Littérature scientifique sur le sujet « Single-Cell omics »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Single-Cell omics ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Single-Cell omics"
Choi, Joung Min, Chaelin Park et Heejoon Chae. « moSCminer : a cell subtype classification framework based on the attention neural network integrating the single-cell multi-omics dataset on the cloud ». PeerJ 12 (26 février 2024) : e17006. http://dx.doi.org/10.7717/peerj.17006.
Texte intégralRusk, Nicole. « Multi-omics single-cell analysis ». Nature Methods 16, no 8 (30 juillet 2019) : 679. http://dx.doi.org/10.1038/s41592-019-0519-3.
Texte intégralChappell, Lia, Andrew J. C. Russell et Thierry Voet. « Single-Cell (Multi)omics Technologies ». Annual Review of Genomics and Human Genetics 19, no 1 (31 août 2018) : 15–41. http://dx.doi.org/10.1146/annurev-genom-091416-035324.
Texte intégralXu, Xing, Junxia Wang, Lingling Wu, Jingjing Guo, Yanling Song, Tian Tian, Wei Wang, Zhi Zhu et Chaoyong Yang. « Microfluidic Single‐Cell Omics Analysis ». Small 16, no 9 (23 septembre 2019) : 1903905. http://dx.doi.org/10.1002/smll.201903905.
Texte intégralWang, Le, et Bo Jin. « Single-Cell RNA Sequencing and Combinatorial Approaches for Understanding Heart Biology and Disease ». Biology 13, no 10 (30 septembre 2024) : 783. http://dx.doi.org/10.3390/biology13100783.
Texte intégralMincarelli, Laura, Ashleigh Lister, James Lipscombe et Iain C. Macaulay. « Defining Cell Identity with Single-Cell Omics ». PROTEOMICS 18, no 18 (28 mai 2018) : 1700312. http://dx.doi.org/10.1002/pmic.201700312.
Texte intégralYang, Xiaoxi, Yuqi Wen, Xinyu Song, Song He et Xiaochen Bo. « Exploring the classification of cancer cell lines from multiple omic views ». PeerJ 8 (18 août 2020) : e9440. http://dx.doi.org/10.7717/peerj.9440.
Texte intégralDeng, Yanxiang, Amanda Finck et Rong Fan. « Single-Cell Omics Analyses Enabled by Microchip Technologies ». Annual Review of Biomedical Engineering 21, no 1 (4 juin 2019) : 365–93. http://dx.doi.org/10.1146/annurev-bioeng-060418-052538.
Texte intégralRai, Muhammad Farooq, Chia-Lung Wu, Terence D. Capellini, Farshid Guilak, Amanda R. Dicks, Pushpanathan Muthuirulan, Fiorella Grandi, Nidhi Bhutani et Jennifer J. Westendorf. « Single Cell Omics for Musculoskeletal Research ». Current Osteoporosis Reports 19, no 2 (9 février 2021) : 131–40. http://dx.doi.org/10.1007/s11914-021-00662-2.
Texte intégralLv, Dekang, Xuehong Zhang et Quentin Liu. « Single-cell omics decipher tumor evolution ». Medicine in Omics 2 (septembre 2021) : 100006. http://dx.doi.org/10.1016/j.meomic.2021.100006.
Texte intégralThèses sur le sujet "Single-Cell omics"
Kim, Jieun. « Computational tools for the integrative analysis of muti-omics data to decipher trans-omics networks ». Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/28524.
Texte intégralLin, Yingxin. « Statistical modelling and machine learning for single cell data harmonisation and analysis ». Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/28034.
Texte intégralKim, Taiyun. « Development of statistical methods for integrative omics analysis in precision medicine ». Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/28838.
Texte intégralBlampey, Quentin. « Deep learning and computational methods on single-cell and spatial data for precision medicine in oncology ». Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASL116.
Texte intégralPrecision medicine in oncology customizes treatments based on the unique genetic and molecular profiles of patients' tumors, which is crucial for enhancing therapeutic efficacy and minimizing adverse effects. As technological advancements yield increasingly precise data about the tumor microenvironment (TME), the complexity of this data also grows. Notably, spatial data — a recent and promising type of omics data — provides molecular information at the single-cell level while maintaining the spatial context of cells within tissues. To fully exploit this rich and complex data, deep learning is emerging as a powerful approach that overcomes multiple limitations of traditional approaches. This manuscript details the development of new deep learning and computational methods to enhance our analysis of intricate systems like single-cell and spatial data. Three tools are introduced: (i) Scyan, for cell type annotation in cytometry, (ii) Sopa, a general pipeline for spatial omics, and (iii) Novae, a foundation model for spatial omics. These methods are applied to multiple precision medicine projects, exemplifying how they deepen our understanding of cancer biology, facilitating the discovery of new biomarkers and identifying potentially actionable targets for precision medicine
Ronen, Jonathan. « Integrative analysis of data from multiple experiments ». Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/21612.
