Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Single cell mRNA sequencing.

Livres sur le sujet « Single cell mRNA sequencing »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 22 meilleurs livres pour votre recherche sur le sujet « Single cell mRNA sequencing ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les livres sur diverses disciplines et organisez correctement votre bibliographie.

1

Suzuki, Yutaka, dir. Single Molecule and Single Cell Sequencing. Singapore : Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6037-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Yu, Buwei, Jiaqiang Zhang, Yiming Zeng, Li Li et Xiangdong Wang, dir. Single-cell Sequencing and Methylation. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4494-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Wang, Xiangdong, dir. Single Cell Sequencing and Systems Immunology. Dordrecht : Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9753-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Ding, Hongxu. Understand Biology Using Single Cell RNA-Sequencing. [New York, N.Y.?] : [publisher not identified], 2018.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Levitin, Hanna M. Biological Inference from Single Cell RNA-Sequencing. [New York, N.Y.?] : [publisher not identified], 2020.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Suzuki, Yutaka. Single Molecule and Single Cell Sequencing. Springer, 2019.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Menon, Swapna. Single Cell Sequencing Essentials in Brief : Single Cell RNA Sequencing and Orthogonal Omics Technologies. Independently Published, 2021.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Wang, Xiangdong. Single Cell Sequencing and Systems Immunology. Springer, 2015.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Wang, Xiangdong. Single Cell Sequencing and Systems Immunology. Springer, 2016.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Proserpio, Valentina. Single Cell Methods : Sequencing and Proteomics. Springer New York, 2019.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Proserpio, Valentina. Single Cell Methods : Sequencing and Proteomics. Springer New York, 2020.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Wang, Xiangdong. Single Cell Sequencing and Systems Immunology. Ingramcontent, 2015.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Mallick, Himel, Lingling An, Mengjie Chen, Pei Wang et Ni Zhao, dir. Methods for Single-Cell and Microbiome Sequencing Data. Frontiers Media SA, 2022. http://dx.doi.org/10.3389/978-2-88976-280-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Li, Li, Xiangdong Wang, Jiaqiang Zhang, Buwei Yu et Yiming Zeng. Single-Cell Sequencing and Methylation : Methods and Clinical Applications. Springer Singapore Pte. Limited, 2021.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Li, Li, Xiangdong Wang, Jiaqiang Zhang, Buwei Yu et Yiming Zeng. Single-cell Sequencing and Methylation : Methods and Clinical Applications. Springer, 2020.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Chen, Geng, Zhichao Liu et Cheng Peng, dir. Multimodal and Integrative Analysis of Single-Cell or Bulk Sequencing Data. Frontiers Media SA, 2021. http://dx.doi.org/10.3389/978-2-88966-668-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Yang, Sheng, Shiquan Sun, Xiang Zhou et Yang Zhao, dir. Integrative Analysis of Genome-Wide Association Studies and Single-Cell Sequencing Studies. Frontier Media SA, 2021. http://dx.doi.org/10.3389/978-2-88971-467-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Yang, Jialiang, Liao Bo, Tuo Zhang et Yifei Xu, dir. Bioinformatics Analysis of Single Cell Sequencing Data and Applications in Precision Medicine. Frontiers Media SA, 2020. http://dx.doi.org/10.3389/978-2-88963-528-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Marlow, Heather, dir. Evolutionary Development of Marine Larvae. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786962.003.0002.

Texte intégral
Résumé :
Access to a growing number of marine invertebrates with genetic and genomic tools has broadened our understanding of the diversity of developmental mechanisms, informing our understanding of larval evolution by allowing the identification of shared or divergent programs for the formation of body plan patterning and organ formation. Two such genetic programs are the apical plate patterning network and the hox/parahox trunk and gut patterning network common to larval and adult forms, respectively. While mounting evidence supports an ancient origin at the base of the Bilateria for both adult and larval forms, it is clear that many distinct organs and structures have appeared independently and can be shifted between the larval and adult phase frequently. Future advances in our understanding of larval evolution are likely to emerge from exhaustive studies of marine invertebrate cell types by single-cell sequencing technologies and through the study of the genetic basis of the metamorphic transition.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Meng, X. J. Hepatitis E virus. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780198570028.003.0048.

