83A). A particular emphasis was given to the comparison between SMFS results and native mass spectrometry data for the conformational changes of AS in the presence of both DA and EGCG. In the following part, related to the DAP: diaminopurine-substituted DNA, a systematic comparison between a wild-type DNA and DAP DNA is performed, in terms of thermal stability and nanomechanical properties, measured at low and high forces. At low forces the DNA extension and bending rigidity were investigated, by using both MT and AFM, while at high forces the overstretching transition behaviour was explored. In the section related to condensin mediated DNA collapsing, I present a single-molecule MT study to measure, in real-time, the compaction of individual DNA molecules by the condensin complex in the presence of ATP. Since many compaction traces showed sudden distinct decreases in the DNA end-to-end length, I present and validate two different very conservative user-bias-independent step-finding algorithm to extract the size of these compaction steps. Finally, a DNA flow stretching implementation is presented. Briefly, several flow cells were tested to achieve a fast buffer exchange in both MT and F-S coupled with TIRF, in the frame of visualisation of DNA:proteins interactions. We validated our flow cells in term of boundary exchange and applied force. We also visualized fluorescent DNA molecules stretched in the presence of several flow rates.
Murello, Anna. « La spettroscopia di forza basata sull'AFM nello studio dello spazio conformazionale e dei processi aggregativi di proteine prioniche ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/8878/.
Texte intégralRajagopal, Senthil Arun. « SINGLE MOLECULE ELECTRONICS AND NANOFABRICATION OF MOLECULAR ELECTRONIC DEVICES ». Miami University / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=miami1155330219.
Texte intégralSikor, Martin. « Single-molecule fluorescence studies of Protein Folding and Molecular Chaperones ». Diss., lmu, 2011. http://nbn-resolving.de/urn:nbn:de:bvb:19-138521.
Texte intégralÖkten, Zeynep. « Single molecule mechanics and the myosin family of molecular motors ». [S.l.] : [s.n.], 2006. http://www.diss.fu-berlin.de/2006/6/index.html.
Texte intégralZhao, Xiaotao. « The synthesis and single-molecule conductance of conjugated molecular wires ». Thesis, Durham University, 2014. http://etheses.dur.ac.uk/10634/.
Texte intégralLange, Jeffrey J. « Studies of molecular motions by fluorescence microscopy at single molecule and single fiber levels ». Diss., Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/1629.
Texte intégralRüttinger, Steffen. « Confocal microscopy and quantitative single molecule techniques for metrology in molecular medicine ». [S.l.] : [s.n.], 2006. http://opus.kobv.de/tuberlin/volltexte/2007/1434.
Texte intégralLivres sur le sujet "Singola molecola"
Fresh air : And, The story of molecule. Manchester : Carcanet Press Limited, 2012.
Trouver le texte intégralMolecular imaging : Radiopharmaceuticals for PET and SPECT. Berlin : Springer-Verlag, 2009.
Trouver le texte intégralservice), SpringerLink (Online, dir. Structured Light Fields : Applications in Optical Trapping, Manipulation, and Organisation. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012.
Trouver le texte intégralDinman, Jonathan D. Biophysical approaches to translational control of gene expression. New York, NY : Springer New York, 2013.
Trouver le texte intégralImaging dopamine. Cambridge : Cambridge University Press, 2009.
Trouver le texte intégralKaila, M. M. Molecular Imaging of the Brain : Using Multi-Quantum Coherence and Diagnostics of Brain Disorders. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013.
Trouver le texte intégralMichel, Laguës, et SpringerLink (Online service), dir. Scale Invariance : From Phase Transitions to Turbulence. Berlin, Heidelberg : Springer-Verlag Berlin Heidelberg, 2012.
Trouver le texte intégralWernsdorfer, W. Molecular nanomagnets. Sous la direction de A. V. Narlikar et Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.4.
Texte intégralLaunay, Jean-Pierre, et Michel Verdaguer. The localized electron : magnetic properties. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198814597.003.0002.
Texte intégral(Editor), John E. Gilbert, Y. S. Han (Editor), J. A. Hogan (Editor), Joseph D. Lakey (Editor), D. Weiland (Editor) et G. Weiss (Editor), dir. Smooth Molecular Decompositions of Functions and Singular Integral Operators. American Mathematical Society, 2002.
Trouver le texte intégralChapitres de livres sur le sujet "Singola molecola"
Pilizota, Teuta, Yoshiyuki Sowa et Richard M. Berry. « Single-Molecule Studies of Rotary Molecular Motors ». Dans Handbook of Single-Molecule Biophysics, 183–216. New York, NY : Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-76497-9_7.
Texte intégralHornung, Tassilo, James Martin, David Spetzler, Robert Ishmukhametov et Wayne D. Frasch. « Microsecond Resolution of Single-Molecule Rotation Catalyzed by Molecular Motors ». Dans Single Molecule Enzymology, 273–89. Totowa, NJ : Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-261-8_18.
Texte intégralDuwez, Anne-Sophie. « Single-Molecule Measurements of Synthetic Molecular Machines at Work ». Dans Single Molecular Machines and Motors, 1–16. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13872-5_1.
Texte intégralGanzhorn, Marc, et Wolfgang Wernsdorfer. « Molecular Quantum Spintronics Using Single-Molecule Magnets ». Dans NanoScience and Technology, 319–64. Berlin, Heidelberg : Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40609-6_13.
Texte intégralTaran, Gheorghe, Edgar Bonet et Wolfgang Wernsdorfer. « Single-Molecule Magnets and Molecular Quantum Spintronics ». Dans Handbook of Magnetism and Magnetic Materials, 979–1009. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63210-6_18.
Texte intégralXie, X. S., et H. P. Lu. « Single-Molecule Enzymology ». Dans Single Molecule Spectroscopy, 227–40. Berlin, Heidelberg : Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56544-1_13.
Texte intégralDovichi, N. J., R. Polakowski, A. Skelley, D. B. Craig et J. Wong. « Single-Molecule Enzymology ». Dans Single Molecule Spectroscopy, 241–56. Berlin, Heidelberg : Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56544-1_14.
Texte intégralTaniguchi, Masateru. « Single-Molecule Sequencing ». Dans Single-Molecule Electronics, 217–35. Singapore : Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0724-8_9.
Texte intégralWebb, Watt W. « Single Molecule Spectroscopy Illuminating the Molecular Dynamics of Life ». Dans Single Molecule Spectroscopy in Chemistry, Physics and Biology, 107–17. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02597-6_5.
Texte intégralRapenne, Gwénaël, et Christian Joachim. « Single Rotating Molecule-Machines : Nanovehicles and Molecular Motors ». Dans Molecular Machines and Motors, 253–77. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/128_2013_510.
Texte intégralActes de conférences sur le sujet "Singola molecola"
Marchetti, Laura, Fulvio Bonsignore, Rosy Amodeo, Chiara Schirripa Spagnolo, Aldo Moscardini, Francesco Gobbo, Antonino Cattaneo, Fabio Beltram et Stefano Luin. « Single molecule tracking and spectroscopy unveils molecular details in function and interactions of membrane receptors ». Dans Single Molecule Spectroscopy and Superresolution Imaging XIV, sous la direction de Ingo Gregor, Rainer Erdmann et Felix Koberling. SPIE, 2021. http://dx.doi.org/10.1117/12.2578193.
Texte intégralDREWSEN, M. « COLD MOLECULAR IONS : SINGLE MOLECULE STUDIES ». Dans Proceedings of the XXI International Conference on Atomic Physics. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789814273008_0031.
Texte intégralHill, S. C., M. D. Barnes, W. B. Whitten et J. M. Ramsey. « Modeling Fluorescence Collection from Single Molecules in Liquid Microspheres ». Dans Laser Applications to Chemical and Environmental Analysis. Washington, D.C. : Optica Publishing Group, 1996. http://dx.doi.org/10.1364/lacea.1996.lwd.7.
Texte intégralKamenetska, Maria. « Self-Assembled Organometallic Molecular Wires in Single Molecule Circuits ». Dans 2021 IEEE 16th Nanotechnology Materials and Devices Conference (NMDC). IEEE, 2021. http://dx.doi.org/10.1109/nmdc50713.2021.9677552.
Texte intégralHall, Drew A., Nagaraj Ananthapad Manabhan, Chulmin Choi, Le Zheng, Paul P. Pan, Carl W. Fuller, Pius P. Padayatti et al. « A CMOS Molecular Electronics Chip for Single-Molecule Biosensing ». Dans 2022 IEEE International Solid- State Circuits Conference (ISSCC). IEEE, 2022. http://dx.doi.org/10.1109/isscc42614.2022.9731770.
Texte intégralYildiz, Ahmet. « Dissecting the Molecular Mechanism of Kinesin with Single Molecule Imaging ». Dans Laser Science. Washington, D.C. : OSA, 2009. http://dx.doi.org/10.1364/ls.2009.lsthf3.
Texte intégralRivera, Monica, Whasil Lee, Piotr E. Marszalek, Daniel G. Cole et Robert L. Clark. « Aligning Molecular Attachment Sites in Single Molecule Force Spectroscopy Measurements ». Dans ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/detc2008-50019.
Texte intégralNetti, A. P., I. De Santo, M. S. Panemi, S. Pricl, Alberto D’Amore, Domenico Acierno et Luigi Grassia. « MOLECULAR MOTION IN NANOCHANNELS : SINGLE MOLECULE EVIDENCE AND MULTISCALE SIMULATION ». Dans IV INTERNATIONAL CONFERENCE TIMES OF POLYMERS (TOP) AND COMPOSITES. AIP, 2008. http://dx.doi.org/10.1063/1.2989088.
Texte intégralLermer, N., M. D. Barnes, C.-Y. Kung, W. B. Whitten et J. M. Ramsey. « High-Speed Single Molecule Detection in Microdroplet Streams ». Dans Laser Applications to Chemical and Environmental Analysis. Washington, D.C. : Optica Publishing Group, 1996. http://dx.doi.org/10.1364/lacea.1996.lwb.7.
Texte intégralHou, Shangguo, Jack Exell et Kevin Welsher. « Untethering single molecule spectroscopy with 3D-SMART ». Dans Single Molecule Spectroscopy and Superresolution Imaging XIV, sous la direction de Ingo Gregor, Rainer Erdmann et Felix Koberling. SPIE, 2021. http://dx.doi.org/10.1117/12.2578699.
Texte intégralRapports d'organisations sur le sujet "Singola molecola"
Iancu, Violeta. Single Molecule Switches and Molecular Self-Assembly : Low Temperature STM Investigations and Manipulations. Office of Scientific and Technical Information (OSTI), août 2006. http://dx.doi.org/10.2172/955626.
Texte intégralDarrow, C., T. Huser, C. Campos, M. Yan, S. Lane et R. Balhorn. Single Fluorescent Molecule Confocal Microscopy : A New Tool for Molecular Biology Research and Biosensor Development. Office of Scientific and Technical Information (OSTI), mars 2000. http://dx.doi.org/10.2172/792442.
Texte intégralJeans, C., M. Thelen et A. Noy. Single Molecule Studies of Chromatin. Office of Scientific and Technical Information (OSTI), février 2006. http://dx.doi.org/10.2172/877892.
Texte intégralLu, H. Peter. Single-Molecule Interfacial Electron Transfer. Office of Scientific and Technical Information (OSTI), novembre 2017. http://dx.doi.org/10.2172/1410506.
Texte intégralHo, Wilson. Single-Molecule Interfacial Electron Transfer. Office of Scientific and Technical Information (OSTI), février 2018. http://dx.doi.org/10.2172/1419408.
Texte intégralCastro, A., et E. B. Shera. Single-molecule electrophoresis. Final report. Office of Scientific and Technical Information (OSTI), mai 1996. http://dx.doi.org/10.2172/272560.
Texte intégralChen, Peng. Single-Molecule Visualization of Living Polymerization. Fort Belvoir, VA : Defense Technical Information Center, février 2014. http://dx.doi.org/10.21236/ada606984.
Texte intégralMichael Holman, Ling Zang, Ruchuan Liu et David M. Adams. Single Molecule Spectroscopy of Electron Transfer. Office of Scientific and Technical Information (OSTI), octobre 2009. http://dx.doi.org/10.2172/966129.
Texte intégralLee, Ji-Young. Single Molecule Screening of Disease DNA Without Amplification. Office of Scientific and Technical Information (OSTI), janvier 2006. http://dx.doi.org/10.2172/897373.
Texte intégralHollars, C. W., L. Stubbs, K. Carlson, X. Lu et E. Wehri. Single Molecule Techniques for Advanced in situ Hybridization. Office of Scientific and Technical Information (OSTI), février 2003. http://dx.doi.org/10.2172/15007308.
Texte intégral