Texte intégralThe development of high throughput sequencing (HTS) was followed by a swarm of protocols utilizing HTS to measure different molecular aspects such as gene expression (transcriptome), DNA methylation (methylome) and more. This opened opportunities for developments of data analysis algorithms and procedures that consider data produced by different experiments. Considering data from seemingly unrelated experiments is particularly beneficial for Single cell RNA sequencing (scRNA-seq). scRNA-seq produces particularly noisy data, due to loss of nucleic acids when handling the small amounts in single cells, and various technical biases. To address these challenges, I developed a method called netSmooth, which de-noises and imputes scRNA-seq data by applying network diffusion over a gene network which encodes expectations of co-expression patterns. The gene network is constructed from other experimental data. Using a gene network constructed from protein-protein interactions, I show that netSmooth outperforms other state-of-the-art scRNA-seq imputation methods at the identification of blood cell types in hematopoiesis, as well as elucidation of time series data in an embryonic development dataset, and identification of tumor of origin for scRNA-seq of glioblastomas. netSmooth has a free parameter, the diffusion distance, which I show can be selected using data-driven metrics. Thus, netSmooth may be used even in cases when the diffusion distance cannot be optimized explicitly using ground-truth labels. Another task which requires in-tandem analysis of data from different experiments arises when different omics protocols are applied to the same biological samples. Analyzing such multiomics data in an integrated fashion, rather than each data type (RNA-seq, DNA-seq, etc.) on its own, is benefitial, as each omics experiment only elucidates part of an integrated cellular system. The simultaneous analysis may reveal a comprehensive view.
Czerwińska, Urszula. « Unsupervised deconvolution of bulk omics profiles : methodology and application to characterize the immune landscape in tumors Determining the optimal number of independent components for reproducible transcriptomic data analysis Application of independent component analysis to tumor transcriptomes reveals specific and reproducible immune-related signals A multiscale signalling network map of innate immune response in cancer reveals signatures of cell heterogeneity and functional polarization ». Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCB075.
Texte intégralTumors are engulfed in a complex microenvironment (TME) including tumor cells, fibroblasts, and a diversity of immune cells. Currently, a new generation of cancer therapies based on modulation of the immune system response is in active clinical development with first promising results. Therefore, understanding the composition of TME in each tumor case is critically important to make a prognosis on the tumor progression and its response to treatment. However, we lack reliable and validated quantitative approaches to characterize the TME in order to facilitate the choice of the best existing therapy. One part of this challenge is to be able to quantify the cellular composition of a tumor sample (called deconvolution problem in this context), using its bulk omics profile (global quantitative profiling of certain types of molecules, such as mRNA or epigenetic markers). In recent years, there was a remarkable explosion in the number of methods approaching this problem in several different ways. Most of them use pre-defined molecular signatures of specific cell types and extrapolate this information to previously unseen contexts. This can bias the TME quantification in those situations where the context under study is significantly different from the reference. In theory, under certain assumptions, it is possible to separate complex signal mixtures, using classical and advanced methods of source separation and dimension reduction, without pre-existing source definitions. If such an approach (unsupervised deconvolution) is feasible to apply for bulk omic profiles of tumor samples, then this would make it possible to avoid the above mentioned contextual biases and provide insights into the context-specific signatures of cell types. In this work, I developed a new method called DeconICA (Deconvolution of bulk omics datasets through Immune Component Analysis), based on the blind source separation methodology. DeconICA has an aim to decipher and quantify the biological signals shaping omics profiles of tumor samples or normal tissues. A particular focus of my study was on the immune system-related signals and discovering new signatures of immune cell types. In order to make my work more accessible, I implemented the DeconICA method as an R package named "DeconICA". By applying this software to the standard benchmark datasets, I demonstrated that DeconICA is able to quantify immune cells with accuracy comparable to published state-of-the-art methods but without a priori defining a cell type-specific signature genes. The implementation can work with existing deconvolution methods based on matrix factorization techniques such as Independent Component Analysis (ICA) or Non-Negative Matrix Factorization (NMF). Finally, I applied DeconICA to a big corpus of data containing more than 100 transcriptomic datasets composed of, in total, over 28000 samples of 40 tumor types generated by different technologies and processed independently. This analysis demonstrated that ICA-based immune signals are reproducible between datasets and three major immune cell types: T-cells, B-cells and Myeloid cells can be reliably identified and quantified. Additionally, I used the ICA-derived metagenes as context-specific signatures in order to study the characteristics of immune cells in different tumor types. The analysis revealed a large diversity and plasticity of immune cells dependent and independent on tumor type. Some conclusions of the study can be helpful in identification of new drug targets or biomarkers for immunotherapy of cancer
CAPORALE, NICOLO'. « A UNIFYING FRAMEWORK TO STUDY THE GENETIC AND ENVIRONMENTAL FACTORS SHAPING HUMAN BRAIN DEVELOPMENT ». Doctoral thesis, Università degli Studi di Milano, 2020. http://hdl.handle.net/2434/697871.
Texte intégralLivres sur le sujet "Single-Cell omics"
Sweedler, Jonathan V., James Eberwine et Scott E. Fraser, dir. Single Cell ‘Omics of Neuronal Cells. New York, NY : Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2525-5.
Texte intégralSingle-Cell Omics. Elsevier, 2019. http://dx.doi.org/10.1016/c2017-0-02420-5.
Texte intégralSingle-Cell Omics. Elsevier, 2019. http://dx.doi.org/10.1016/c2018-0-02201-x.
Texte intégralPan, Xinghua, Shixiu Wu et Sherman M. Weissman, dir. Introduction to Single Cell Omics. Frontiers Media SA, 2019. http://dx.doi.org/10.3389/978-2-88945-920-9.
Texte intégralEberwine, James, Jonathan V. Sweedler et Scott E. Fraser. Single Cell 'Omics of Neuronal Cells. Springer, 2022.
Trouver le texte intégralSingle Cell 'Omics of Neuronal Cells. Springer, 2023.
Trouver le texte intégralBarh, Debmalya, et Vasco Azevedo. Single-Cell Omics : Technological Advances and Applications. Elsevier Science & Technology, 2019.
Trouver le texte intégralMenon, Swapna. Single Cell Sequencing Essentials in Brief : Single Cell RNA Sequencing and Orthogonal Omics Technologies. Independently Published, 2021.
Trouver le texte intégralBarh, Debmalya, et Vasco Azevedo. Single-Cell Omics : Volume 2 : Technological Advances and Applications. Elsevier Science & Technology Books, 2019.
Trouver le texte intégralBarh, Debmalya, et Vasco Azevedo. Single-Cell Omics : Volume 1 : Technological Advances and Applications. Elsevier Science & Technology, 2019.
Trouver le texte intégralChapitres de livres sur le sujet "Single-Cell omics"
Lynch, Mark, et Naveen Ramalingam. « Integrated Fluidic Circuits for Single-Cell Omics and Multi-omics Applications ». Dans Single Molecule and Single Cell Sequencing, 19–26. Singapore : Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6037-4_2.
Texte intégralWang, Jingshu, et Tianyu Chen. « Deep Learning Methods for Single-Cell Omics Data ». Dans Springer Handbooks of Computational Statistics, 109–32. Berlin, Heidelberg : Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-65902-1_6.
Texte intégralWang, Xinjun, Haoran Hu et Wei Chen. « Model-Based Clustering of Single-Cell Omics Data ». Dans Springer Handbooks of Computational Statistics, 85–108. Berlin, Heidelberg : Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-65902-1_5.
Texte intégralDemetçi, Pınar, Rebecca Santorella, Björn Sandstede et Ritambhara Singh. « Unsupervised Integration of Single-Cell Multi-omics Datasets with Disproportionate Cell-Type Representation ». Dans Lecture Notes in Computer Science, 3–19. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04749-7_1.
Texte intégralHan, Maozhen, Pengshuo Yang, Hao Zhou, Hongjun Li et Kang Ning. « Metagenomics and Single-Cell Omics Data Analysis for Human Microbiome Research ». Dans Advances in Experimental Medicine and Biology, 117–37. Singapore : Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1503-8_6.
Texte intégralChau, Tran, Prakash Timilsena et Song Li. « Gene Regulatory Network Modeling Using Single-Cell Multi-Omics in Plants ». Dans Methods in Molecular Biology, 259–75. New York, NY : Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3354-0_16.
Texte intégralLi, Yue, Gregory Fonseca et Jun Ding. « Multimodal Methods for Knowledge Discovery from Bulk and Single-Cell Multi-Omics Data ». Dans Machine Learning Methods for Multi-Omics Data Integration, 39–74. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-36502-7_4.
Texte intégralMisra, Biswapriya B. « A Workflow in Single Cell-Type Metabolomics : From Data Pre-Processing and Statistical Analysis to Biological Insights ». Dans OMICS-Based Approaches in Plant Biotechnology, 105–27. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119509967.ch6.
Texte intégralLan, Wei, Shengzu Huang, Xun Sun, Haibo Liao, Qingfeng Chen et Junyue Cao. « Single-Cell Multi-omics Clustering Algorithm Based on Adaptive Weighted Hyper-laplacian Regularization ». Dans Bioinformatics Research and Applications, 373–82. Singapore : Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-5131-0_32.
Texte intégralLin, Zhixiang. « Integrative Analyses of Single-Cell Multi-Omics Data : A Review from a Statistical Perspective ». Dans Springer Handbooks of Computational Statistics, 53–69. Berlin, Heidelberg : Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-65902-1_3.
Texte intégralActes de conférences sur le sujet "Single-Cell omics"
Li, Xiaoli, Rui Zhang, Saba Aslam, Huijun Li, Yuxi Chen, Zequn Zhang, Ruey-Song Huang et Hongyan Wu. « scMonica : Single-cell Mosaic Omics Nonlinear Integration and Clustering Analysis ». Dans 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 1579–83. IEEE, 2024. https://doi.org/10.1109/bibm62325.2024.10822866.
Texte intégralTaha, Manar H., Mohamed El-Hadidi et Sahar Ali Fawzi. « Deep Learning Applications in Single-Cell Multi-Omics Analysis : A Review ». Dans 2024 6th Novel Intelligent and Leading Emerging Sciences Conference (NILES), 85–88. IEEE, 2024. http://dx.doi.org/10.1109/niles63360.2024.10753202.
Texte intégralPang, Shanchen, Jiarui Wu, Wenhao Wu, Hengxiao Li, Ruiqian Wang, Yulin Zhang et Shudong Wang. « scKADE : Single-Cell Multi-Omics Integration with Kolmogorov-Arnold Deep Embedding ». Dans 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 633–38. IEEE, 2024. https://doi.org/10.1109/bibm62325.2024.10822086.
Texte intégralLi, Jiawei, Shizhan Chen, Zongbo Han, Wei Li, Jijun Tang et Fei Guo. « Multi-Task Driven Multi-Level Dynamical Fusion for Single-Cell Multi-Omics Cell Type Annotation ». Dans 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 1009–14. IEEE, 2024. https://doi.org/10.1109/bibm62325.2024.10822524.
Texte intégralLi, Enling, Lin Gao et Yusen Ye. « CellFeature : Cell and Feature Co-Embedding from Single-Cell Multi-Omics with Heterogeneous Graph Model ». Dans 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 976–81. IEEE, 2024. https://doi.org/10.1109/bibm62325.2024.10821837.
Texte intégralWolfgang, Seth, Skyler Ruiter, Marc Tunnell, Timothy Triche, Erin Carrier et Zachary DeBruine. « Value-Compressed Sparse Column (VCSC) : Sparse Matrix Storage for Single-cell Omics Data ». Dans 2024 IEEE International Conference on Big Data (BigData), 4952–58. IEEE, 2024. https://doi.org/10.1109/bigdata62323.2024.10825091.
Texte intégralZhao, Zhongming. « Session details : Single cell omics ». Dans BCB '21 : 12th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. New York, NY, USA : ACM, 2021. http://dx.doi.org/10.1145/3478669.
Texte intégralSingh, Ritambhara, Pinar Demetci, Giancarlo Bonora, Vijay Ramani, Choli Lee, He Fang, Zhijun Duan et al. « Unsupervised manifold alignment for single-cell multi-omics data ». Dans BCB '20 : 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. New York, NY, USA : ACM, 2020. http://dx.doi.org/10.1145/3388440.3412410.
Texte intégralPrabhala, P., S. Lang, S. Wijk, R. Cattani, K. Kanzenbach, K. Malmros, S. Soneji et al. « Characterizing Molecular Targets in Lung Squamous Cell Carcinoma Using Single Cell Omics ». Dans American Thoracic Society 2024 International Conference, May 17-22, 2024 - San Diego, CA. American Thoracic Society, 2024. http://dx.doi.org/10.1164/ajrccm-conference.2024.209.1_meetingabstracts.a4910.
Texte intégralDo, Van Hoan, et Stefan Canzar. « Identifying Cell Types in Single-Cell Multimodal Omics Data via Joint Embedding Learning ». Dans 2023 15th International Conference on Knowledge and Systems Engineering (KSE). IEEE, 2023. http://dx.doi.org/10.1109/kse59128.2023.10299517.
Texte intégralRapports d'organisations sur le sujet "Single-Cell omics"
Wang, Daojing, et Steven Bodovitz. Single cell analysis : the new frontier in 'Omics'. Office of Scientific and Technical Information (OSTI), janvier 2010. http://dx.doi.org/10.2172/983315.
Texte intégral