Texte intégral
Résumé :
Hepatitis E virus (HEV) is a small, non-enveloped, single-strand, positive-sense RNA virus of approximately 7.2 kb in size. HEV is classified in the family Hepeviridae consisting of four recognized major genotypes that infect humans and other animals. Genotypes 1 and 2 HEV are restricted to humans and often associated with large outbreaks and epidemics in developing countries with poor sanitation conditions, whereas genotypes 3 and 4 HEV infect humans, pigs and other animal species and are responsible for sporadic cases of hepatitis E in both developing and industrialized countries. The avian HEV associated with Hepatitis-Splenomegaly syndrome in chickens is genetically and antigenically related to mammalian HEV, and likely represents a new genus in the family. There exist three open reading frames in HEV genome: ORF1 encodes non-structural proteins, ORF2 encodes the capsid protein, and the ORF3 encodes a small phosphoprotein. ORF2 and ORF3 are translated from a single bicistronic mRNA, and overlap each other but neither overlaps ORF1. Due to the lack of an efficient cell culture system and a practical animal model for HEV, the mechanisms of HEV replication and pathogenesis are poorly understood. The recent identification and characterization of animal strains of HEV from pigs and chickens and the demonstrated ability of cross-species infection by these animal strains raise potential public health concerns for zoonotic HEV transmission. It has been shown that the genotypes 3 and 4 HEV strains from pigs can infect humans, and vice versa. Accumulating evidence indicated that hepatitis E is a zoonotic disease, and swine and perhaps other animal species are reservoirs for HEV. A vaccine against HEV is not yet available.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Bakhtiar, Syeda Marriam, et Erum Dilshad, dir. Omics Technologies for Clinical Diagnosis and Gene Therapy : Medical Applications in Human Genetics. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/97898150795171220101.

Texte intégral
Résumé :
Genetic disorders have been the focus of scientists for a long time. The emergence of next-generation sequencing techniques has ushered a new era in genetics and several developments have occurred in human genetics. The scientific perspective has also been widened with omics technologies that allow researchers to analyze genetic sequences and their expression products. An integrated approach is being used not only for diagnosis but also for disease management and therapeutic purposes. This book highlights emerging areas of omics technology and its application in the diagnosis and management of human genetic disorders. The book covers three areas of research and implementation: 1) Diagnosis (covering conventional strategies to next-generation platforms). This section focuses on the role of in silico analysis, databases and multi-omics of single-cell which will help in designing better management strategies. 2) Disease Management and therapeutic interventions. This section starts with genetic counselling and progresses to more specific techniques such as pharmacogenomics and personalized medicine, gene editing techniques and their applications in gene therapies and regenerative medicine. 3) Case studies. This section discusses the applications and success of all the above-mentioned strategies on selected human disorders. This book serves as a handy reference for students and academics studying advanced omics techniques in biochemistry and molecular genetics as part of courses in life sciences, pharmacology and medicine.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Lewis, Myles, et Tim Vyse. Genetics of connective tissue diseases. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199642489.003.0042.

Texte intégral
Résumé :
The advent of genome-wide association studies (GWAS) has been an exciting breakthrough in our understanding of the genetic aetiology of autoimmune diseases. Substantial overlap has been found in susceptibility genes across multiple diseases, from connective tissue diseases and rheumatoid arthritis (RA) to inflammatory bowel disease, coeliac disease, and psoriasis. Major technological advances now permit genotyping of millions of single nucleotide polymorphisms (SNPs). Group analysis of SNPs by haplotypes, aided by completion of the Hapmap project, has improved our ability to pinpoint causal genetic variants. International collaboration to pool large-scale cohorts of patients has enabled GWAS in systemic lupus erythematosus (SLE), systemic sclerosis and Behçet's disease, with studies in progress for ANCA-associated vasculitis. These 'hypothesis-free' studies have revealed many novel disease-associated genes. In both SLE and systemic sclerosis, identified genes map to known pathways including antigen presentation (MHC, TNFSF4), autoreactivity of B and T lymphocytes (BLK, BANK1), type I interferon production (STAT4, IRF5) and the NFκ‎B pathway (TNIP1). In SLE alone, additional genes appear to be involved in dysregulated apoptotic cell clearance (ITGAM, TREX1, C1q, C4) and recognition of immune complexes (FCGR2A, FCGR3B). Future developments include whole-genome sequencing to identify rare variants, and efforts to understand functional consequences of susceptibility genes. Putative environmental triggers for connective tissue diseases include infectious agents, especially Epstein-Barr virus; cigarette smoking; occupational exposure to toxins including silica; and low vitamin D, due to its immunomodulatory effects. Despite numerous studies looking at toxin exposure and connective tissue diseases, conclusive evidence is lacking, due to either rarity of exposure or rarity of disease.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie